首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The external shell surfaces of most anomalodesmatan bivalves are studded with small spikes, particularly at the posterior end. We have studied the morphology, mode of growth, and distribution among taxa of these spikes. In this study we found that spikes vary widely in morphology, from acute spikes to flat plaques. Optical and electron microscopy has revealed that the periostraca of Laternula, Myadora, and Thraciopsis consist of an outer dense layer and an inner translucent layer. The dense layer grows at the expense of the inner layer as it progresses toward the shell edge. The spikes begin to grow in the free periostracum, within the translucent periostracal layer, immediately below the dense layer. With growth, they push the dense periostracal layer upward but without penetrating it. Those parts of the spike in contact with this layer cease to grow, which explains the typical conical shape of spikes. When fully grown, spikes reach the base of the translucent layer, becoming incorporated into the outer shell layer. Scanning electron microscopy and electron backscatter diffraction analysis reveal that the spikes of Lyonsia norwegica and Lyonsiella abyssicola are prisms of aragonite composed of twinned crystals, with the c-axis vertical. A survey of the occurrence of spikes within the anomalodesmatans shows that they are present in all but a few families. Elsewhere within the closely related palaeoheterodonts, intra-periostracal calcification is also known in Neotrigonia and unionids, which indicates that this character may be plesiomorphic for these bivalves. The present data do not support the homology of spikes in other bivalve groups (e.g., veneroids) or in the aplacophorans or polyplacophorans.  相似文献   

2.
Although geographical patterns of species' sensitivity to environmental changes are defined by interacting multiple stressors, little is known about compensatory processes shaping regional differences in organismal vulnerability. Here, we examine large‐scale spatial variations in biomineralization under heterogeneous environmental gradients of temperature, salinity and food availability across a 30° latitudinal range (3,334 km), to test whether plasticity in calcareous shell production and composition, from juveniles to large adults, mediates geographical patterns of resilience to climate change in critical foundation species, the mussels Mytilus edulis and M. trossulus. We find shell calcification decreased towards high latitude, with mussels producing thinner shells with a higher organic content in polar than temperate regions. Salinity was the best predictor of within‐region differences in mussel shell deposition, mineral and organic composition. In polar, subpolar, and Baltic low‐salinity environments, mussels produced thin shells with a thicker external organic layer (periostracum), and an increased proportion of calcite (prismatic layer, as opposed to aragonite) and organic matrix, providing potentially higher resistance against dissolution in more corrosive waters. Conversely, in temperate, higher salinity regimes, thicker, more calcified shells with a higher aragonite (nacreous layer) proportion were deposited, which suggests enhanced protection under increased predation pressure. Interacting effects of salinity and food availability on mussel shell composition predict the deposition of a thicker periostracum and organic‐enriched prismatic layer under forecasted future environmental conditions, suggesting a capacity for increased protection of high‐latitude populations from ocean acidification. These findings support biomineralization plasticity as a potentially advantageous compensatory mechanism conferring Mytilus species a protective capacity for quantitative and qualitative trade‐offs in shell deposition as a response to regional alterations of abiotic and biotic conditions in future environments. Our work illustrates that compensatory mechanisms, driving plastic responses to the spatial structure of multiple stressors, can define geographical patterns of unanticipated species resilience to global environmental change.  相似文献   

3.
The functional morphology of shell infrastructure in 2 speciesof intertidal trochid was compared with that in 2 species ofnerite. The shell of Monodonta constrictais typical of the majorityof trochids. The shell is composed of 4 layers: a distal layer(calcite), anouter prismatic layer (aragonite), a nacreous layer(aragonite), and an oblique prismatic layer (aragonite). Monodontalabio lacks a distal layer and an oblique prismatic layer. Theoblique prismatic layer is replaced by an inner prismatic layerwhich forms an apertural ridge as a result of deposition andresorption. The shells of Nerita versicolor and N. tessellataconsistof 3 layers: an outer prismatic layer (calcite), a crossedlamellar layer (aragonite), and a complex crossed lamellar layer(aragonite). The complex crossed lamellar layer is covered withinclined platelets which superficially resemble the surfaceof the ique prismatic layer of trochids. In addition, the complexcrossed lamellar layer forms an apertural ridge which is similarin appearance to that of Monodonta labio. The outer surfaceof the mantle of Nerita versicolor and N. tessellata is throwninto a series of large folds which lie in contact with the inclinedplatelets of the omplex crossed lamellar layer. The interactionof the mantle folds with the inclined platelets is thought toserve as a rachet mechanism to aid in extension of themantle;a similar function has previously been proposed for trochids.The apertural ridges of Monodonta labio and Nerita are thoughtto prevent excessive desiccation when these gastropodsare exposedat low tide. 1Contribution No. 56 of the Tallahassee, Sopchoppy & GulfCoast Marine Biological Association (Received 6 July 1979;  相似文献   

4.
Deposits composed of aragonite prisms, which were formed afterthe outer shell layer, have been found at the posterior steepslopes of divaricate ribs in two species of Strigilla and anothertwo of Solecurtus. These prisms have their axes oriented perpendicularto the outer shell surface and differ in morphology from fibresof the surface-parallel composite prisms forming the outer shell.They display crystalline features indicating that, unlike crystalsforming the outer shell surface, their growth front was free,unconstrained by the mantle or periostracum. These particulardeposits are called free-growing prisms (FGPs). In these generathe periostracum is clearly not the substrate for biomineralizationand, upon formation, does not adhere to the steep slope of ribs,but detaches at the rib peak and reattaches towards the posterior,just beyond the foot of the posterior scarps of ribs. In thisway, a sinus or open space developed between the internal surfaceof the periostracum and the outer shell surface along each steeprib slope. These spaces could remain filled with extrapallialfluid after the mantle advances beyond that point during shellsecretion. FGPs grow within this microenvironment, out of contactwith the mantle. Other species with divaricate ribs do not developFGPs simply because the periostracum adheres tightly to both ribslopes (which are never so steep as in Solecurtus and Strigilla).FGPs constitute one of the rare cases of remote biomineralizationin which aragonite is produced and direct contact with the mantlenever takes place. (Received 22 November 1999; accepted 20 February 2000)  相似文献   

5.
The prisms in the shell of Mytilus edulis Linné are calcite needles. Their small size and their thin conchiolin cases distinguish them from the prisms of many other species of mollusks. These Mytilus prisms have been studied with the electron microscope. The material consisted of positive replicas of surfaces of the prismatic layer, etched with chelating agents, and of preparations of tubular cases from decalcified prisms which were compared with the conchiolin from decalcified mother-of-pearl of the same species. In the replicas, the cases appear as thin pellicles in the intervals between the prism crystals. Both the prism cases and the nacreous conchiolin, disintegrated by exposure to ultrasonic waves and sedimented on supporting films, appear in the form of tightly meshed, reticulated sheets, described as "tight pelecypod pattern" in former studies on nacreous conchiolin of Mytilus. The results show that in the shell of this species the same conchiolin structure is associated with aragonite in mother-of-pearl and with calcite in the prismatic layer.  相似文献   

6.
Unionid shells are characterized by an outer aragonitic prismatic layer and an inner nacreous layer. The prisms of the outer shell layer are composed of single-crystal fibres radiating from spheruliths. During prism development, fibres progressively recline to the growth front. There is competition between prisms, leading to the selection of bigger, evenly sized prisms. A new model explains this competition process between prisms, using fibres as elementary units of competition. Scanning electron microscopy and X-ray texture analysis show that, during prism growth, fibres become progressively orientated with their three crystallographic axes aligned, which results from geometric constraints and space limitations. Interestingly transition to the nacreous layer does not occur until a high degree of orientation of fibres is attained. There is no selection of crystal orientation in the nacreous layer and, as a result, the preferential orientation of crystals deteriorates. Deterioration of crystal orientation is most probably due to accumulation of errors as the epitaxial growth is suppressed by thick or continuous organic coats on some nacre crystals. In conclusion, the microstructural arrangement of the unionid shell is, to a large extent, self-organized with the main constraints being crystallographic and geometrical laws.  相似文献   

7.
The mantle margins of several anomalodesmatans bear multicellular arenophilic glands, the mucoid secretions of which attach sand grains and other foreign particles to the outer surface of the periostracum. These glands have been recorded for many of the anomalodesmatan families and are used as a key morphological character in recent attempts to unravel the evolutionary relationships within the Anomalodesmata. The glands occur in Laternula elliptica, L. truncata, L. boschasina and L. marilina, discharging from the top of muscular papillae at the distal tip of the siphons. The secretions are laid down as threads organized in longitudinal lines along the length of the periostracum that covers the siphonal walls. This is the first record of arenophilic mantle glands in members of the Laternulidae, a finding that not only broadens our current knowledge of the family's morphology, but assists in the reconstruction of anomalodesmatan evolutionary history.  相似文献   

8.
The scanning electron microscope has been used to describe the morphology of the mature shell in a fresh-water bivalve. The structure of the organic and inorganic components within the nacre, the myostracum, and the prismatic layer is described. A transitional or intermediate zone, interposed between the prismatic layer and the nacre, was identified. In demineralized samples, the organic component of the nacre was found to consist of parallel matricial sheets interconnected by irregular transverse bridges. The structure of the mineral component of the nacre was found to vary with the method of specimen preparation. With polished-etched samples, brick-like units were seen. When shells were simply broken and fixed in osmium, the layers of nacreous material consisted of fusing rhomboidal crystals of aragonite which demonstrated subconchoidal fractures. On the inner surface of the shell, the rhomboidal crystals showed an apparent spiral growth pattern. The myostracum was characterized by regions of modified nacreous structure consisting of enlarged aragonite crystals with a pyramidal morphology. The peripheral aspect of the muscle scars was characterized by rhomboidal crystals, the latter fusing to form the typical nacreous laminae. The uniqueness of the anterior adductor scar is exemplified by the presence of pores, each pore walled by pyramidal units, for the insertion of adductor fibres. In most regions of the shell, the prismatic layer consisted of one prism unit thickness with a height of approximately 225–250 μm. However, in two specialized regions of the shell, this layer was seen to consist of multiple layers of stacked prisms. The organic matrices of the prismatic layer are arranged in a honeycomb-like arrangement and packed with mineralized spherical subunits.  相似文献   

9.
Light microscopy, transmission electron microscopy, scanning electron microscopy, various histochemical procedures for the localization of mineral ions, and analytical electron microscopy have been used to investigate the mechanisms inherent at the mantle edge for shell formation and growth in Amblema plicata perplicata, Conrad. The multilayered periostracum, its component laminae formed from the epithelia lining either the periostracal groove or the outer mantle epithelium (of the periostracal cul de sac), appears to play the major regulatory and organizational role in the formation of the component mineralized layers of the shell. Thus, the inner layer of the periostracum traps and binds calcium and subsequently gives rise to matricial proteinaceous fibrils or lamellar extensions which serve as nucleation templates for the formation and orientation of the crystalline subunits (rhombs) in the forming nacreous layer. Simultaneously, the middle periostracal layer furnishes or provides the total ionic calcium pool and the matricial organization necessary for the production of the spherical subunits which pack the matricial ‘bags’ of the developing prismatic layer. The outer periostracal layer appears to be a supportive structure, possibly responsible for the mechanical deformations which occur in the other laminae of the periostracum. The functional differences in the various layers of the periostracum are related to peculiar morphological variables (foliations, vacuolizations, columns) inherent in the structure and course of this heterogeneous (morphologically and biochemically) unit. From this study, using the dynamic mantle edge as a morphological model system, we have been able to identify at least six interrelated events which culminate in the production of the mature mineralized shell layers (nacre, prisms) at the growing edge of this fresh-water mussel.  相似文献   

10.
Mollusc shells are composed of two or three layers. The main layers are well‐studied, but the structural and chemical changes at their boundaries are usually neglected. A microstructural, mineralogical, and biochemical study of the boundary between the inner crossed lamellar and outer prismatic layers of the shell of Concholepas concholepas showed that this boundary is not an abrupt transition. Localized structural and chemical analyses showed that patches of the inner aragonitic crossed lamellar layer persist within the outer calcitic prismatic layer. Moreover, a thin aragonitic layer with a fibrous structure is visible between the two main layers. A three‐step biomineralization process is proposed that involves changes in the chemical and biochemical composition of the last growth increments of the calcite prisms. The changes in the secretory process in the mantle cells responsible for the shell layer succession are irregular and discontinuous.  相似文献   

11.
We investigated the spikes on the outer shell surface of the endolithic gastrochaenid bivalve genus Spengleria with a view to understand the mechanism by which they form and evaluate their homology with spikes in other heterodont and palaeoheterodont bivalves. We discovered that spike formation varied in mechanism between different parts of the valve. In the posterior region, spikes form within the translucent layer of the periostracum but separated from the calcareous part of the shell. By contrast those spikes in the anterior and ventral region, despite also forming within the translucent periostracal layer, become incorporated into the outer shell layer. Spikes in the posterior area of Spengleria mytiloides form only on the outer surface of the periostracum and are therefore, not encased in periostracal material. Despite differences in construction between these gastrochaenid spikes and those of other heterodont and palaeoheterodont bivalves, all involve calcification of the inner translucent periostracal layer which may indicate a deeper homology.  相似文献   

12.
Checa A 《Tissue & cell》2000,32(5):405-416
The periostracum in Unionidae consists of two layers. The outer one is secreted within the periostracal groove, while the inner layer is secreted by the epithelium of the outer mantle fold. The periostracum reaches its maximum thickness at the shell edge, where it reflects onto the shell surface. Biomineralization begins within the inner periostracum as fibrous spheruliths, which grow towards the shell interior, coalesce and compete mutually, originating the aragonitic outer prismatic shell layer. Prisms are fibrous polycrystalline aggregates. Internal growth lines indicate that their growth front is limited by the mantle surface. Transition to nacre is gradual. The first nacreous tablets grow by epitaxy onto the distal ends of prism fibres. Later growth proceeds onto previously deposited tablets. Our model involves two alternative stages. During active shell secretion, the mantle edge extends to fill the extrapallial space and the periostracal conveyor belt switches on, with the consequential secretion of periostracum and shell. During periods of inactivity, only the outer periostracum is secreted; this forms folds at the exit of the periostracal groove, leaving high-rank growth lines. Layers of inner periostracum are added occasionally to the shell interior during prolonged periods of inactivity in which the mantle is retracted.  相似文献   

13.
Radial sculptural elements (e.g. ribs, lirae), formed by imbrication of two succeeding shell lamellae are found in members of both the Nautiloidea (Cymatoceras) and Ammonoidea (Phylloceratinae and Aspidoceratinae). Their formation involves periodic cessation of shell growth due to weak to moderate withdrawal of the shell secreting mantle. The radial lirae (0.5–1.5 mm in width) of Phylloceratinae and Aspidoceratinae (Aspidoceras and Pseudowaagenia) are created by the succession of sigmoid lamellae of the organic periostracum or of the outer prismatic layer, respectively. Each lira has a characteristic adorally‐projecting, scythe‐like appendage, arising from its crest. The prismatic lirae of Aspidoceras and Pseudowaagenia are analogous to the larger scaled pseudoribs of Cymatoceras. Garland‐like lamellae of the outer prismatic layer form the radial lirae of Mirosphinctes and Epaspidoceras (Aspidoceratinae), but these lack a conspicuous, projecting scythe‐like appendage. Additional prismatic cement is formed within adoral, oval hollow spaces of scythe‐appendage‐bearing lirae, either through diagenetic crystal growth, remote biomineralization or as a component of the dorsal shell. In Aspidoceratinae these prismatic infillings are replaced by a continuous herringbone layer, accompanied by a reduction of the lirae.  相似文献   

14.
Growth performance of the Antarctic bivalve Laternula elliptica was examined both by shell microstructural observation and by applying a fluorescent substance, tetracycline, as a shell growth marker. The shell was composed of two calcareous layers: the thick outer layer was homogeneous or granular in structure and the thin inner layer was nacreous. The architecture of Antarctic L. elliptica was different from that of temperate L. marilina, and the ratio of thickness between the outer and inner layers appeared to be different. The growth rate of the nacreous layer was analyzed to be very low. High correlations were found between the major axis of chondrophore and both shell length and shell dry weight, respectively. It is suggested that the chondrophore is an appropriate growth indicator, and combining the information of growth increments with the fluorescent method may be useful in estimating the bivalve growth performance in the Antarctic sea.  相似文献   

15.
The squeezing hypothesis and the organic frameworks preformation hypothesis propose two different mechanisms to explain the interaction between organic frameworks and crystals during biomineralization of the prismatic layer of the mollusk shell. In this study, we began to study Hyriopsis cumingii shell formation and discover that this species seemed to follow the squeezing hypothesis. During the formation of the aragonite prismatic layer in the freshwater bivalve H. cumingii, we found that crystal growth was involved in controlling initiation of formation of the interprismatic organic membranes. First, newly formed crystals were embedded in the periostracum. Next, the interprismatic organic membranes of the prismatic layer were produced via squeezing between neighboring crystals. The organic matrix secreted by the mantle continuously self‐assembled into the interprismatic organic membranes as the crystals grew. In the mature stage, the interprismatic organic membranes were shaped by crystal growth. These findings provide evidence to support the squeezing hypothesis and add to the existing knowledge about interactions that occur at the organic–inorganic interfaces during mollusk shell biomineralization.  相似文献   

16.
17.
Samples of the unionid bivalve Elliptio complanata were collected from the channel of the freshwater Saint John River, from Fredericton, New Brunswick, Canada. Scanning electron microscopy imaging of prepared shell samples revealed an assemblage of microborings. No borings are noted on the periostracum or prismatic shell layers. Boring structures are instead confined to the underlying nacreous aragonitic shell material, together with its associated organic conchiolin layers. Three main styles of boring are encountered, encompassing both predominantly surficial structures and penetrative tubular borings. Surficial structures are represented by a polygonal network on an exposed conchiolin shell layer. The penetrative borings take two forms, one being simple unbranched tubes, steeply aligned (perpendicular to the shell surface) and traversing the full thickness of the nacreous shell layer. The other penetrative boring style, again occurring within the nacreous layer, comprises a complex irregular network of randomly oriented rarely branching tubular borings. Borings generally display diameters of micron scale. Biofilm and extracellular polymeric substances, with bacterial, diatomaceous and filamentous components are also observed, often displaying a close association with both the borings and the conchiolin layers within the shell. The formation of the borings may be attributed to cyanobacteria, cyanophyte or fungal progenitors.  相似文献   

18.
The nacreous tablets in the Nautilus shell have similar crystalline structure as the tablets in the gastropod Gibbula shell. Etching with Mutvei’s solution reveals that each tablet is composed of vertical crystalline columns that are structurally similar to the acicular crystallites in the outer spherulitic-prismatic layer of the shell wall. The columns are attached to each other to form numerous vertical crystalline lamellae, oriented parallel to the longitudinal axis of the tablet. It is still unknown whether or not the orientation of the vertical lamellae corresponds to that of the crystallographic a- or b-axis. The orientation of the crystalline lamellae in the adjacent tablets is parallel in some nacreous laminae, but random in other laminae. Similar large variation was found in the nacreous tablets of the gastropod and bivalve shells. The nucleation sites of the nacreous tablets are predominantly situated on the peripheral portion of the upper surface of the preceding tablet, both in the shell wall and septa. The “aragonite-nucleating proteins” in the central portion of the crystal imprints of the organic interlamellar sheets, described by several writers, have therefore a negative correlation with the nucleation sites of the nacreous tablets.  相似文献   

19.
The structure of the periostracum in the fresh-water mussel Amblema has been described using light microscopy, transmission elec;ron microscopy, and scanning electron microscopy. The structure and evolutive course of the periostracum was studied along its entire length, from the periostracal groove until it forms the tough outer covering of the shell. At least five structurally and functionally distinct regions were identified. In addition, the periostracum itself was seen to be a multilayered structure consisting of three major layers which are themselves subdivided into minor layers. From these morphological observations, a regulatory role for the various periostracal layers in mineral trapping, nucleation, and the subsequent formation of the prismatic and nacreous layers of the shell can be postulated.  相似文献   

20.
Higher systematics and evolutionary history of Protobranchia, a subclass of Bivalvia, have long been controversial due to paucity of prominent shell characters and difficulties in collecting live material for diverse taxa. Here, we evaluate the reliability of shell microstructure for protobranch higher systematics by reconstructing a molecular phylogeny of the subclass. Relationships were assessed using the nuclear (18S rRNA, 28S rRNA and histone H3) and mitochondrial (16S rRNA and cytochrome c oxidase subunit 1) gene sequences from 89 in-group species. Maximum likelihood reconstruction with the nuclear markers recognized five superfamilies (Nuculoidea, Solemyoidea, Manzanelloidea, Nuculanoidea and Sareptoidea) as the in-group clades of the monophyletic Protobranchia. Sareptoidea is herein redefined to comprise Sarepta and Setigloma in the sole family Sareptidae, whereas Pristigloma and its monotypic Pristiglomidae are transferred from this superfamily to Nuculanoidea, both in the order Nuculanida. Mapping of shell microstructure characters on the tree confirmed their conservativeness at superfamily level when only living species were taken into account. The Nuculoidea have shells with the outer prismatic and middle/inner nacreous structures; Solemyoidea are characterized by either the radially elongate simple prismatic structure or the reticulate structure in the outer shell layer; Manzanelloidea, Nuculanoidea and Sareptoidea have shells of homogeneous, fibrous prismatic and/or fine complex crossed lamellar structures, all of which lack large structural units. Our Bayesian time calibration, on the contrary, suggested frequent loss of nacre in the Paleozoic and Mesozoic history of Protobranchia, at least once each in Nuculoidea, Manzanelloidea, Solemyoidea and Sareptoidea in the Paleozoic, and perhaps multiple times in Nuculanoidea by the Mesozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号