首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
种群生存力分析:准确性和保护应用   总被引:12,自引:0,他引:12  
李义明 《生物多样性》2003,11(4):340-350
目前已提出了五类估计濒危物种绝灭风险的种群生存力分析模型 ,即 :分析模型、单种群确定性模型、单种群随机模型、异质种群模型和显空间模型。模型的选择取决于物种的生活史特征和可用的数据。与用于保护实践的其他方法相比 ,种群生存力分析 (PVA)是相对准确的量化工具。然而 ,一些濒危物种种群统计学数据质量差和种群动态的有关假说模糊不清可能影响到模型预测的准确性 ,因此 ,要谨慎地使用PVA。在西方国家 ,PVA在濒危物种保护计划和管理中应用越来越广泛。它主要用于 :( 1)预测濒危物种未来的种群大小 ;( 2 )估计一定时间内物种的绝灭风险 ;( 3 )评估一套保护措施 ,确定哪个能使种群的存活时间最长 ;( 4)探索不同假说对小种群动态的影响 ;( 5 )指导濒危动物野外数据的搜集工作。我国的濒危物种很多 ,然而开展PVA研究的濒危物种却很少。应大力发展适合于模拟我国特有濒危物种及其保护问题的PVA模型  相似文献   

2.
Andreas Lindén  Jonas Knape 《Oikos》2009,118(5):675-680
Within the paradigm of population dynamics a central task is to identify environmental factors affecting population change and to estimate the strength of these effects. We here investigate the impact of observation errors in measurements of population densities on estimates of environmental effects. Adding observation errors may change the autocorrelation of a population time series with potential consequences for estimates of effects of autocorrelated environmental covariates. Using Monte Carlo simulations, we compare the performance of maximum likelihood estimates from three stochastic versions of the Gompertz model (log–linear first order autoregressive model), assuming 1) process error only, 2) observation error only, and 3) both process and observation error (the linear state–space model on log‐scale). We also simulated population dynamics using the Ricker model, and evaluated the corresponding maximum likelihood estimates for process error models. When there is observation error in the data and the considered environmental variable is strongly autocorrelated, its estimated effect is likely to be biased when using process error models. The environmental effect is overestimated when the sign of the autocorrelations of the intrinsic dynamics and the environment are the same and underestimated when the signs differ. With non‐autocorrelated environmental covariates, process error models produce fairly exact point estimates as well as reliable confidence intervals for environmental effects. In all scenarios, observation error models produce unbiased estimates with reasonable precision, but confidence intervals derived from the likelihood profiles are far too optimistic if there is process error present. The safest approach is to use state–space models in presence of observation error. These are factors worthwhile to consider when interpreting earlier empirical results on population time series, and in future studies, we recommend choosing carefully the modelling approach with respect to intrinsic population dynamics and covariate autocorrelation.  相似文献   

3.
We review the role of density dependence in the stochastic extinction of populations and the role density dependence has played in population viability analysis (PVA) case studies. In total, 32 approaches have been used to model density regulation in theoretical or applied extinction models, 29 of them are mathematical functions of density dependence, and one approach uses empirical relationships between density and survival, reproduction, or growth rates. In addition, quasi-extinction levels are sometimes applied as a substitute for density dependence at low population size. Density dependence further has been modelled via explicit individual spacing behaviour and/or dispersal. We briefly summarise the features of density dependence available in standard PVA software, provide summary statistics about the use of density dependence in PVA case studies, and discuss the effects of density dependence on extinction probability. The introduction of an upper limit for population size has the effect that the probability of ultimate extinction becomes 1. Mean time to extinction increases with carrying capacity if populations start at high density, but carrying capacity often does not have any effect if populations start at low numbers. In contrast, the Allee effect is usually strong when populations start at low densities but has only a limited influence on persistence when populations start at high numbers. Contrary to previous opinions, other forms of density dependence may lead to increased or decreased persistence, depending on the type and strength of density dependence, the degree of environmental variability, and the growth rate. Furthermore, effects may be reversed for different quasi-extinction levels, making the use of arbitrary quasi-extinction levels problematic. Few systematic comparisons of the effects on persistence between different models of density dependence are available. These effects can be strikingly different among models. Our understanding of the effects of density dependence on extinction of metapopulations is rudimentary, but even opposite effects of density dependence can occur when metapopulations and single populations are contrasted. We argue that spatially explicit models hold particular promise for analysing the effects of density dependence on population viability provided a good knowledge of the biology of the species under consideration exists. Since the results of PVAs may critically depend on the way density dependence is modelled, combined efforts to advance statistical methods, field sampling, and modelling are urgently needed to elucidate the relationships between density, vital rates, and extinction probability.  相似文献   

4.
This paper examines the consequences of observation errors for the "random walk with drift", a model that incorporates density independence and is frequently used in population viability analysis. Exact expressions are given for biases in estimates of the mean, variance and growth parameters under very general models for the observation errors. For other quantities, such as the finite rate of increase, and probabilities about population size in the future we provide and evaluate approximate expressions. These expressions explain the biases induced by observation error without relying exclusively on simulations, and also suggest ways to correct for observation error. A secondary contribution is a careful discussion of observation error models, presented in terms of either log-abundance or abundance. This discussion recognizes that the bias and variance in observation errors may change over time, the result of changing sampling effort or dependence on the underlying population being sampled.  相似文献   

5.
1.?State space models are starting to replace more simple time series models in analyses of temporal dynamics of populations that are not perfectly censused. By simultaneously modelling both the dynamics and the observations, consistent estimates of population dynamical parameters may be obtained. For many data sets, the distribution of observation errors is unknown and error models typically chosen in an ad-hoc manner. 2.?To investigate the influence of the choice of observation error on inferences, we analyse the dynamics of a replicated time series of red kangaroo surveys using a state space model with linear state dynamics. Surveys were performed through aerial counts and Poisson, overdispersed Poisson, normal and log-normal distributions may all be adequate for modelling observation errors for the data. We fit each of these to the data and compare them using AIC. 3.?The state space models were fitted with maximum likelihood methods using a recent importance sampling technique that relies on the Kalman filter. The method relaxes the assumption of Gaussian observation errors required by the basic Kalman filter. Matlab code for fitting linear state space models with Poisson observations is provided. 4.?The ability of AIC to identify the correct observation model was investigated in a small simulation study. For the parameter values used in the study, without replicated observations, the correct observation distribution could sometimes be identified but model selection was prone to misclassification. On the other hand, when observations were replicated, the correct distribution could typically be identified. 5.?Our results illustrate that inferences may differ markedly depending on the observation distributions used, suggesting that choosing an adequate observation model can be critical. Model selection and simulations show that for the models and parameter values in this study, a suitable observation model can typically be identified if observations are replicated. Model selection and replication of observations, therefore, provide a potential solution when the observation distribution is unknown.  相似文献   

6.
Estimation of a population trend from a time series of abundance data is an important task in ecology, yet such estimation remains logistically and conceptually challenging in practice. First, the extent to which unequal intervals in the time series, due to missing observations or irregular sampling, compromise trend estimation is not well‐known. Furthermore, the predominant trend estimation method (loglinear regression of abundance data against time) ignores the possibility of process noise, while an alternative method (the ‘diffusion approximation’) ignores observation error in the abundance data. State‐space models that account for both process noise and observation error exist but have been little used. We study an adaptation of the exponential growth state‐space (EGSS) model for use with missing data in the time series, and we compare its trend estimation to the status quo methods. The EGSS model provides superior estimates of trend across wide ranges of time series length and sources of variation. The performance of the EGSS model even with half of the counts in the time series missing implies that trend estimates may be improved by diverting effort away from annual monitoring and towards increasing time series length or improving precision of the abundance estimates for years that data are collected.  相似文献   

7.
Abstract: Population viability analysis (PVA) is a common tool to evaluate population vulnerability. However, most techniques require reliable estimates of underlying population parameters, which are often difficult to obtain and PVA are, therefore, best used in a qualitative context. Logistic regression is a powerful alternative to traditional PVA methods but has received surprisingly limited attention. Logistic regression fits regression equations to binary output from PVA models at a specific point in time to predict probability of a binary response over a range of parameter values. We used logistic regression on output from stochastic population models to evaluate the relative importance of demographic parameters for wolverine (Gulo gulo) populations and to estimate sustainable harvest in a wolverine population in Alaska. Our analysis indicated that adult survival is the most important demographic parameter to reliably estimate in wolverine populations because it had a greater effect on population persistence than did both fecundity and subadult survival. In accordance with this, harvest rate had a greater effect on population persistence than did any of the other harvest- and migration-related variables we tested. Furthermore, a high proportion of harvested females strengthened the effect of harvest. Hypothetical wolverine populations suffered high probabilities of both extinction and population decline over a range of realistic population sizes and harvest regimes. We suggest that harvested wolverine populations must be regarded as sink populations and that source populations in combination with sufficient dispersal corridors must be secured for any wolverine harvest to be sustainable.  相似文献   

8.
Uncertainty and risk abound in making natural resource management decisions. Population viability analysis (PVA) includes a variety of qualitative or quantitative analyses to predict the future status of a population or collection of populations and to predict the risk of extinction (or quasi-extinction) over time given some assumptions of the factors driving population dynamics. In this paper, we review the various PVA models applied to Atlantic and Pacific salmon for determination of listing under the Endangered Species Act and in planning recovery actions. We also review the numerous cautions involved in developing PVA models and in interpreting their results. There have been a larger number of PVA models applied to Pacific salmon compared to Atlantic salmon due to the greater geographic range and number of species of Pacific salmon. Models for both Atlantic and Pacific salmon have ranged from simple models that view populations as simply a number of organisms to complex age- or stage-structured models depending on the purpose of the model and available data for model parameterization. The real value of PVA models to salmon conservation is not in making absolute predictions of the risk of extinction, but rather in evaluating relative effects of management alternatives on extinction risk and informing decision making within an adaptive management framework. As computing power, quantitative techniques, and knowledge of mechanistic linkages between terrestrial, freshwater, and marine environments advance, PVA models will become an even more powerful tool in conservation planning for salmon species.  相似文献   

9.
There is a growing debate about the ability of Population Viability Analysis (PVA) to predict the risk of extinction. Previously, the debate has focused largely on models where spatial variation and species movement are ignored. We present a synthesis of the key results for an array of different species for which detailed tests of the accuracy of PVA models were completed. These models included spatial variation in habitat quality and the movement of individuals across a landscape. The models were good approximations for some species, but poor for others. Predictive ability was limited by complex processes typically overlooked in spatial population models, these being interactions between landscape structure and life history attributes. Accuracy of models could not be determined a priori, although model tests indicated how they might be improved. Importantly, model predictions were poor for some species that are among the best‐studied vertebrates in Australia. This indicated that although the availability of good life history data is a key part of PVA other factors also influence model accuracy. We were also able to draw broad conclusions about the sorts of populations and life history characteristics where model predictions are likely to be less accurate. Predictions of extinction risk are often essential for real‐world population management. Therefore, we believe that although PVA has been shown to be less than perfect, it remains a useful tool particularly in the absence of alternative approaches. Hence, tests of PVA models should be motivated by the cycle of testing and improvement.  相似文献   

10.
Population viability analysis (PVA) has frequently been used in conservation biology to predict extinction rates for threatened or endangered species. In this study, we used VORTEX to model Korean long-tailed goral (Naemorhedus caudatus) using previously collected ecological data. We focused on modelling population extinction, mean population size and heterozygosity. The minimum viable population size was found to be at least 50 gorals for 100 years, regardless of carrying capacity. However, populations with fewer than 50 gorals could not remain successful in the model. Inbreeding depression, catastrophes and supplementation also affected patterns of population extinction, mean population size and heterozygosity. Supplementation with new individuals had the strongest effect on extinction, mean population size and heterozygosity, followed by initial population size, inbreeding, catastrophes and carrying capacity. These results suggest that a supplementation by extra goral individuals from goral proliferation facilities would be the most helpful means for the restoration programme. More Korean goral-specific information regarding demographic and habitat parameters is needed for further PVA of the species.  相似文献   

11.
We investigate the impact of Allee effect and dispersal on the long-term evolution of a population in a patchy environment. Our main focus is on whether a population already established in one patch either successfully invades an adjacent empty patch or undergoes a global extinction. Our study is based on the combination of analytical and numerical results for both a deterministic two-patch model and a stochastic counterpart. The deterministic model has either two, three or four attractors. The existence of a regime with exactly three attractors only appears when patches have distinct Allee thresholds. In the presence of weak dispersal, the analysis of the deterministic model shows that a high-density and a low-density populations can coexist at equilibrium in nearby patches, whereas the analysis of the stochastic model indicates that this equilibrium is metastable, thus leading after a large random time to either a global expansion or a global extinction. Up to some critical dispersal, increasing the intensity of the interactions leads to an increase of both the basin of attraction of the global extinction and the basin of attraction of the global expansion. Above this threshold, for both the deterministic and the stochastic models, the patches tend to synchronize as the intensity of the dispersal increases. This results in either a global expansion or a global extinction. For the deterministic model, there are only two attractors, while the stochastic model no longer exhibits a metastable behavior. In the presence of strong dispersal, the limiting behavior is entirely determined by the value of the Allee thresholds as the global population size in the deterministic and the stochastic models evolves as dictated by their single-patch counterparts. For all values of the dispersal parameter, Allee effects promote global extinction in terms of an expansion of the basin of attraction of the extinction equilibrium for the deterministic model and an increase of the probability of extinction for the stochastic model.  相似文献   

12.
植物种群生存力分析研究进展   总被引:6,自引:2,他引:4  
彭少麟  汪殿蓓  李勤奋 《生态学报》2002,22(12):2175-2185
对十多年来国外植物PVA的研究进行了综合评述;具体分析了影响植物种群生存力的各种随机性因子及确定性因子;总结了植物PVA研究的方法步骤及采用的模拟模型;探讨了植物PVA的难点,PVA对管理措施的评价效果;并提出对今后植物PVA的研究展望,认为PVA是研究濒危植物种群灭绝及评价管理或保护措施的有力工具;发展描述复杂种间关系的多种种的PVA模型以及包含多个影响因素的PVA应用模型是未来植物PVA的研究方向。  相似文献   

13.
Monitoring annual change and long-term trends in population structure and abundance of white-tailed deer (Odocoileus virginianus) is an important but challenging component of their management. Many monitoring programs consist of count-based indices of relative abundance along with a variety of population structure information. Analyzed separately these data can be difficult to interpret because of observation error in the data collection process, missing data, and the lack of an explicit biological model to connect the data streams while accounting for their relative imprecision. We used a Bayesian age-structured integrated population model to integrate data from a fall spotlight survey that produced a count-based index of relative abundance and a volunteer staff and citizen classification survey that generated a fall recruitment index. Both surveys took place from 2003–2018 in the parkland ecoregion of southeast Saskatchewan, Canada. Our approach modeled demographic processes for age-specific (0.5-, 1.5-, ≥2.5-year-old classes) populations and was fit to count and recruitment data via models that allowed for error in the respective observation processes. The Bayesian framework accommodated missing data and allowed aggregation of transects to act as samples from the larger management unit population. The approach provides managers with continuous time series of estimated relative abundance, recruitment rates, and apparent survival rates with full propagation of uncertainty and sharing of information among transects. We used this model to demonstrate winter severity effects on recruitment rates via an interaction between winter snow depth and minimum temperatures. In years with colder than average temperatures and above average snow depth, recruitment was depressed, whereas the negative effect of snow depth reversed in years with above average temperatures. This and other covariate information can be incorporated into the model to test relationships and provide predictions of future population change prior to setting of hunting seasons. Likewise, post hoc analysis of model output allows other hypothesis tests, such as determining the statistical support for whether population status has crossed a management trigger threshold. © 2020 The Wildlife Society.  相似文献   

14.
Population viability analysis (PVA) has been increasingly used to guide conservation planning for many primate species. I present an assessment of a PVA for Philippine tarsiers (Tarsius syrichta) in Corella, Bohol. The objectives were to determine 1) area requirements and 2) spatial configurations of habitat patches necessary for viable populations in Corella. I used available life history parameters and ecological data for the Philippine tarsier derived from a radiotelemetry study on 4 male and 6 female Tarsius syrichta in Corella from early March to October 1999. I used analysis of the likelihood of extinction (ALEX), a Monte Carlo simulation model that uses pseudorandom numbers to simulate a scenario involving different stochastic processes. Sensitivity analysis showed that the model output, i.e. extinction risk, was influenced by the values used for newborn, juvenile, and adult mortality but the effect of variation on adult mortality was more pronounced; a slight increase in adult mortality renders the population very unstable. Simulation of movements between habitat patches showed that addition of diffusion corridors and variation in diffusion parameters did not significantly alter the probability of extinction of the species. Models are only as useful as the data that are input, and a major weakness of this model is the lack of detailed life history and mortality data for Philippine tarsiers. Future studies should concentrate on obtaining more life history data and ecological data from additional localities. I discuss key priorities for future research that include use of alternative PVA software, a simpler modeling approach, and extensive genetic studies of different Philippine tarsier island populations.  相似文献   

15.
Madagascar is home to 208 indigenous palm species, almost all of them endemic and >80% of which are endangered. We undertook complete population census and sampling for genetic analysis of a relatively recently discovered giant fan palm, the Critically Endangered Tahina spectablis in 2008 and 2016. Our 2016 study included newly discovered populations and added to our genetic study. We incorporated these new populations into species distribution niche model (SDM) and projected these onto maps of the region. We developed population matrix models based on observed demographic data to model population change and predict the species vulnerability to extinction by undertaking population viability analysis (PVA). We investigated the potential conservation value of reintroduced planted populations within the species potential suitable habitat. We found that the population studied in 2008 had grown in size due to seedling regeneration but had declined in the number of reproductively mature plants, and we were able to estimate that the species reproduces and dies after approximately 70 years. Our models suggest that if the habitat where it resides continues to be protected the species is unlikely to go extinct due to inherent population decline and that it will likely experience significant population growth after approximately 80 years due to the reproductive and life cycle attributes of the species. The newly discovered populations contain more genetic diversity than the first discovered southern population which is genetically depauperate. The species appears to demonstrate a pattern of dispersal leading to isolated founder plants which may eventually lead to population development depending on local establishment opportunities. The conservation efforts currently put in place including the reintroduction of plants within the species potential suitable habitat if maintained are thought likely to enable the species to sustain itself but it remains vulnerable to anthropogenic impacts.  相似文献   

16.
The major tools used to make population viability analyses (PVA) quantitative are stochastic models of population dynamics. Since a specially tailored model cannot be developed for every threatened population, generic models have been designed which can be parameterised and analysed by non-modellers. These generic models compromise on detail so that they can be used for a wide range of species. However, generic models have been criticised because they can be employed without the user being fully aware of the concepts, methods, potentials, and limitations of PVA. Here, we present the conception of a new generic software package for metapopulation viability analysis, META-X. This conception is based on three elements, which take into account the criticism of earlier generic PVA models: (1) comparative simulation experiments; (2) an occupancy-type model structure which ignores details of local population dynamics (these details are integrated in external submodels); and (3) a unifying currency to quantify persistence and viability, the intrinsic mean time to extinction. The rationale behind these three elements is explained and demonstrated by exemplary applications of META-X in the three fields for which META-X has been designed: teaching, risk assessment in the field, and planning. The conception of META-X is based on the notion that PVA is a tool to deal with rather than to overcome uncertainty. The purpose of PVA is to produce relative, not absolute, assessments of extinction risk which support, but do not supplant, management decisions.  相似文献   

17.
Metapopulation viability depends upon a balance of extinction and colonization of local habitats by a species. Mechanisms that can affect this balance include physical characteristics related to natural processes (e.g. succession) as well as anthropogenic actions. Plant restorations can help to produce favorable metapopulation dynamics and consequently increase viability; however, to date no studies confirm this is true. Population viability analysis (PVA) allows for the use of empirical data to generate theoretical future projections in the form of median time to extinction and probability of extinction. In turn, PVAs can inform and aid the development of conservation, recovery, and management plans. Pitcher's thistle (Cirsium pitcheri) is a dune endemic that exhibited metapopulation dynamics. We projected viability of three natural and two restored populations with demographic data spanning 15–23 years to determine the degree the addition of reintroduced population affects metapopulation viability. The models were validated by comparing observed and projected abundances and adjusting parameters associated with demographic and environmental stochasticity to improve model performance. Our chosen model correctly predicted yearly population abundance for 60% of the population‐years. Using that model, 50‐year projections showed that the addition of reintroductions increases metapopulation viability. The reintroduction that simulated population performance in early‐successional habitats had the maximum benefit. In situ enhancements of existing populations proved to be equally effective. This study shows that restorations can facilitate and improve metapopulation viability of species dependent on metapopulation dynamics for survival with long‐term persistence of C. pitcheri in Indiana likely to depend on continued active management.  相似文献   

18.
Matrix models and population viability analysis (PVA) have become useful tools to understand population attributes and dynamics. Demography analysis gives valuable information for the management of threatened species, and can be used to create action plans for their conservation. PVA is particularly useful in those species with small population sizes difficult to sample. By calculating the individual fate of each member of the population, PVA simulates temporal population changes and estimates extinction risk over a time period. Here we use these models to analyse the population of axolotl Ambystoma mexicanum , which has decreased more than six times within only 5 years. Its natural environment (the Xochimilco aquatic system within Mexico City) has deteriorated significantly in the last decades. The matrix analysis showed large oscillations in the axolotl population growth rate (damping behaviour), which could explain the fast density reduction in only few generations. Younger ages (eggs and larvae) showed the highest sensitivity and elasticity values, suggesting that the lack of food sources such as zooplankton or the increased predation by exotic carp and tilapia are capable to reduce axolotl density. PVA shows low extinction probabilities using laboratory data for younger ages. However, a small reduction in egg or larvae survival rate is capable to increase extinction probabilities to 100% in 20 years. Based on these results, we found that the best strategy to restore the axolotl population is to increase the survival rate of eggs and larvae by restoring the habitat, eradicating introduced fish and improving water quality, rather than implementing a reintroduction programme.  相似文献   

19.
20.
Metapopulation extinction risk is the probability that all local populations are simultaneously extinct during a fixed time frame. Dispersal may reduce a metapopulation’s extinction risk by raising its average per-capita growth rate. By contrast, dispersal may raise a metapopulation’s extinction risk by reducing its average population density. Which effect prevails is controlled by habitat fragmentation. Dispersal in mildly fragmented habitat reduces a metapopulation’s extinction risk by raising its average per-capita growth rate without causing any appreciable drop in its average population density. By contrast, dispersal in severely fragmented habitat raises a metapopulation’s extinction risk because the rise in its average per-capita growth rate is more than offset by the decline in its average population density. The metapopulation model used here shows several other interesting phenomena. Dispersal in sufficiently fragmented habitat reduces a metapopulation’s extinction risk to that of a constant environment. Dispersal between habitat fragments reduces a metapopulation’s extinction risk insofar as local environments are asynchronous. Grouped dispersal raises the effective habitat fragmentation level. Dispersal search barriers raise metapopulation extinction risk. Nonuniform dispersal may reduce the effective fraction of suitable habitat fragments below the extinction threshold. Nonuniform dispersal may make demographic stochasticity a more potent metapopulation extinction force than environmental stochasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号