首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 μM ATP and 50 μM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 μM ATP and 3 mM MgCl2. The K0.5 for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+-ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 μM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the K0.5 for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis.  相似文献   

2.
The K+-dependent p-nitrophenylphosphatase activity catalyzed by purified (Na+ + K+)-ATPase from pig kidney shows substrate inhibition (Ki about 9.5 mM at 2.1 mM Mg2+). Potassium antagonizes and sodium favours this inhibition. In addition, K+ reduces the apparent affinity for substrate activation, whereas p-nitrophenyl phosphate reduces the apparent affinity for K+ activation. In the absence of Mg2+, p-nitrophenyl phosphate, as well as ATP, accelerates the release of Rb+ from the Rb+ occluded unphosphorylated enzyme. With no Mg2+ and with 0.5 mM KCl, trypsin inactivation of (Na+ + K+)-ATPase as a function of time follows a single exponential but is transformed into a double exponential when 1 mM ATP or 5 mM p-nitrophenyl phosphate are also present. In the presence of 3 mM MgCl2, 5 mM p-nitrophenyl phosphate and without KCl the trypsin inactivation pattern is that described for the E1 enzyme form; the addition of 10 mM KCl changes the pattern which, after about 6 min delay, follows a single exponential. These results suggest that (i) the shifting of the enzyme toward the E1 state is the basis for substrate inhibition of the p-nitrophenulphosphatase acitivy of (Na+ + K+)-ATPase, and (ii) the substrate site during phosphatase activity is distinct from the low-affinity ATP site.  相似文献   

3.
The mechanisms of activation of renal (Na+ + K+)-ATPase by administration of the synthetic glucocorticoid hormone, dexamethasone, have been investigated in adrenalectomized rats. Chronic treatment with dexamethasone (1–5 mg/100 g body wt. daily for 5 days) stimulated (Na+ + K+)-ATPase specific activity in crude homogenated and microsomal fractions of renal cortex (by approx. 100–150%) and renal medulla (by approx. 100%). Acute treatment with dexamethasone (0.5–10 mg/100 g body wt.) also stimulated enzyme activity in crude homogenates and microsomal fractions of renal cortex and medulla (by approx. 40–50%). Stimulation was dose dependent and occurred within 2h after hormone treatment. In vitro addition of dexamethasone (10?4–10?8 M) to microsomal fractions did not modify the specific activity of (Na+ + K+)-ATPase. Stimulation of (Na+ + K+)-ATPase activity by acute and chronic administration of the hormone was demonstrated whether specific activities were expressed as a function of cellular protein or cellular DNA. Dexamethasone treatment increased the ratios protein:DNA and, to a lesser extent, the ratios RNA:DNA. However, these effects were mainly due to a reduction in the renal contents of DNA, which suggests that the observed enzyme activation is not due to an action of the hormone on renal hypertrophy. Dexamethasone also reduced cellular DNA contents in the liver. The characteristics of the activation process were essentially similar after treatment with single or multiple doses of the hormone. There were increases in the value for Na+ (approx. 100%), K+ (approx. 40%) and ATP (approx. 160%). The Km values for Na+ (approx. 17 mM) and K+ (approx. 1.8 mM) were unchanged and there was a small increase in the Km value for ATP (0.7 mM as against 1.7 mM). There was no difference in the Hill coefficients for the three substrates. The levels of the high-energy Pi intermediate of the (Na+ + K+)-ATPase reaction were augmented by dexamethasone treatment and the increased levels were quantitatively correlated with the observed stimulation of (Na+ + K+)-ATPase specific activity. The apparent turnover numbers of the reaction remained unchanged. The specific activity of the ouabain-sensitive p-nitrophenylphosphatase increased proportionally to the increase in (Na+ + K+)-ATPase specific activity. Enzyme activation by acute dexamethasone treatment occurred in the absence of changes in glomerular filtration rate and tubular Na+ excretion.These results indicate that (Na+ + K+)-ATPase activation by acute and chronic dexamethasone treatment represents an increase in the number of enzyme units with little or no change in the kinetic properties (affinity, cooperativity) of the enzyme. In addition, the information presented suggests a direct regulatory effect of glucocorticoid hormones on the activity of renal (Na+ + K+)-ATPase and is inconsistent with the concept that changes in Na+ loads mediate the effects of these hormones on enzyme activity. Instead, the results suggests a primary role for glucocorticoid hormones in the renal regulation of Na+ homeostasis.  相似文献   

4.
MnCl2 was partially effective as a substitute for MgCl2 in activating the K+-dependent phosphatase reaction catalyzed by a purified (Na+ + K+)-ATPase enzyme preparation from canine kidney medulla, the maximal velocity attainable being one-fourth that with MgCl2. Estimates of the concentration of free Mn2+ available when the reaction was half-maximally stimulated lie in the range of the single high-affinity divalent cation site previously identified (Grisham, C.M. and Mildvan, A.S. (1974) J. Biol. Chem. 249, 3187–3197). MnCl2 competed with MgCl2 as activator of the phosphatase reaction, again consistent with action through a single site. However, with MnCl2 appreciable ouabaininhibitable phosphatase activity occurred in the absence of added KCl, and the apparent affinities for K+ as activator of the reaction and for Na+ as inhibitor were both decreased. For the (Na+ + K+)-ATPase reaction substituting MnCl2 for MgCl2 was also partially effective, but no stimulation in the absence of added KCl, in either the absence or presence of NaCl, was detectable. Moreover, the apparent affinity for K+ was increased by the substitution, although that for Na+ was decreased as in the phosphatase reaction. Substituting MnCl2 also altered the sensitivity to inhibitors. For both reactions the inhibition by ouabain and by vanadate was increased, as was binding of [48V]-vanadate to the enzyme; furthermore, binding in the presence of MnCl2 was, unlike that with MgCl2, insensitive to KCl and NaCl. Inhibition of the phosphatase reaction by ATP was decreased with 1 mM but not 10 mM KCl. Finally, inhibition of the (Na+ + K+)-ATPase reaction by Triton X-100 was increased, but that by dimethylsulfoxide decreased after such substitution.  相似文献   

5.
The effects of K+, Na+ and ATP on the gastric (H+ + K+)-ATPase were investigated at various pH. The enzyme was phosphorylated by ATP with a pseudo-first-order rate constant of 3650 min?1 at pH 7.4. This rate constant increased to a maximal value of about 7900 min?1 when pH was decreased to 6.0. Alkalinization decreased the rate constant. At pH 8.0 it was 1290 min?1. Additions of 5 mM K+ or Na+, did not change the rate constant at acidic pH, while at neutral or alkaline pH a decrease was observed. Dephosphorylation of phosphoenzyme in lyophilized vesicles was dependent on K+, but not on Na+. Alkaline pH increased the rate of dephosphorylation. K+ stimulated the ATPase and p-nitrophenylphosphatase activities. At high concentrations K+ was inhibitory. Below pH 7.0 Na+ had little or no effect on the ATPase and p-nitrophenylphosphatase, while at alkaline pH, Na+ inhibited both activities. The effect of extravesicular pH on transport of H+ was investigated. At pH 6.5 the apparent Km for ATP was 2.7 μM and increased little when K+ was added extravesicularly. At pH 7.5, millimolar concentrations of K+ increased the apparent Km for ATP. Extravesicular K+ and Na+ inhibited the transport of H+. The inhibition was strongest at alkaline pH and only slight at neutral or acidic pH, suggesting a competition between the alkali metal ions and hydrogen ions at a common binding site on the cytoplasmic side of the membrane. Two H+-producing reactions as possible candidates as physiological regulators of (H+ + K+)-ATPase were investigated. Firstly, the hydrolysis of ATP per se, and secondly, the hydration of CO2 and the subsequent formation of H+ and HCO3?. The amount of hydrogen ions formed in the ATPase reaction was highest at alkaline pH. The H+/ATP ratio was about 1 at pH 8.0. When CO2 was added to the reaction medium there was no change in the rate of hydrogen ion transport at pH 7.0, but at pH 8.0 the rate increased 4-times upon the addition of 0.4 mM CO2. The results indicate a possible co-operation in the production of acid between the H+ + K+-ATPase and a carbonic anhydrase associated with the vesicular membrane.  相似文献   

6.
Showdomycin [2-(β-d-ribofuranosyl)maleimide] is a nucleoside antibiotic containing a maleimide ring and which is structurally related to uridine. Showdomycin inhibited rat brain (Na+ + K+)-ATPase irreversibly by an apparently bimolecular reaction with a rate constant of about 11.01·mol?1·min?1. Micromolar concentrations of ATP protected against this inhibition but uridine triphosphate or uridine were much less effective. In the presence of K+, 100 μM ATP was unable to protect against inhibition by showdomycin. These observations show that showdomycin inhibits (Na+ + K+)-ATPase by reacting with a specific chemical group or groups at the nucleotide-binding site on this enzyme. Inhibition by showdomycin appears to be more selective for this site than that due to tetrathionate or N-ethylmaleimide. Since tetrathionate is a specific reactant for sulfhydryl groups it appears likely that the reactive groups are sulfhydryl groups. The data thus show that showdomycin is a relatively selective nucleotide-site-directed inhibitor of (Na+ + K+)-ATPase and inhibition is likely due to the reaction of showdomycin with sulfhydryl group(s) at the nucleotide-binding site on this enzyme.  相似文献   

7.
Ca2+ inhibited the Mg2+-dependent and K+-stimulated p-nitrophenylphosphatase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase. In the absence of K+, however, a Mg2+-dependent and Ca2+-stimulated phosphatase was observed, the maximal velocity of which, at pH 7.2, was about 20% of that of the K+-stimulated phosphatase. The Ca2+-stimulated phosphatase, like the K+-stimulated activity, was inhibited by either ouabain or Na+ or ATP. Ouabain sensitivity was decreased with increase in Ca2+, but the K0.5 values of the inhibitory effects of Na+ and ATP were independent of Ca2+ concentration. Optimal pH was 7.0 for Ca2+-stimulated activity, and 7.8–8.2 for the K+-stimulated activity. The ratio of the two activities was the same in several enzyme preparations in different states of purity. The data indicate that (a) Ca2+-stimulated phosphatase is catalyzed by (Na+ + K+)-ATPase; (b) there is a site of Ca2+ action different from the site at which Ca2+ inhibits in competition with Mg2+; and (c) Ca2+ stimulation can not be explained easily by the action of Ca2+ at either the Na+ site or the K+ site.  相似文献   

8.
Although the enzyme (Na+ + K+)-ATPase has been extensively characterized, few studies of its major role, ATP-dependent Na+ pumping, have been reported in vesicular preparations. This is because it is extremely difficult to determine fluxes of isotopic Na+ accurately in most isolated membrane systems. Using highly purified cardiac sarcolemmal vesicles, we have developed a new technique to detect relative rates of ATP-dependent Na+ transport sensitively. This technique relies on the presence of Na+-Ca2+ exchange and ATP-driven Na+ pump activities on the same inside-out sarcolemmal vesicles. ATP-dependent Na+ uptake is monitored by a subsequent Nai+-dependent Ca2+ uptake reaction (Na+-Ca2+ exchange) using 45Ca2+. We present evidence that the Na+-Ca2+ exchange will be linearly related to the prior active Na+ uptake. Although this method is indirect, it is much more sensitive than a direct approach using Na+ isotopes. Applying this method, we measure cardiac ATP-dependent Na+ transport and (Na+ + K+)-ATPase activities in identical ionic media. We find that the (Na+ + K+)-ATPase and the Na+ pump have identical dependencies on both Na+ and ATP. The dependence on [Na+] is sigmoidal, with a Hill coefficient of 2.8. Na+ pumping is half-maximal at [Na+] = 9 mM. The Km for ATP is 0.21 mM. ADP competitively inhibits ATP-dependent Na+ pumping. This approach should allow other new investigations on on ATP-dependent Na+ transport across cardiac sarcolemma.  相似文献   

9.
The effects of four inhibitors of specific sodium-transport mechanisms on diuresis in the tsetse fly Glossina morsitans, have been determined. Ouabain (1.0, 0.1 mM) and ethacrynic acid (1.0, 0.2 mM) reduced the rate of water loss, whereas amiloride (1.0 mM) and furosemide (1.0 mM) did not. The effects of ouabain, ethacrynic acid and meal size upon the anterior mid-gut (Na+ + K+)-ATPase activity were also determined. For ouabain, the negative logarithm causing 50% inhibition of (Na+ + K+)-ATPase (pI50) was 6.0, whilst ethacrynic acid together with meal size did not affect the activity of this enzyme. These results show that diuresis in this insect involves the active transport of sodium ions by both electrogenic and Na+K+ exchange pumps.  相似文献   

10.
The classical E2-P intermediate of (Na+ + K+)-ATPase dephosphorylates readily in the presence of K+ and is not affected by the addition of ADP. To determine the significane in the reaction cycle of (Na+ + K+)-ATPase of kinetically atypical phosphorylations of rat brain (Na+ + K+)-ATPase we compared these phosphorylated components with the classical E2-P intermediate of this enzyme by gel electrophoresis. When rat brain (Na+ + K+)-ATPase was phosphorylated in the presence of high concentrations of Na+ a proportion of the phosphorylated material formed was sensitive to ADP but resistant to K+. Similarly, if phosphorylation was carried out in the presence of Na+ and Ca2+ up to 300 pmol/mg protein of a K+-resistant, ADP-sensitive material were formed. If phosphorylation was from [γ-32P]CTP up to 800 pmol 32P/mg protein of an ADP-resistant, K+-sensitive phosphorylated matterial were formed. On gel electrophoresis these phosphorylated materials co-migrated with authentic Na+-stimulated, K+-sensitive, E2-P-phosphorylated intermediate of (Na+ + K+)-ATPase, supporting suggestions that they represent phosphorylated intermediates in the reaction sequence of this enzyme.  相似文献   

11.
1. Addition of 3.5 mM ATP to mouse neuroblastoma Neuro-2A cells results in a selective enhancement of the plasma membrane permeability for Na+ relative to K+, as measured by cation flux measurements and electro-physiological techniques. 2. Addition of 3.5 mM ATP to Neuro-2A cells results in a 70% stimulation of the rate of active K+ -uptake by these cells, partly because of the enhanced plasma membrane permeability for Na+. Under these conditions the pumping activity of the Neuro-2A (Na++K+)-ATPase is optimally stimulated with respect to its various substrate ions. 3. External ATP significantly enhances the affinity of the Neuro-2A (Na++K+)-ATPase for ouabain, as measured by direct [3H]ouabain-binding studies and by inhibition studies of active K+ uptake. In the presence of 3.5 mM ATP and the absence of external K+ both techniques indicate an apparent dissociation constant for ouabain of 2·10?6 M. Neuro-2A cells contain (3.5±0.7)·105 ouabain-binding sites per cell, giving rise to an optimal pumping activity of (1.7±0.4)·10?20 mol K+/min per copy of (Na++K+)-ATPase at room temperature.  相似文献   

12.
The mechanism of action of the cytotoxic protein P6 isolated from cobra venom (Naja naja) which shows preferential cytotoxicity particularly to Yoshida sarcoma cells has been studied by its effects on the membrane-bound enzyme (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) of a variety of cell systems. Evidence obtained with Yoshida sarcoma cells, dog and human erythrocytes and three tissue culture cell lines KB (human oral carcinoma), Hela (human cervix carcinoma) and L-132 (human lung embryonic) shows that inhibition of (Na+ + K+)-ATPase by the P6 protein can be correlated with its lytic activity. (Na+ + K+)-ATPase of Yoshida sarcoma membrane fragments inactivated by P6 protein could be reconstituted by the addition of phosphatidylserine and phosphatidic acid. It is conceivable that lysis of cells by the P6 protein may be due to an imbalance of K+ and Na+ in the cell which leads to swelling and disintegration of the membrane structure. Observations indicate that the P6 protein combines with membrane constituents of susceptible cells. The overall evidence suggests that both the specificity of its protein structure and the highly basic nature of the P6 protein are factors which enable it to compete with the lipid moiety maintaining the (Na+ + K+)-ATPase of the susceptible cells in proper conformation for activity.  相似文献   

13.
(1) The fluorescence of eosin Y in the presence of (Na+ + K+)-ATPase is enhanced by Mg2+. The enhancement by Mg2+ is larger than that obtained with Na+ (Skou, J.C. and Esmann, M. (1981) Biochim. Biophys. Acta 647, 232–240). Mg2+ shifts the excitation maximum from 518 to 524 nm, the emission maximum from 538 to 542 nm. Also a shoulder appears at about 490 nm on the excitation curve, as was also observed with Na+. (2) The Mg2+-dependent enhancement of fluorescence can be reversed by K+ as well as by ATP. In the presence of Mg2+ + Pi (i.e. under conditions of phosphorylation), the fluorescence enhancement can be reversed by ouabain. With Mg2+ and a low concentation of K+ (i.e. conditions for vanadate binding), the enhancement of fluorescence can be reversed by vanadate. (3) There is a low-affinity binding of eosin which increases with the Mg2+ concentration. This is observed as a slight increase in the fluorescence when the excitation wavelength is above 520 nm. The low-affinity binding is K+-, ATP-, ouabain- and vanadate-insensitive. (4) Scatchard analysis of the binding experiments suggests that there are two high-affinity eosin-binding sites per 32P-labelling site in the presence of 5 mM Mg2+ both of which are ouabain-, vanadate- and ATP-sensitive. With 5 M Mg2+ + 0.25 Pi, the Kd values are 0.14 μM and 1.3 μM, respectively. With 5 mM Mg2+, 150 mM Na+, the Kd values are 0.45 μM and 3.2 μM, respectively. With 5 mM Mg2+, the addition of K+ gives a pronounced decrease in affinity but does not decrease the number of binding sites (which remains at two per 32P-labelling site). With 5 mM Mg2+ + 150 mM K+, the affinities of the two binding sites become identical, at a Kd of 17 μM. (5) The rate of conformational transitions was measured using the stopped-flow method. The rate of the transition from the Mg2+-form to the K+-form is high. Oligomycin has only a small (if any) effect on the rate. Addition of Na+ in the presence of Mg2+ does not appreciably change the rate of conversion to the K+-form, giving a rate constant of about 110 s?. However, the addition of oligomycin in the presence of Mg2+ + Na+ had a profound effect: the rate of conversion to the K+-form was decreased by a factor of 2000 to about 0.063 s?1. This suggests that the conformation with Mg2+ alone is different from the conformation with Na+ alone. (6) The effects of K+, ouabain, vanadate and ATP on the high-affinity binding of eosin suggest that the two eosin molecules bound per 32P-labelling site are bound to ATP sites.  相似文献   

14.
Vesicles isolated from rat heart, particularly enriched in sarcolemma markers, were examined for their sidedness by investigation of side-specific interactions of modulators with the asymmetric (Na+ + K+)-ATPase and adenylate cyclase complex. The membrane preparation with the properties expected for inside-out vesicles showed the highest rate of ATP-driven Ca2+ transport. The Ca2+ pump was stimulated 1.7- and 2.1-fold by external Na+ and K+, respectively, the half-maximal activation occurring at 35 mM monovalent cation concentration. In vesicles loaded with Ca2+ by pump action in a medium containing 160 mM KCl, a slow spontaneous release of Ca2+ started after 2 min. The rate of this release could be dramatically increased by the addition of 40 mM NaCl to the external medium. In contrast, 40 mM KCl exerted no appreciable effect on vesicles loaded with Ca2+ in a medium containing 160 mM NaCl. Ca2+ movements were also studied in the absence of ATP and Mg2+. Vesicles containing an outwardly directed Na+ gradient showed the highest Ca2+ uptake activity. These findings suggested the operation of a Ca2+/Na+ antiporter in addition to the active Ca2+ pump in these sarcolemmal vesicles. A valinomycin-induced inward K+-diffusion potential stimulated the Na+- Ca2+ exchange, suggesting its electrogenic nature. If in the absence of ATP and Mg2+ the transmembrane Nai+/Nao+ gradient exceeded 160/15 mM concentrations, Ca2+ uptake could be stimulated by the addition of 5 mM oxalate, indicating Na+ gradient-induced Ca2+ uptake to be a translocation of Ca2+ to the lumen of the vesicle. A sarcoplasmic reticulum contamination, removed by further sucrose gradient fractionation, contained rather low Na+-Ca2+ exchange activity. This result suggests that the activity can be entirely accounted for by the sarcolemmal content of the cardiac membrane preparation.  相似文献   

15.
The involvement of membrane (Na+ + K+)-ATPase (Mg2+-dependent, (Na+ + K+)-activated ATP phosphohydrolase, E.C. 3.6.1.3) in the oxygen consumption of rat brain cortical slices was studied in order to determine whether (Na+ + K+)-ATPase activity in intact cells can be estimated from oxygen consumption. The stimulation of brain slice respiration with K+ required the simultaneous presence of Na+. Ouabain, a specific inhibitor of (Na+ + K+)-ATPase, significantly inhibited the (Na+ + K+)-stimulation of respiration. These observations suggest that the (Na+ + K+)-stimulation of brain slice respiration is related to ADP production as a result of (Na+ + K+)-ATPase activity. However, ouabain also inhibited non-K+-stimulated respiration. Additionally, ouabain markedly reduced the stimulation of respiration by 2,4-dinitrophenol in a high (Na+ + K+)-medium. Thus, ouabain depresses brain slice respiration by reducing the availability of ADP through (Na+ + K+)-ATPase inhibition and acts additionally by increasing the intracellular Na+ concentration. These studies indicate that the use of ouabain results in an over-estimation of the respiration related to (Na+ + K+)-ATPase activity. This fraction of the respiration can be estimated more precisely from the difference between slice respiration in high Na+ and K+ media and that in choline, K+ media. Studies were performed with two (Na+ + K+)-ATPase inhibitors to determine whether administration of these agents to intact rats would produce changes in brain respiration and (Na+ + K+)-ATPase activity. The intraperitoneal injection of digitoxin in rats caused an inhibition of brain (Na+ + K+)-ATPase and related respiration, but chlorpromazine failed to alter either (Na+ + K+)-ATPase activity or related respiration.  相似文献   

16.
(H+ + K+)-ATPase-enriched membranes were prepared from hog gastric mucosa by sucrose gradient centrifugation. These membranes contained Mg2+-ATPase and p-nitrophenylphosphatase activities (68 ± 9 μmol Pi and 2.9 ± 0.6 μmol p-nitrophenol/mg protein per h) which were insensitive to ouabain and markedly stimulated by 20 mM KCl (respectively, 2.2- and 14.8-fold). Furthermore, the membranes autophosphorylated in the absence of K+ (up to 0.69 ± 0.09 nmol Pi incorporated/mg protein) and dephosphorylated by 85% in the presence of this ion. Membrane proteins were extracted by 1–2% (w/v) n-octylglucoside into a soluble form, i.e., which did not sediment in a 100 000 × g × 1 h centrifugation. This soluble form precipitated upon further dilution in detergent-free buffer. Extracted ATPase represented 32% (soluble form) and 68% (precipitated) of native enzyme and it displayed the same characteristic properties in terms of K+-stimulated ATPase and p-nitrophenylphosphatase activities and K+-sensitive phosphorylation: Mg2+-ATPase (μmol Pi/mg protein per h) 32 ± 9 (basal) and 86 ± 20 (K+-stimulated); Mg2+-p-nitrophenylphosphatase (μmol p-nitrophenol/mg protein per h) 2.6 ± 0.5 (basal) and 22.2 ± 3.2 (K+-stimulated); Mg2+-phosphorylation (nmol Pi/mg protein) 0.214 ± 0.041 (basal) and 0.057 ± 0.004 (in the presence of K+). In glycerol gradient centrifugation, extracted enzyme equilibrated as a single peak corresponding to an apparent 390 000 molecular weight. These findings provide the first evidence for the solubilization of (H+ + K+)-ATPase in a still active structure.  相似文献   

17.
The specific activity of (Na+ + Mg2+)-dependent ATPase is three times greater in the microsomes of sea-water eels than in freshwater eels; the specific activity is one quarter of that of (Na+ + K+ + Mg2+)-dependent ATPase in both cases.(Na+ + Mg2+)-dependent ATPase is optimally active in a medium containing 8 mM NaCl, 4 mM MgCI2, 4 mM ATP, pH 8.8 and at 30 °C; the enzyme is inhibited by ouabain, by NaCl concentrations > 100 mM and by treatment with urea.It is concluded that the (Na+ + Mg2+)-dependent ATPase activity of gills arises from the presence of a (Na+ + K+ + Mg2+)-dependent ATPase.  相似文献   

18.
Na+-ATPase of high-K+ and low-K+ sheep red cells was examined with respect to the sidedness of Na+ and K+ effects, using inside-out membrane vesicles and very low ATP concentrations (?2 μM). With varying amounts of Na+ in the medium, i.e., at the cytoplasmic surface, Nacyt+, the activation curves show that high-K+ Na+-ATPase has a higher affinity for Nacyt+ compared to low-K+. The apparent affinity for Nacyt+ is also increased by increasing the ATP concentrations in high-K+ but not low-K+. With Nacyt+ present, Na+-ATPase is stimulated by intravesicular Na+, i.e., Na+ at the originally external surface, Naext+, to a greater extent in low-K+ than high-K+. Intravesicular K+ (Kext+) activates Na+-ATPase in high-K+ but not in low-K+ vesicles and extravesicular K+ (Kcyt+) inhibits low-K+ but not high-K+ Na+-ATPase. Thus, the genetic difference between high-K+ and low-K+ is expressed as differences in apparent affinities for both Na+ and K+ and these differences are evident at both cytoplasmic and external membrane surfaces.  相似文献   

19.
20.
The activity of a partially purified bovine heart Na+,K+-ATPase is inhibited by DL- and L- palmitylcarnitine (I50=44–48μM). Palmitylcarnitine with a I50 of 25μM also markedly inhibits K+-phosphatase activity. Palmityl-CoA decreases Na+,K+-ATPase activity, but to a lesser extent (I50=80μM). Both palmitic acid and hexanoic acid produce 10 to 15% inhibition of activity at concentrations of 70μM and 3–5mM, respectively. These free fatty acids protect the enzyme against inhibition by 40μM palmitylcarnitine. However, at 50μM palmitylcarnitine, the protective effect by hexanoic acid is no longer apparent. Addition of 40μM palmitylcarnitine to the Na+,K+-ATPase in the presence of varying concentrations of palmityl-CoA produces an additive inhibition of enzyme activity, suggesting two different sites on the enzyme susceptible to inhibition by the two ester forms of the fatty acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号