首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Scavengers and decomposers provide an important ecosystem service by removing carrion from the environment. Scavenging and decomposition are known to be temperature-dependent, but less is known about other factors that might affect carrion removal. We conducted an experiment in which we manipulated combinations of patch connectivity and carcass type, and measured responses by local scavenger guilds along with aspects of carcass depletion. We conducted twelve, 1-month trials in which five raccoon (Procyon lotor), Virginia opossum (Didelphis virginiana), and domestic rabbit (Oryctolagus spp.) carcasses (180 trials total) were monitored using remote cameras in 21 forest patches in north-central Indiana, USA. Of 143 trials with complete data, we identified fifteen species of vertebrate scavengers divided evenly among mammalian (N = 8) and avian species (N = 7). Fourteen carcasses (9.8%) were completely consumed by invertebrates, vertebrates exhibited scavenging behavior at 125 carcasses (87.4%), and four carcasses (2.8%) remained unexploited. Among vertebrates, mammals scavenged 106 carcasses, birds scavenged 88 carcasses, and mammals and birds scavenged 69 carcasses. Contrary to our expectations, carcass type affected the assemblage of local scavenger guilds more than patch connectivity. However, neither carcass type nor connectivity explained variation in temporal measures of carcass removal. Interestingly, increasing richness of local vertebrate scavenger guilds contributed moderately to rates of carrion removal (≈6% per species increase in richness). We conclude that scavenger-specific differences in carrion utilization exist among carcass types and that reliable delivery of carrion removal as an ecosystem service may depend on robust vertebrate and invertebrate communities acting synergistically.  相似文献   

2.
Abiotic and biotic factors modulate carcass consumption by scavengers, affecting ecosystem functioning. Habitat structure is arguably a key factor influencing scavenging, but its role remains poorly understood, particularly at small spatial scales. We examine how habitat characteristics at landscape (50–1000 m radius) and local (≤10 m radius) scales around carrion affect the structure of vertebrate scavenging communities. We used remote cameras to monitor the consumption of 151 ungulate carcasses in one temperate (55 carcasses) and two Mediterranean (56 and 40 carcasses) study areas in Spain in 2011–2013. Our results showed complex habitat–scavenger relationships that mainly relied upon the spatial scale, the type of carcass and the study area. While the response of scavenger richness to habitat characteristics was consistent across study areas, the effects of diversity varied regionally at the landscape scale. Large and medium-sized carcasses in open landscapes had lower scavenger richness, likely because open habitats promote vulture dominance. At the local scale, shrub cover lowered scavenger richness and diversity, hindering carrion location by avian scavengers. Our results suggest that the structure of vertebrate scavenging assemblages at carcasses is driven by carcass and habitat characteristics operating as ecological filters at different scales (i.e. local, landscape, and biogeographical), which affect a species’ ability to locate, access and dominate carrion. Understanding the factors underlying the complex habitat–community relationships shown here has implications for managing key ecosystem functions and services. We propose a multi-scale conceptual framework to disentangle scavenger–carcass relationships.  相似文献   

3.
Scavenging is a widespread behaviour and an important process influencing food webs and ecological communities. Large carnivores facilitate the movement of energy across trophic levels through the scavenging and decomposition of their killed prey, but competition with large carnivores is also likely to constrain acquisition of carrion by scavengers. We used an experimental approach based on motion-triggered video cameras at black-tailed deer (Odocoileus hemionus columbianus) carcasses to measure the comparative influences of two large carnivores in the facilitation and limitation of carrion acquisition by scavengers. We found that pumas (Puma concolor) and black bears (Ursus americanus) had different effects on their ecological communities. Pumas, as a top-level predator, facilitated the consumption of carrion by scavengers, despite significantly reducing their observed sum feeding times (165.7 min±21.2 SE at puma kills 264.3 min±30.1 SE at control carcasses). In contrast, black bears, as the dominant scavenger in the system, limited consumption of carrion by scavengers as evidenced by the observed reduction of scavenger species richness recorded at carcasses where they were present (mean = 2.33±0.28 SE), compared to where they were absent (mean = 3.28±0.23 SE). Black bears also had large negative effects on scavenger sum feeding times (88.5 min±19.8 SE at carcasses where bears were present, 372.3 min±50.0 SE at carcasses where bears were absent). In addition, we found that pumas and black bears both increased the nestedness (a higher level of order among species present) of the scavenger community. Our results suggest that scavengers have species-specific adaptions to exploit carrion despite large carnivores, and that large carnivores influence the structure and composition of scavenger communities. The interactions between large carnivores and scavengers should be considered in future studies of food webs and ecological communities.  相似文献   

4.
Scavenging is a widespread phenomenon in vertebrate communities which has rarely been accounted for, in spite of playing an essential role in food webs by enhancing nutrient recycling and community stability. Most studies on scavenger assemblages have often presented an oversimplified view of carrion foraging. Here, we applied for the first time the concept of nestedness to the study of a species-rich scavenger community in a forest ecosystem (Białowieża Primeval Forest, Poland) following a network approach. By analysing one of the most complete datasets existing up to now in a pristine environment, we have shown that the community of facultative scavengers is not randomly assembled but highly nested. A nested pattern means that species-poor carcasses support a subset of the scavenger assemblage occurring at progressively species-rich carcasses. This result contradicts the conventional view of facultative scavenging as random and opportunistic and supports recent findings in scavenging ecology. It also suggests that factors other than competition play a major role in determining community structure. Nested patterns in scavenger communities appear to be promoted by the high diversity in carrion resources and consumers, the differential predictability of the ungulate carcass types and stressful environmental conditions.  相似文献   

5.
Vultures provide an essential ecosystem service through removal of carrion, but globally, many populations are collapsing and several species are threatened with extinction. Widespread declines in vulture populations could increase the availability of carrion to other organisms, but the ways facultative scavengers might respond to this increase have not been thoroughly explored. We aimed to determine whether facultative scavengers increase carrion consumption in the absence of vulture competition and whether they are capable of functionally replacing vultures in the removal of carrion biomass from the landscape. We experimentally excluded 65 rabbit carcasses from vultures during daylight hours and placed an additional 65 carcasses that were accessible to vultures in forested habitat in South Carolina, USA during summer (June–August). We used motion‐activated cameras to compare carrion use by facultative scavenging species between the experimental and control carcasses. Scavenging by facultative scavengers did not increase in the absence of competition with vultures. We found no difference in scavenger presence between control carcasses and those from which vultures were excluded. Eighty percent of carcasses from which vultures were excluded were not scavenged by vertebrates, compared to 5% of carcasses that were accessible to vultures. At the end of the 7‐day trials, there was a 10.1‐fold increase in the number of experimental carcasses that were not fully scavenged compared to controls. Facultative scavengers did not functionally replace vultures during summer in our study. This finding may have been influenced by the time of the year in which the study took place, the duration of the trials, and the spacing of carcass sites. Our results suggest that under the warm and humid conditions of our study, facultative scavengers would not compensate for loss of vultures. Carcasses would persist longer in the environment and consumption of carrion would likely shift from vertebrates to decomposers. Such changes could have substantial implications for disease transmission, nutrient cycling, and ecosystem functioning.  相似文献   

6.
Carrion consumption by scavengers is a key component of both terrestrial and aquatic food webs. However, there are few direct comparisons of the structure and functioning of scavenging communities in different ecosystems. Here, we monitored the consumption of 23 fish (seabream Sparus aurata) and 34 bird (yellow-legged gull Larus michahellis) carcasses on a small Mediterranean island (Isla Grosa, southeastern Spain) and surrounding waters in summer to compare the structure of the scavenger assemblages and their carrion consumption efficiencies in terrestrial and shallow water habitats. Scavenging was highly efficient both in marine and terrestrial environments, especially in the presence of a highly abundant vertebrate scavenger species, the yellow-legged gull. The vertebrate scavenger community was richer in the marine environment, whereas the invertebrate community was richer on land. The scavenger network was usually well-structured (i.e., nested), with the exception of the community associated with fish terrestrial carcasses, which were almost monopolized by yellow-legged gulls. In contrast, gulls left conspecific carcasses untouched, thus allowing longer persistence of gull carcasses on land and their exploitation by a diverse insect community. Our study shows important differences in the scavenging process associated with environment and carcass type. Promising avenues for further eco-evolutionary and applied research arise from the comparison of scavenging processes in terrestrial and marine ecosystems, from small islands to continents.  相似文献   

7.
Recent research has demonstrated how scavenging, the act of consuming dead animals, plays a key role in ecosystem structure, functioning, and stability. A growing number of studies suggest that vertebrate scavengers also provide key ecosystem services, the benefits humans gain from the natural world, particularly in the removal of carcasses from the environment. An increasing proportion of the human population is now residing in cities and towns, many of which, despite being highly altered environments, contain significant wildlife populations, and so animal carcasses. Indeed, non‐predation fatalities may be higher within urban than natural environments. Despite this, the fate of carcasses in urban environments and the role vertebrate scavengers play in their removal have not been determined. In this study, we quantify the role of vertebrate scavengers in urban environments in three towns in the UK. Using experimentally deployed rat carcasses and rapid fire motion‐triggered cameras, we determined which species were scavenging and how removal of carcass biomass was partitioned between them. Of the 63 experimental carcasses deployed, vertebrate scavenger activity was detected at 67%. There was a significantly greater depletion in carcass biomass in the presence (mean loss of 194 g) than absence (mean loss of 14 g) of scavengers. Scavenger activity was restricted to three species, Carrion crows Corvus corone, Eurasian magpies Pica pica, and European red foxes Vulpes vulpes. From behavioral analysis, we estimated that a maximum of 73% of the carcass biomass was removed by vertebrate scavengers. Despite having low species richness, the urban scavenger community in our urban study system removed a similar proportion of carcasses to those reported in more pristine environments. Vertebrate scavengers are providing a key urban ecosystem service in terms of carcass removal. This service is, however, often overlooked, and the species that provide it are among some of the most disliked and persecuted.  相似文献   

8.
The particle size of the food resource strongly determines the structure and dynamics of food webs. However, the ecological implications of carcass size variation for scavenging networks structure and functioning have been largely overlooked. Here we investigate differences in scavenging patterns due to carcass size in a complex vertebrate scavenger community, Hluhluwe‐iMfolozi Park, South Africa, while taking into account seasonality. We monitored the consumption of three types of experimental carcasses: ‘small’ (< 10 kg), ‘medium’ (10–100 kg) and ‘large’ (> 100 kg). We employed general lineal models to explore the influence of carcass size on 1) scavenging network structure (scavenger species richness per carcass) and 2) functioning (carcass detection time, consumption time, consumption rate and percentage of carrion consumed). We also tested whether the structure of the scavenging network of each carcass size was nested, i.e. whether the scavenging assemblage in species‐poor carcasses was a subset of the assemblage consuming species‐rich carcasses. We found strong evidence indicating that carcass size is a major factor governing the associated scavenger assemblage. Scavenger species richness per carcass and carcass consumption time and rate increased with carcass size, while carcass detection time and percentage of carrion biomass consumed were negatively related to carcass size. Strikingly, most of the carrion biomass was consumed by facultative scavengers, represented by large mammalian carnivores, rather than by obligate scavengers (i.e. vultures). Scavenging network nestedness tended to be higher at larger carcasses, and nestedness was sensitive to the removal of the most connected species in the network (spotted hyena) rather than vultures. When comparing scavenging and predation assemblages, crucial size‐dependent differences emerge. Also, we identified a traditionally ignored mechanism by which hunting large prey could be relatively less profitable for predators, namely the costs associated with competition from scavengers and decomposers.  相似文献   

9.

Aim

Despite the increasing scientific evidence on the importance of carrion in the ecology and evolution of many vertebrates, scavenging is still barely considered in diet studies. Here, we draw attention to how scientific literature has underestimated the role of vertebrates as scavengers, identifying the ecological traits that characterize those species whose role as scavengers could have gone especially unnoticed.

Location

Global.

Time Period

1938–2022.

Major Taxa Studied

Terrestrial vertebrate scavengers.

Methods

We analysed and compared (a) the largest database available on scavenging patterns by carrion-consuming vertebrates, (b) 908 diet studies about 156 scavenger species and (c) one of the most complete databases on bird and mammal diets (Elton Traits database). For each of these 156 species, we calculated their scavenging degree (i.e. proportion of carcases where the species is detected consuming carrion) as a proxy for carrion consumption, and related their ecological traits with the probability of being identified as scavengers in diet studies and in the Elton Traits database.

Results

More than half of the species identified as scavengers at monitored carcasses were not assigned carrion as food source in their diet studies nor in the Elton Traits database. Using a subset of study sites, we found a direct relationship between a species' scavenging degree and its rate of carrion biomass removal. In addition, scavenger species, which were classified as non-predators and mammals had a lower probability of being identified as scavengers in diet studies and in the Elton Traits database, respectively.

Main Conclusions

Our results clearly indicate an underestimation of the role of scavenging in vertebrate food webs. Given that detritus recycling is fundamental to ecosystem functioning, we encourage further recognition and investigation of the role of carrion as a food resource for vertebrates, especially for non-predator species and mammals with higher scavenging degree.  相似文献   

10.
Avian scavengers, by feeding on carrion and other organic matter, provide critical ecosystem services. Vultures, the only obligate avian scavengers, have reportedly experienced massive population declines in Africa yet current knowledge regarding their status in most West African countries is unknown. This study set out to ascertain the status of the avian scavenger community in Edo State, southern Nigeria. We made total counts of all scavenging birds at foraging and roosting sites in 13 urban areas. We recorded three species of avian scavenger which were, in order of decreasing relative abundance, Pied Crow Corvus albus, Yellow-billed Kite Milvus migrans and Hooded Vulture Necrosyrtes monachus. There was a positive correlation between relative abundance of avian scavengers and human population size, such that more populous urban centres had larger populations of scavengers. We counted more scavenging birds at roosting sites than at foraging sites. While the Pied Crow and Yellow-billed Kite appear to be thriving in Edo State, the Hooded Vulture appears to have experienced a massive population decline. Our results suggest that without immediate conservation effort such as protection, education and advocacy, the Hooded Vulture will be extirpated from this region in the near future. We suggest that these conservation efforts be focused on the largest urban areas. Furthermore, we recommend that other states in southern Nigeria be urgently surveyed in order for more general conclusions to be drawn about the fate of avian scavengers in this region.  相似文献   

11.
Scavenging is a common feeding behavior by many species that plays an important role in ecosystem stability and function while also providing ecosystem services. Despite its importance, facultative scavenging on large animal carcasses has generally been overlooked in Asian temperate forest ecosystems. The aim of this study was to determine the composition and feeding behavior of the facultative scavenger guild as it relates to sika deer (Cervus nippon) carcasses in Japanese forests. There are no obligate scavengers or large predators that kill adult ungulates, but humans fill the role of large predators by culling deer for population management. We documented nine vertebrate species scavenging on deer carcasses and found that mammals were more frequent scavengers than birds and also fed for longer durations. This result suggests that there is a facultative scavenger guild composed mainly of mammals in our forest ecosystem and that carcass utilization by birds was restricted to only forest species. Raccoon dogs (Nyctereutes procyonoides) and Asian black bears (Ursus thibetanus) were the most frequent scavenger species and also fed for longer durations than other scavengers. There were significant seasonal differences in scavenging by Asian black bear, Japanese marten (Martes melampus), and mountain hawk‐eagle (Nisaetus nipalensis), suggesting the availability of other food resources may alter facultative scavenging by each species. Our results support that scavenging is widespread in this system and likely has important functions including building links in the food web.  相似文献   

12.
Scavenging is an important ecological process. By quickly locating and consuming carrion, vertebrate scavengers cycle nutrients, stabilize food webs, and may help mitigate disease transmission to humans. Across Africa, many scavengers feed at abattoirs (i.e. slaughterhouses), thereby aiding in waste removal. Little information exists on the scavenger community composition and dynamics at abattoirs, and, to our knowledge, the carrion removal that scavengers provide at these sites has never been quantified. We studied vertebrate scavenger ecology at 6 abattoirs in Ethiopia with time-lapse photography and in-person surveys from 2014–2019. Specifically, we investigated daily, seasonal, and inter-annual patterns in use of abattoirs by vertebrate scavengers and estimated carrion consumption rates. We demonstrated the importance of abattoirs for supporting a large number and diversity of scavenger species, including 3 critically endangered, 2 endangered, 1 vulnerable, and 2 regionally endemic bird species. At the start of the study, vultures contributed 57% of carrion removal provided by vertebrate scavengers. Detections of critically endangered Rüppell's (Gyps rueppelli) and white-backed (G. africanus) vultures declined by 73% and critically endangered hooded vultures (Necrosyrtes monachus) declined by 15% over the study period. Simultaneously, the detections of dogs more than doubled. Using estimates of species-specific carrion consumption rates from the literature, coupled with changes in scavenger detections in our study, we estimated a 12% (54 kg/day) reduction in carrion consumption, or nearly 20,000 kg carrion less consumed per year by the end of the study at these 6 abattoirs. Our results indicate that ongoing vulture declines across Africa could significantly reduce carrion removal. We recommend that improving fencing around abattoir facilities could help restrict access by feral dogs, increase foraging by vultures, and, therefore, increase overall carrion removal rates.  相似文献   

13.
ABSTRACT Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy afflicting the Cervidae family in North America, causing neurodegeneration and ultimately death. Although there are no reports of natural cross-species transmission of CWD to noncervids, infected deer carcasses pose a potential risk of CWD exposure for other animals. We placed 40 disease-free white-tailed deer (Odocoileus virginianus) carcasses and 10 gut piles in the CWD-affected area of Wisconsin (USA) from September to April in 2003 through 2005. We used photos from remotely operated cameras to characterize scavenger visitation and relative activity. To evaluate factors driving the rate of carcass removal (decomposition), we used Kaplan-Meier survival analysis and a generalized linear mixed model. We recorded 14 species of scavenging mammals (6 visiting species) and 14 species of scavenging birds (8 visiting species). Prominent scavengers included American crows (Corvus brachyrhynchos), raccoons (Procyon lotor), and Virginia opossums (Didelphis virginiana). We found no evidence that deer consumed conspecific remains, although they visited gut piles more often than carcasses relative to temporal availability in the environment. Domestic dogs, cats, and cows either scavenged or visited carcass sites, which could lead to human exposure to CWD. Deer carcasses persisted for 18 days to 101 days depending on the season and year, whereas gut piles lasted for 3 days. Habitat did not influence carcass decomposition, but mammalian and avian scavenger activity and higher temperatures were positively associated with faster removal. Infected deer carcasses or gut piles can serve as potential sources of CWD prions to a variety of scavengers. In areas where surveillance for CWD exposure is practical, management agencies should consider strategies for testing primary scavengers of deer carcass material.  相似文献   

14.
15.
Restoration projects are increasingly widespread and many promote habitat succession and the diversity and abundance of faunal communities. These positive effects on biodiversity and abundance may extend to enhancing the ecological functioning and resilience of previously degraded ecosystems, but this is rarely quantified. This study surveyed a 200-ha restoring coastal wetland and three control wetlands in the Maroochy River, eastern Australia to compare the effects of wetland restoration on the consumption of carrion and the biodiversity, abundance, and functional diversity of functionally important fish and crustaceans. Carrion consumption by fish and crustaceans was measured every 6 months from spring 2017 until spring 2021 for nine events using a combination of baited cameras and scavenging assays. We found restoration improved rates of carrion consumption and the biodiversity, functional diversity, and abundance of scavenger species. Despite positive effects on the diversity of scavengers and carrion consumption, the abundance of two species, longfin eels (Anguilla reinhardtii) and mud crabs (Scylla serrata), was the most important predictors of carrion consumption rates. The spatial distribution of carrion consumption was concentrated in areas with high saltmarsh extent, moderate to high mangrove extent, and high salinity, which also resembled the distribution of both longfin eels and mud crabs. We show that restoration can promote the rates of key ecological functions but that increases to functions are likely to be characterized by low functional redundancy and greater complementarity. Therefore, maintaining or increasing the abundance of functionally important species should become a key objective in future restoration projects.  相似文献   

16.
Carcass decomposition largely depends on vertebrate scavengers. However, how behavioral differences between vertebrate scavenger species, the dominance of certain species, and the diversity of the vertebrate scavenger community affect the speed of carcass decomposition is poorly understood. As scavenging is an overlooked trophic interaction, studying the different functional roles of vertebrate species in the scavenging process increases our understanding about the effect of the vertebrate scavenger community on carcass decomposition. We used motion‐triggered infrared camera trap footages to profile the behavior and activity of vertebrate scavengers visiting carcasses in Dutch nature areas. We grouped vertebrate scavengers with similar functional roles. We found a clear distinction between occasional scavengers and more specialized scavengers, and we found wild boar (Sus scrofa) to be the dominant scavenger species in our study system. We showed that these groups are functionally different within the scavenger community. We found that overall vertebrate scavenger diversity was positively correlated with carcass decomposition speed. With these findings, our study contributes to the understanding about the different functional roles scavengers can have in ecological communities.  相似文献   

17.
We identified vertebrate scavengers of small mammal carcasses at the 780-km2 Savannah River Site during the winter of 2000–2001. Rodent carcasses, differing in size and visual conspicuousness, were placed in upland pine forests and bottomland hardwood forests during six 2-week periods. Sixty-two of the 96 carcasses (65%) were removed by vertebrates. With the aid of remote photography, we identified 11 species of scavengers removing carcasses. RaccoonsProcyon lotor, gray foxesUrocyon cinereoargenteus, and feral pigsSus scrofa scavenged most frequently. The mean elapsed time for carcass removal was 5.6 days. The number of carcasses removed by vertebrates did not differ significantly with respect to carcass size, visual conspicuousness, or habitat type; however, air temperature was strongly correlated (positively) with carcass removal. Our study demonstrates that many mammal species are capable of utilizing small carrion items as a food resource, and suggests that scavenging may account for a higher proportion of the diet of some facultative scavengers than is now widely assumed.  相似文献   

18.
The use of salmon Salmo salar carrion by otters Lutra lutra and other scavengers along the River Dee in north-east Scotland was studied by radio-tagging and individual marking of fish carcasses. More carcasses were available on the Dee than on tributary streams used for spawning, indicating that salmon returned to the river after spawning and died there. The amount of salmon carrion available to terrestrial and avian scavengers along the Dee varied from 6.7 kg. km-1 on an upstream study area to 36 kg. km-1 downstream. Fish carcasses in the Dee were moved by spates up to 20 km but in streams used for spawning less than 1 km. Of 86 carcasses examined in 1990/91, 64 were available to terrestrial and avian scavengers on the bank or awash and of these 45 had been fed upon by otters and 16 by birds. In 1991/92, 23 of 30 carcasses were available to terrestrial and avian scavengers. All had been fed upon, 19 by otters, four by birds. Other carcasses, in shallow water, were not available to terrestrial and avian scavengers. Subsequent scavenging was mainly by otters and continued for up to three weeks after the carcasses were found. Heron Ardea cinerea , great black-backed gull Larus marinus and crow Corvus corone also scavenged salmon carcasses along the Dee. Great black-backed gulls were the most frequent scavengers, but heron (dominant to black-backed gull) was a major scavenger in 1990/91. Crows, subordinate to other scavengers, waited, often in pairs, upon dominant scavengers. There were more scavenging birds downstream and numbers did not change between years. Of 20 salmon carcasses placed in spawning areas eight were probably, two possibly, removed by otters. Otters continued to scavenge carcasses for up to a month. Scavenging by foxes Vulpes vulpes and birds followed the removal of fish carcasses from the water by otters. Radio transmitters were removed by otters and left lying alongside carcasses.  相似文献   

19.
Unravelling how biodiversity is maintained despite species competition for shared resources has been a central question in community ecology, and is gaining relevance amidst the current biodiversity crisis. Yet, we have still a poor understanding of the mechanisms that regulate species coexistence and shape the structure of assemblages in highly competitive environments such as carrion pulsed resources. Here, we study how large vertebrates coexist in scavenger assemblages by adapting their diel activity at large ungulate carcasses in NW Spain. We used camera traps to record vertebrate scavengers consuming 34 carcasses of livestock and hunted wild ungulates, which allowed us to assess also differences regarding carcass origin. To evaluate temporal resource partition among species, we estimated the overlap of diel activity patterns and the mean times of each scavenger at carcasses. We recorded 16 species of scavengers, 7 mammals and 9 birds, and found similar richness at both types of carcasses. Birds and mammals showed contrasting diel activity patterns, with birds using carcasses during daytime (mean= 11:38 h) and mammals mostly at night (23:09 h). The unimodal activity patterns of scavengers showed asynchronous peaks among species. Subordinate species modified their activity patterns at carcasses used by apex species to reduce temporal overlap. Also, diel activity patterns of vultures closely followed those of corvids, suggesting facilitation processes in which corvids would enhance carcass detection by vultures. Two mammal species (12.5%) increased nocturnality at carcasses of hunted ungulates, which could be a response to human disturbance. Our results suggest that both temporal segregation and coupling mediate the coexistence of large vertebrates at carcasses. These mechanisms might lead to richer scavenger assemblages and thereby more efficient ones in driving critical ecosystem functions related to carrion consumption, such as energy and nutrient recycling and biodiversity maintenance.  相似文献   

20.
We compared scavenging bird abundance and diversity across 17 estuaries on the Central Coast of British Columbia, Canada in relation to landscape characteristics and biomass of spawning salmon and senescent and depredated salmon carcasses. We discovered that all metrics for spawning salmon and carcass biomasses were strong predictors of scavenger abundance and diversity. Specifically, Shannon’s diversity, which emphasizes rare species richness, and total abundances of scavengers, corvids (Corvus spp.), and small and large gulls (Larus spp.) were most strongly predicted by total biomass of carcasses. In contrast, the abundance of bald eagles Haliaeetus leucocephalus was most strongly predicted by biomass of carcasses that had been killed or scavenged by other predators (mostly bears and wolves). Simpson’s diversity, which emphasizes evenness of common species, was best predicted by total spawning salmon biomass. Estuary area also featured prominently among top predictors of most scavenger metrics. Our results suggest a link between terrestrial salmon predators and bald eagles, and that available salmon biomass is important for maintaining the abundance and diversity of scavenging birds that congregate at estuaries throughout the spawning season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号