首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Effects of climate change, such as higher average temperatures and earlier snowmelt, are already apparent, especially in alpine regions. However, community responses of functionally important arthropod taxa to changing climatic conditions are mostly unknown. 2. In this study, an earlier snowmelt was simulated at 15 plots along an elevational gradient in the German Alps. At each study site, soil emergence traps were established for sampling soil‐hibernating arthropods on earlier and control snowmelt treatments during the growing season. The abundance and emergence phenology of the five most common arthropod orders (Araneae, Coleoptera, Diptera, Hemiptera, Hymenoptera) were analysed, as well as the species richness of Coleoptera. 3. There was increasing abundance and species richness of Coleoptera along the elevational gradient, indicating that at higher altitudes more individuals and species hibernate in the soil. Abundances of Diptera also increased with elevation. By contrast, abundances of Hemiptera declined with increasing elevation, while abundances of Araneae and Hymenoptera did not show significant elevational patterns. Arthropods at higher elevations emerged, on average, 5 weeks later than arthropods at lower elevations, because of a longer‐lasting snow cover. The earlier snowmelt treatment resulted in higher abundances of Araneae and Hymenoptera compared with the control plots, indicating that the time of snowmelt influenced the abundance of predators, such as spiders or parasitic wasps, more than that of herbivores. 4. An earlier emergence of certain arthropod guilds and a change in relative abundance of guilds might desynchronise species interactions, leading to a possible loss of biodiversity.  相似文献   

2.
Top–down effects of herbivores and bottom–up effects of nutrients shape productivity and diversity across ecosystems, yet their single and combined effects on spatial and temporal beta diversity is unknown. We established a field experiment in which the abundance of insect herbivores (top–down) and soil nitrogen (bottom–up) were manipulated over six years in an existing old‐field community. We tracked plant α and β diversity – within plot richness and among plot biodiversity‐ and aboveground net primary productivity (ANPP) over the course of the experiment. We found that bottom–up factors affected ANPP while top–down factors influenced plant community structure. Across years, while N reduction lowered ANPP by 10%, N reduction did not alter ANPP relative to control plots. Further, N reduction lowered ANPP by 20% relative to N addition plots. On the other hand, the reduction of insect herbivores did not alter plant richness (α diversity) yet consistently promoted Shannon's evenness, relative to plots where insect herbivores were present. Further, insect herbivores promoted spatial‐temporal β diversity. Overall, we found that the relative importance of top–down and bottom–up controls of plant ANPP, plant α diversity, and composition (β diversity) can vary significantly in magnitude and direction. In addition, their effects varied through time, with bottom–up effects influencing ANPP quickly while the effects of top–down factors emerging only late in the experiment to influence plant community composition via shifts in plant dominance.  相似文献   

3.
1. Plants take nutrients for their growth and reproduction from not only soil but also symbiotic microbes in the rhizosphere, and therefore below‐ground microbes may indirectly influence the above‐ground arthropod community through changes in the quality and quantity of plants. 2. Rhizobia are root‐nodulating bacteria that provide NH4+ to legume plants. We examined bottom‐up effects of rhizobia on the community properties of the arthropods on host plants, using a root‐nodulating soybean strain (R+) and a non‐nodulating strain (R?) in a common garden. 3. R+ plants grew larger and produced a greater number of leaves than R? plants. We observed 28 species of herbivores and three taxonomic groups of predators on R+ and R? plants. The herbivorous species were classified into sap feeders (12 species) and chewers (16 species). 4. The species richness of overall herbivores, sap feeders, and chewers on R+ plants was greater than that on R? plants. Rhizobia positively affected the abundance of chewers. 5. The community composition of herbivores was significantly different between R? and R+ plants, although species diversity and evenness did not differ. 6. Rhizobia‐induced bottom‐up effects were transmitted to the third trophic level. The abundance, taxonomic richness, and diversity of the predators on R+ plants were greater but evenness was lower than those on R? plants. The community composition of predators was not affected by rhizobia. 7. These results indicate that the below‐ground microbes initiated bottom‐up effects on above‐ground herbivores and predators through trophic levels.  相似文献   

4.
Habitat structural complexity influences biotic diversity and abundance, but its influence on marine ecosystems has not been widely addressed. Recent advances in computer vision and robotics allow quantification of structural complexity at higher‐resolutions than previously achieved. This provides an important opportunity to determine the ecological role of habitat structural complexity in marine ecosystems. We used high‐resolution three‐dimensional (3D) maps to test multiple structural complexity metrics, depth and benthic biota as surrogates of fish assemblages across hundreds of meters on subtropical reefs. Non‐parametric multivariate statistics were used to determine the relationship between these surrogates and the entire fish assemblage. Fish were divided into functional groups, which were used to further investigate the relationship between surrogates and fish abundance using generalized linear models. Fish community composition and abundance were strongly related to habitat complexity metrics, benthic biota and depth. Surface rugosity and its variance had a significant positive influence on the abundance of piscivores and sediment infauna predators, and a negative effect on the abundance of predators, herbivores, planktivores and cleaners. Final models for fish functional groups explained up to 68% of the variance. The best metrics to explain the variance in fish abundance were benthic biota (25 ±7.5% of variance explained, mean ± SE) and complexity metrics (16 ±6.6%, mean ± SE). Our results show that high‐resolution 3D maps and derived metrics can predict a large percentage of variance in fish abundance and potentially serve as useful surrogates of fish abundance across all functional groups in spatially dynamic reefs.  相似文献   

5.
In arthropod community ecology, species richness studies tend to be prioritised over those investigating patterns of abundance. Consequently, the biotic and abiotic drivers of arboreal arthropod abundance are still relatively poorly known. In this cross‐continental study, we employ a theoretical framework in order to examine patterns of covariance among herbivorous and predatory arthropod guilds. Leaf‐chewing and leaf‐mining herbivores, and predatory ants and spiders, were censused on > 1000 trees in nine 0.1 ha forest plots. After controlling for tree size and season, we found no negative pairwise correlations between guild abundances per plot, suggestive of weak signals of both inter‐guild competition and top‐down regulation of herbivores by predators. Inter‐guild interaction strengths did not vary with mean annual temperature, thus opposing the hypothesis that biotic interactions intensify towards the equator. We find evidence for the bottom‐up limitation of arthropod abundances via resources and abiotic factors, rather than for competition and predation.  相似文献   

6.
Abstract:  Corn plants were twice sprayed at 3-day intervals during tasselling to evaluate the effect of chlorpyrifos on ear damage by H . zea and also on the populations of the natural enemies associated with this moth. The abundance of H . zea eggs and larvae and of predators on the whole plant, the egg parasitism by Trichogramma pretiosum Riley and the percentage of injured ears were sampled weekly. Chlorpyrifos did not show any significant effect on population levels and on ear damage by H . zea . Natural parasitism of eggs ranged from 52 to 75% and did not differ between treated and untreated plots; furthermore, the percentage of non viable eggs and adult emergence were not influenced by insecticide application. Among the predators found in the plots, Doru luteipes was not affected by spraying, whereas the abundance of Orius sp. decreased 21 days after insecticide application. The frequency of the ant Pheidole sp. was not affected by chlorpyrifos; however, foraging activity of Crematogaster sp. on treated plots was rapidly reduced and remained low during the following 2 weeks. The small number of damaged ears suggests that the insecticide did not affect the efficiency of the natural enemies of H . zea .  相似文献   

7.
The composition and abundance of predatory fauna in corn, Zea mays L., were studied by field visual sampling and pitfall traps over a 5-yr period. In visual samplings, the most abundant groups were Araneae, Heteroptera, Carabidae, Coccinellidae, and Staphylinidae, whereas the prevalent predators caught in pitfall traps belonged to Carabidae, Araneae, Dermaptera, and Opilionidae. The most abundant species or genera in the prevalent groups, except in Arachnida, were identified. Application of the insecticide imidacloprid as a seed dressing is common in the study area to prevent wireworm and cutworm damage. By comparing predator composition and abundance in treated and untreated cornfields during the 5 yr, we assessed the impact of imidacloprid seed treatment on predatory fauna. Among the prevalent predator groups found in visual sampling, Araneae, Coccinellidae, and Staphylinidae were not affected by the imidacloprid treatment, whereas Carabidae was only moderately affected in one of the 5 yr studied. On the contrary, Heteroptera was more drastically reduced by the imidacloprid, but the effect varied with the year. Incidence of European corn borer, Ostrinia nubilalis (Hübner), may be increased as result of such heteropteran reduction. In pitfall traps, only Staphylinidae resulted in lower numbers as consequence of the treatment, whereas the rest of the most abundant predator groups, Carabidae, Araneae, Dermaptera, Opilionidae, Trombididae, and Heteroptera, were not caught in significantly different numbers in treated or untreated plots.  相似文献   

8.
The fear of predators can strongly impact food web dynamics and ecosystem functioning through effects on herbivores morphology, physiology or behaviour. While non‐consumptive predator effects have been mostly studied in three‐level food chains, we lack evidence for the propagation of non‐consumptive indirect effects of apex predators in four level food‐webs, notably in terrestrial ecosystems. In experimental mesocosms, we manipulated a four‐level food chain including top‐predator cues (snakes), mesopredators (lizards), herbivores (crickets), and primary producers (plants). The strength of the trophic cascade induced by mesopredators through the consumption of herbivores decreased in the presence of top‐predator cues. Specifically, primary production was higher in mesocosms where mesopredators were present relative to mesocosms with herbivores only, and this difference was reduced in presence of top‐predator cues, probably through a trait‐mediated effect on lizard foraging. Our study demonstrates that non‐consumptive effects of predation risk can cascade down to affect both herbivores and plants in a four‐level terrestrial food chain and emphasises the need to quantify the importance of such indirect effects in natural communities.  相似文献   

9.
Many plants employ indirect defenses against herbivores; often plants provide a shelter or nutritional resource to predators, increasing predator abundance, and lessening herbivory to the plant. Often, predators on the same plant represent different life stages and different species. In these situations intraguild predation (IGP) may occur and may decrease the efficacy of that defense. Recently, several sticky plants have been found to increase indirect defense by provisioning predatory insects with entrapped insects (hereafter: carrion). We conducted observational studies and feeding trials with herbivores and predators on two sticky, insect‐entrapping asters, Hemizonia congesta and Madia elegans, to construct food webs for these species and determine the prevalence of IGP in these carrion‐provisioning systems. In both systems, intraguild predation was the most common interaction observed. To determine whether IGP was driven by resource abundance, whether it reduced efficacy of this indirect defense and whether stickiness or predator attraction was induced by damage, we performed field manipulations on H. congesta. Carrion supplementation led to an increase in predator abundance and IGP. IGP was asymmetric within the predator guild: assassin bugs and spiders preyed on small stilt bugs but not vice versa. Despite increased IGP, carrion provisions decreased the abundance of the two most common herbivores (a weevil and a mealybug). Overall seed set was driven by plant size, but number of seeds produced per fruit significantly increased with increasing carrion, likely because of the reduction in the density of a seed‐feeding weevil. Observationally and experimentally, we found that carrion‐mediated indirect defense of tarweeds led to much intraguild predation, though predators effectively reduced herbivore abundance despite the increase in IGP.  相似文献   

10.
If soil detritivores provide a significant prey source for predators in the vegetation, then augmentation of the soil community could affect the grazing food web. Specifically, increases in predator density could enhance any top‐down effects and reduce herbivory. We tested this hypothesis by providing detrital subsidies in the form of composted vegetable matter to 36 m2 plots in soybean, Glycine max (L.) Merr. (Fabales: Fabaceae), fields that were managed using either conventional or conservation tillage practices. The foliage‐dwelling spiders, insect predators, and leaf‐chewing insects were censused and the body size of one large spider species, Argiope trifasciata (Forskål) (Araneae: Araneidae), was measured. In addition, the density and size of the plants were assessed and leaf damage was quantified. Any effects of treatments on the palatability of soybean plants to herbivores were determined in two laboratory experiments. Compost increased the density of foliage dwelling spiders and the abdomen size of A. trifasciata. We uncovered no treatment effects on insect predators, herbivorous insects, or plant characteristics except that compost addition reduced leaf damage. In addition, there was a negative correlation across plots between spider abundance and soybean leaf damage and abdomen width of A. trifasciata and weed herbivory levels across plots. These results suggest a connection between the soil community and the foliage food web, but the spiders appear to have exerted a top‐down effect without a shift in herbivore abundance. Further study of the specific seasonality of the herbivores and their behavior in the presence of spiders are needed to uncover the underlying mechanism. Nevertheless, these results provide evidence for complex linkage between the soil and grazing food webs that may be important to biological control.  相似文献   

11.
Abstract Predators can have strong indirect effects on plants by altering the way herbivores impact plants. Yet, many current evaluations of plant species diversity and ecosystem function ignore the effects of predators and focus directly on the plant trophic level. This report presents results of a 3‐year field experiment in a temperate old‐field ecosystem that excluded either predators, or predators and herbivores and evaluated the consequence of those manipulations on plant species diversity (richness and evenness) and plant productivity. Sustained predator and predator and herbivore exclusion resulted in lower plant species evenness and higher plant biomass production than control field plots representing the intact natural ecosystem. Predators had this diversity‐enhancing effect on plants by causing herbivores to suppress the abundance of a competitively dominant plant species that offered herbivores a refuge from predation risk.  相似文献   

12.
We studied the seed predation and scatter‐hoarding behaviour of Azara's agoutis Dasyprocta azarae (Rodentia: Dasyproctidae) in relation to the seeds of the Brazilian ‘pine’, Araucaria angustifolia (Araucariaceae), the rodent's main winter food source. We compared seed‐removal rates, seed‐caching rates, cache distances and recovery rates between a summer period of food abundance (with a low demand for A. angustifolia seeds and no such seeds naturally available) and a winter period of food scarcity (with a high demand for A. angustifolia seeds). We investigated whether the relative seed value affected the rodent's seed‐handling behaviour. We predicted that during the high seed‐demand period (winter): (1) cache distances would be greater; (2) fewer seeds would be stored; (3) more seeds would be recovered and the seed‐recovery time would be lower. In support of our first two predictions, the caching distances were greater in winter (mean ± SE = 15.67 ± 5.11 m) than in summer (9.40 ± 1.59 m), and agoutis hoarded >9 times more seeds in summer (55) than in winter (6). Our third prediction was not supported, and the proportion of unrecovered caches and buried seed recovery times did not differ between winter (mean ± SE = 3.00 ± 0.00 days, n = 5 seeds) and summer (11.05 ± 3.68 days, n = 20 seeds). The high resource density (during summer) rather than the density of A. angustifolia seeds likely influenced seed fate. Agoutis acted mainly as predators, leaving few intact seeds, caching a low proportion of handled seeds (? 8%) and rapidly consuming the caches. Agoutis may cache seeds to keep them safe from competitors on a short‐term basis rather than maintaining medium‐ or long‐term reserves for use during food‐scarcity periods.  相似文献   

13.

Background

Uncertainty persists over the environmental effects of genetically-engineered crops that produce the insecticidal Cry proteins of Bacillus thuringiensis (Bt). We performed meta-analyses on a modified public database to synthesize current knowledge about the effects of Bt cotton, maize and potato on the abundance and interactions of arthropod non-target functional guilds.

Methodology/Principal Findings

We compared the abundance of predators, parasitoids, omnivores, detritivores and herbivores under scenarios in which neither, only the non-Bt crops, or both Bt and non-Bt crops received insecticide treatments. Predators were less abundant in Bt cotton compared to unsprayed non-Bt controls. As expected, fewer specialist parasitoids of the target pest occurred in Bt maize fields compared to unsprayed non-Bt controls, but no significant reduction was detected for other parasitoids. Numbers of predators and herbivores were higher in Bt crops compared to sprayed non-Bt controls, and type of insecticide influenced the magnitude of the difference. Omnivores and detritivores were more abundant in insecticide-treated controls and for the latter guild this was associated with reductions of their predators in sprayed non-Bt maize. No differences in abundance were found when both Bt and non-Bt crops were sprayed. Predator-to-prey ratios were unchanged by either Bt crops or the use of insecticides; ratios were higher in Bt maize relative to the sprayed non-Bt control.

Conclusions/Significance

Overall, we find no uniform effects of Bt cotton, maize and potato on the functional guilds of non-target arthropods. Use of and type of insecticides influenced the magnitude and direction of effects; insecticde effects were much larger than those of Bt crops. These meta-analyses underscore the importance of using controls not only to isolate the effects of a Bt crop per se but also to reflect the replacement of existing agricultural practices. Results will provide researchers with information to design more robust experiments and will inform the decisions of diverse stakeholders regarding the safety of transgenic insecticidal crops.  相似文献   

14.
Anthropogenic disturbance has generated a significant loss of biodiversity worldwide and grazing by domestic herbivores is a contributing disturbance. Although the effects of grazing on plants are commonly explored, here we address the potential multi‐trophic effects on animal biodiversity (e.g. herbivores, pollinators and predators). We conducted a meta‐analysis on 109 independent studies that tested the response of animals or plants to livestock grazing relative to livestock excluded. Across all animals, livestock exclusion increased abundance and diversity, but these effects were greatest for trophic levels directly dependent on plants, such as herbivores and pollinators. Detritivores were the only trophic level whose abundance decreased with livestock exclusion. We also found that the number of years since livestock was excluded influenced the community and that the effects of grazer exclusion on animal diversity were strongest in temperate climates. These findings synthesise the effects of livestock grazing beyond plants and demonstrate the indirect impacts of livestock grazing on multiple trophic levels in the animal community. We identified the potentially long‐term impacts that livestock grazing can have on lower trophic levels and consequences for biological conservation. We also highlight the potentially inevitable cost to global biodiversity from livestock grazing that must be balanced against socio‐economic benefits.  相似文献   

15.
The effects of producer diversity on predators have received little attention in arboreal plant communities, particularly in the tropics. This is particularly true in the case of tree diversity effects on web‐building spiders, one of the most important groups of invertebrate predators in terrestrial plant communities. We evaluated the effects of tree species diversity on the community of weaver spiders associated with big‐leaf mahogany (Swietenia macrophylla) in 19, 21 × 21‐m plots (64 plants/plot) of a tropical forest plantation which were either mahogany monocultures (12 plots) or polycultures (seven plots) that included mahogany and three other tree species. We conducted two surveys of weaver spiders on mahogany trees to evaluate the effects of tree diversity on spider abundance, species richness, diversity, and species composition associated with mahogany. Our results indicated that tree species mixtures exhibited significantly greater spider abundance, species richness, and diversity, as well as differences in spider species composition relative to monocultures. These results could be due to species polycultures providing a broader range of microhabitat conditions favoring spider species with different habitat requirements, a greater availability of web‐building sites, or due to increased diversity or abundance of prey. Accordingly, these results emphasize the importance of mixed forest plantations for boosting predator abundance and diversity and potentially enhancing herbivore pest suppression. Future work is necessary to determine the specific mechanisms underlying these patterns as well as the top‐down effects of increased spider abundance and species richness on herbivore abundance and damage.  相似文献   

16.
The diversity of plant neighbors commonly results in direct, bottom‐up effects on herbivore ability to locate their host, and in indirect effects on herbivores involving changes in plant traits and a top‐down control by their enemies. Yet, the relative contribution of bottom‐up and top‐down forces remains poorly understood. We also lack knowledge on the effect of abiotic constraints such as summer drought on the strength and direction of these effects. We measured leaf damage on pedunculate oak (Quercus robur), alone or associated with birch, pine or both in a long‐term tree diversity experiment (ORPHEE), where half of the plots were irrigated while the other half remained without irrigation and received only rainfall. We tested three mechanisms likely to explain the effects of oak neighbors on herbivory: (1) Direct bottom‐up effects of heterospecific neighbors on oak accessibility to herbivores, (2) indirect bottom‐up effects of neighbors on the expression of leaf traits, and (3) top‐down control of herbivores by predators. Insect herbivory increased during the growth season but was independent of neighbor identity and irrigation. Specific leaf area, leaf toughness, and thickness varied with neighbor identity while leaf dry matter content or C:N ratio did not. When summarized in a principal component analysis (PCA), neighbor identity explained 87% of variability in leaf traits. PCA axes partially predicted herbivory. Despite greater rates of attack on dummy caterpillars in irrigated plots, avian predation, and insect herbivory remained unrelated. Our study suggests that neighbor identity can indirectly influence insect herbivory in mixed forests by modifying leaf traits. However, we found only partial evidence for these trait‐mediated effects and suggest that more attention should be paid to some unmeasured plant traits such as secondary metabolites, including volatile organic compounds, to better anticipate the effects of climate change on plant‐insect interactions in the future.  相似文献   

17.
Influence of ground cover on spider populations in a table grape vineyard   总被引:2,自引:0,他引:2  
1. Cover crops and/or resident ground vegetation have been used in California vineyards to increase the number of predators and decrease the number of pestiferous herbivores. The most common resident predators in vineyards are spiders (Araneae). Several observational studies suggest that the addition of cover crops results in an increase in spider density and a decrease in insect pest densities. 2. To test experimentally the effects of cover crops and/or resident ground vegetation (hereafter collectively referred to as ground cover) on spider populations, a 3-year study was undertaken in a commercial vineyard. Large, replicated plots were established with and without ground cover during the growing season. Spider species diversity was analysed on the vines and on the ground cover. 3. On the vines, there was no significant difference in spider species richness or the total number of spiders in plots with and without ground cover. There were differences in the relative abundance of two spiders between treatments, with one species (Trachelas pacificus [Chamberlin & Ivie]) more abundant in plots with ground cover and another (Hololena nedra Chamberlin & Ivie) more common on vines in plots with no ground cover. Annual variation in spider abundance was greater than variation due to ground cover treatment. 4. On the ground cover, the spider species diversity was considerably different from that found on the vines above, suggesting that there is little movement of spiders between the ground cover and the vines. Enhancement of T. pacificus populations on vines with ground covers may be a result of prey species movement between the ground cover and the vines. Spider abundance was sparse on the bare ground. 5. The maintenance of ground cover increased spider species diversity in the vineyard as a whole (vine and ground cover). However, the relatively small changes in spider abundance on the vines indicate there are limitations in the use of ground covers for pest management with respect to generalist predators.  相似文献   

18.
1. The abundance, production and control of pelagic heterotrophic nanoflagellates (HNF) in the Lower River Rhine (Germany) were investigated. Field samples (live‐counting technique) were taken at least every 2 weeks at Cologne (km 685) over a period of 20 months. In addition, Lagrangian sampling was carried out 160 km downstream of Cologne (Kalkar–Grieth, km 845) over a period of 12 months. Potential HNF growth rates and loss rates caused by planktonic predators were estimated in the laboratory (size fractionation experiments) and compared with the changes in HNF‐density in a water parcel flowing downstream. 2. Mean abundance (±SD) ranged from 7 ± 6 to 4890 ± 560 individuals mL–1 and was positively correlated with discharge. Heterotrophic nanoflagellates abundance increased up to 30‐fold during flood events, whereas there were only minor changes in the taxonomic composition. 3. HNF growth rate ranged from 0.16 ± 0.12 to 1.98 ± 0.10 day–1. Between 0 and 95% (mean: 32%) of the gross production was lost to planktonic predators; a larger portion between 0 and 195% (mean: 64%) of the HNF gross production was lost by other means. 4. There may be an important role for benthic predators in the control of pelagic HNF. First, production of HNF was high and grazing losses to planktonic predators low at times when HNF abundance was low. Secondly, high in situ loss rates (not explicable by planktonic predators), which were positively related to temperature, indicate the importance of biotic interactions. Thirdly, the dependence of HNF abundance on discharge indicated a decrease grazing intensity with rising water levels (increase in water volume/colonised river bed ratio). 5. The impact of discharge on planktonic HNF mediated by the grazing impact of benthic predators was modelled, showing a good fit with the field data.  相似文献   

19.
Field studies were conducted in 1992 and 1993 in Hermiston, Oregon, to evaluate the efficacy of transgenic Bt potato (Newleaf®, which expresses the insecticidal protein Cry3Aa) and conventional insecticide spray programs against the important potato pest, Leptinotarsa decemlineata (Say), Colorado potato beetle (CPB), and their relative impact on non-target arthropods in potato ecosystems. Results from the two years of field trials demonstrated that Newleaf potato plants were highly effective in suppressing populations of CPB, and provided better CPB control than weekly sprays of a microbial Bt-based formulation containing Cry3Aa, bi-weekly applications of permethrin, or early- and mid-season applications of systemic insecticides (phorate and disulfoton). When compared with conventional potato plants not treated with any insecticides, the effective control of CPB by Newleaf potato plants or weekly sprays of a Bt-based formulation did not significantly impact the abundance of beneficial predators or secondary potato pests. In contrast to Newleaf potato plants or microbial Bt formulations, however, bi-weekly applications of permethrin significantly reduced the abundance of several major generalist predators such as spiders (Araneae), big-eyed bugs (Geocorus sp.), damsel bugs (Nabid sp.), and minute pirate bugs (Orius sp.), and resulted in significant increases in the abundance of green peach aphid (GPA), Myzus persicae (Sulzer) – vector of viral diseases, on the treated potato plots. While systemic insecticides appeared to have reduced the abundance of some plant sap-feeding insects such as GPA, lygus bugs, and leafhoppers, early and mid-season applications of these insecticides had no significant impact on populations of the major beneficial predators. Thus, transgenic Bt potato, Bt-based microbial formulations and systemic insecticides appeared to be compatible with the development of integrated pest management (IPM) against other potato pests such as GPA because these CPB control measures have little impact on major natural enemies. In contrast, the broad-spectrum pyrethroid insecticide (permethrin) is less compatible with IPM programs against GPA and the potato leafroll viral disease.  相似文献   

20.
Eggplant Solanum melongena L., is often colonized by two early season insect defoliators. The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), and flea beetles Epitrix spp., emerge from their overwintering sites in early spring and seek out emerging host plants such as eggplant. During the 2009 and 2010 growing season, field studies were conducted to investigate the impact of inter‐planting eggplant into a crimson clover (CC), Trifolium incarnatum L., winter cover crop on populations of flea beetles, CPB and their associated arthropod predators. The experiment consisted also of two levels of insecticide usage such as an application of azadirachtins plus pyrethrins followed by several applications of spinosad or no insecticide sprays as subplot treatments. During both study years, significantly fewer (adults, larvae and egg masses) were found on eggplant inter‐planted into CC than in bare‐ground (BG) eggplant plots. Although flea beetle abundance was greater in BG eggplant during 2010, they appeared to be less influenced by the presence of CC than were CPB. Additionally, there was no apparent impact of insecticide treatment on CPB populations on eggplant inter‐planted into CC. However, there was a decline in CPB following treatments with insecticides in BG eggplant plots. This suggests that a winter cover crop such as CC can be used to help manage CPB in eggplant, however, using this tactic in tandem with insecticide sprays may not result in greater CPB management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号