首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Iwai N  Kagaya T 《Oecologia》2007,152(4):685-694
In aquatic food webs consumers can affect other members of the web by releasing nutrients as a result of their feeding activity. There is increasing evidence of these positive effects on primary producers, but such nutrient regeneration can also affect detritivores, by favoring the activities of detritus-associated microbes. We examined the effects of nutrient regeneration by tadpoles on leaf-eating detritivores under laboratory conditions. We fed four species of tadpoles three different food items (leaf litter, algae, and sludgeworms). We then conditioned terrestrial dead leaves with water from reared tadpoles (treatments) or food items alone (controls), and compared the C:N ratios of the conditioned leaves and the growth of the isopod Asellus hilgendorfii fed on the conditioned leaves. Tadpole feeding activity reduced the C:N ratio of conditioned leaves, and the effect was greatest when tadpoles were fed algae. Isopod growth rates were often higher when they were fed the litter conditioned with water from reared tadpoles. Thus, nutrient regeneration by tadpoles had a positive indirect effect on detritivores by enhancing leaf quality. Tadpoles often occur in nutrient-limited habitats where leaf litter is the major energy source, and their facilitative effects on leaf-eating detritivores may be of great significance in food webs by enhancing litter decomposition.  相似文献   

2.
Omnivores can impact ecosystems via opposing direct or indirect effects. For example, omnivores that feed on herbivores and plants could either increase plant biomass due to the removal of herbivores or decrease plant biomass due to direct consumption. Thus, empirical quantification of the relative importance of direct and indirect impacts of omnivores is needed, especially the impacts of invasive omnivores. Here we investigated how an invasive omnivore (signal crayfish, Pacifastacus leniusculus) impacts stream ecosystems. First, we performed a large-scale experiment to examine the short-term (three month) direct and indirect impacts of crayfish on a stream food web. Second, we performed a comparative study of un-invaded areas and areas invaded 90 years ago to examine whether patterns from the experiment scaled up to longer time frames. In the experiment, crayfish increased leaf litter breakdown rate, decreased the abundance and biomass of other benthic invertebrates, and increased algal production. Thus, crayfish controlled detritus via direct consumption and likely drove a trophic cascade through predation on grazers. Consistent with the experiment, the comparative study also found that benthic invertebrate biomass decreased with crayfish. However, contrary to the experiment, crayfish presence was not significantly associated with higher leaf litter breakdown in the comparative study. We posit that during invasion, generalist crayfish replace the more specialized native detritivores (caddisflies), thereby leading to little long-term change in net detrital breakdown. A feeding experiment revealed that these native detritivores and the crayfish were both effective consumers of detritus. Thus, the impacts of omnivores represent a temporally-shifting interplay between direct and indirect effects that can control basal resources.  相似文献   

3.
We investigated the role of autochthonous and terrestrial carbon in supporting aquatic food webs in the Canadian High Arctic by determining the diet of the dominant primary consumer, aquatic chironomids. These organisms were studied in fresh waters on 3 islands of the Arctic Archipelago (~74–76°N) including barren polar desert watersheds and a polar oasis with lush meadows. Stomach content analysis of 578 larvae indicated that chironomids primarily ingested diatoms and sediment detritus with little variation among most genera. Carbon and nitrogen stable isotope mixing models applied to 2 lakes indicated that benthic algae contributed 68–95% to chironomid diet at a polar desert site and 70–78% at a polar oasis site. Detritus, originating from either phytoplankton or terrestrial sources, also contributed minor amounts to chironomid diet (0–32%). Radiocarbon measurements for the 2 lakes showed that old terrestrial carbon did not support chironomid production. Carbon stable isotope ratios of chironomids in other High Arctic lakes provided further dietary evidence that was consistent with mixing model results. These findings indicate that, in the Canadian High Arctic, chironomids (and fish that consume them) are supported primarily by benthic algae in both polar desert and oasis lakes. In contrast, our review of carbon flow studies for lakes in other Arctic regions of North America shows that terrestrial carbon and phytoplankton can be important energy sources for consumers. This study provides a baseline to detect future climate-related impacts on carbon pathways in High Arctic lakes.  相似文献   

4.
Ecosystems are generally linked via fluxes of nutrients and energy across their boundaries. For example, freshwater ecosystems in temperate regions may receive significant inputs of terrestrially derived carbon via autumnal leaf litter. This terrestrial particulate organic carbon (POC) is hypothesized to subsidize animal production in lakes, but direct evidence is still lacking. We divided two small eutrophic lakes each into two sections and added isotopically distinct maize litter to the treatment sections to simulate increased terrestrial POC inputs via leaf litter in autumn. We quantified the reliance of aquatic consumers on terrestrial resources (allochthony) in the year subsequent to POC additions by applying mixing models of stable isotopes. We also estimated lake-wide carbon (C) balances to calculate the C flow to the production of the major aquatic consumer groups: benthic macroinvertebrates, crustacean zooplankton, and fish. The sum of secondary production of crustaceans and benthic macroinvertebrates supported by terrestrial POC was higher in the treatment sections of both lakes. In contrast, total secondary and tertiary production (supported by both autochthonous and allochthonous C) was higher in the reference than in the treatment sections of both lakes. Average aquatic consumer allochthony per lake section was 27–40%, although terrestrial POC contributed less than about 10% to total organic C supply to the lakes. The production of aquatic consumers incorporated less than 5% of the total organic C supply in both lakes, indicating a low ecological efficiency. We suggest that the consumption of terrestrial POC by aquatic consumers facilitates a strong coupling with the terrestrial environment. However, the high autochthonous production and the large pool of autochthonous detritus in these nutrient-rich lakes make terrestrial POC quantitatively unimportant for the C flows within food webs.  相似文献   

5.
6.
长江口水生动物食物网营养结构及其变化   总被引:1,自引:0,他引:1  
为研究长江口水生动物食物网营养结构及其变化, 运用胃含物分析法研究了2016—2017年长江口及其邻近水域捕获的43种水生动物的食性类型与营养结构, 并与20世纪90年代和2006年文献数据进行了比较, 结果表明, 长江口及其邻近水域捕获的水生动物分为4种食性类型: 浮游生物食性、底栖生物食性、游泳生物食性、混合食性, 其中浮游生物食性消费者占绝对优势, 为39.53%; 游泳生物食性消费者所占比例最少, 为11.63%。所分析样品的营养级可分为3级, 其中植食性消费者占优势, 为76.75%; 中级肉食性消费者所占比例最少, 为4.65%; 与20世纪90年代相比, 12种常见鱼类的平均营养级由3.80下降到2.87。长江口水生动物食物网结构较为复杂, 生产者类型包括底栖藻类、浮游植物、有机碎屑3种, 主要由牧食食物链和碎屑食物链构成复杂的食物网。  相似文献   

7.
8.
Riparian vegetation typically provides substantial allochthonous material to aquatic ecosystems where micro-organisms can play an important role in organic matter degradation which can support consumer biomass. We examined the effects of leaf litter quality (e.g., leaf nutrients, lignin and cellulose content), leaf species mixing, and microbial community diversity on in-stream breakdown rates of litter from dominant riparian trees (Melaleuca argentea, M. leucadendra, and Nauclea orientalis) in both a perennial and intermittent river in Australia’s wet-dry tropics. Leaf mass remaining after 82 days of in-stream incubation was negatively correlated (P < 0.05) with initial leaf N and P content while initial lignin and cellulose content had no statistically significant effect. Breakdown rates of incubated leaves of both Melaleuca and Nauclea were significantly higher in mixed litter bags compared with single species litter bags. Although it was expected that leaf N content would decrease from initial levels during decomposition, we found either similar or slightly higher N content following in-stream incubation suggesting microbial colonisation increased overall N content. Stable isotopes of δ13C and δ15N for the major sources and consumers in both rivers provide evidence that leaf litter was an important macroinvertebrate food source in the perennial river where heavy shading may limit algal production. However, in the intermittent river where riparian cover was low, benthic algae were the major organic carbon source for consumers. Our findings suggest that riparian tree species influence rates of in-stream organic matter processing, microbial community composition, and aquatic food web dynamics in tropical wet-dry streams.  相似文献   

9.
10.
The amount of energy flowing to top trophic levels depends on primary production and the efficiency at which it is converted to production at each trophic level. In aquatic systems, algal production is often limited by light and nutrients, and the nutritional quality of algae depends on the relative balance of these two resources. In this study, we used a mesocosm experiment to examine how light and nutrient variation affected food chain efficiency (FCE, defined as the proportion of primary production converted to top trophic level production), using a food web with benthic and pelagic food chains. We also related variation in benthic and pelagic efficiencies to the nutritional quality of primary producers, i.e. carbon:nitrogen:phosphorus stoichiometry. As predicted, pelagic and benthic FCEs were highest under low light/high nutrient conditions, the treatment with the best algal food quality, i.e. the lowest C:nutrient ratios. Pelagic FCE and pelagic herbivore efficiency (HEP) were more responsive than benthic FCE to variation in light and nutrients. Furthermore, pelagic FCE and HEP were highly correlated with algal C:P, suggesting ‘carryover effects’ of algal food quality on carnivores (larval fish) via effects on herbivore (zooplankton) quality. Benthic (tadpole) production was primarily explained by primary production rate, suggesting food quantity rather than quality drives their production. However, benthic FCE was also highest at low light/high nutrients and was significantly correlated with food quality. The stronger effect of food quality in mediating pelagic compared to benthic efficiencies, is consistent with differences in the stoichiometric mismatches between algae and consumers. Pelagic FCE and HEP were more likely to be P‐limited, whereas benthic FCE was more likely N‐limited. This study is the first to examine both pelagic and benthic FCE within the same system, and highlights the importance of differential consumer needs in determining how food quality affects energy transfer efficiency.  相似文献   

11.
The direct harmful effects of ultraviolet radiation (UVR) on benthic and planktonic organisms have been well studied in aquatic systems. Less clear, however, is how UVR might affect aquatic communities through its effects on trophic interactions. The focus of this study was twofold: first, to examine the direct effect of UVR on benthic invertebrates and epilithon, the rock-dwelling matrix of algae, bacteria, viruses, fungi and detritus, and second, to examine the indirect effect of UVR-mediated shifts in epilithic food quality on epilithic consumers. Food quality was assessed by measuring carbon to nutrient ratios and the concentration of polyunsaturated fatty acids (PUFA) in the epilithic matrix; the effect of its change on epilithic consumers was measured using a feeding experiment. The study was conducted in four montane lakes, where downwelling UVR can be intense. Of these lakes, the benthic community of only one was strongly affected by UVR. In this lake, exposure to UVR decreased epilithic accrual and invertebrate colonization, and, contrary to our expectations, increased food quality in the shallows through decreased carbon to phosphorus ratios and increased PUFA concentrations. In another of the four study lakes, the feeding experiment showed no significant difference in growth rates between invertebrates fed UVR-exposed and UVR-shielded epilithon, or invertebrates directly exposed to or shielded from UVR. This study demonstrates that although UVR can play an important role in structuring the trophic dynamics of benthic communities, its effects will not be constant across systems, or important in all environments.  相似文献   

12.
  • 1. Forested headwater streams are generally considered to be light-limited ecosystems where primary production is reduced, and the main source of energy and nutrients is composed of allochthonous detritus. We hypothesised that in these ecosystems, the development of primary producers might also be limited by (1) competition for nutrients with leaf-litter decomposers (e.g. bacteria and fungi), and (2) leaf-litter leachates or allelopathic compounds produced by aquatic fungi.
  • 2. To test these hypotheses, a 48-day mesocosm experiment was performed in 12 artificial streams containing stream water inoculated with epilithic biofilm suspensions collected from a forested headwater stream. Three different treatments were applied: control without leaf litter (C), microbially conditioned leaf litter added at the beginning of the experiment and left to decompose throughout the experiment (L), or leaf litter renewed three times during the experiment (RL).
  • 3. We predicted that (1) the presence of litter, through microbial nutrient immobilisation and allelopathy, would reduce primary production and that (2) this effect would be amplified by litter renewal. We also predicted that nutrient competition would mean that (3) leaf-litter decomposers will alter primary producer community composition and physiology. These predictions were tested by analysing biofilm development, physiology, stoichiometry, and benthic algal community structure. To distinguish between the effects of nutrient immobilisation and allelopathy, the biofilm responses to leaf-litter leachates collected after different microbial conditioning durations were also measured in a parallel laboratory experiment.
  • 4. Contrary to our expectations, by day 28, primary producer growth was higher in the mesocosms containing leaf litter (L and RL) despite the rapid decrease in dissolved nutrients when leaf litter was present. After 48 days, the lowest phototrophic biofilm development was observed when leaf litter was renewed (RL), whereas phototrophic biofilm development was similar in the C and L treatments. Biofilm stoichiometry indicated that this effect was most probably related to greater nitrogen limitation in the RL treatment. The presence of leaf litter also affected primary producers' photophysiology, which could be attributed to changes in taxonomic composition and to physiological adjustments of primary producers.
  • 5. Laboratory measurements showed that despite a strong inhibition of primary producer growth by unconditioned leaf-litter leachates, microbially conditioned leaf litter had either low or no effects on the development of primary producers.
  • 6. These results reveal that leaf-litter decomposers can have both positive and negative effects on primary producers underlining the need to consider microbial interactions when investigating the functioning of forested headwater streams.
  相似文献   

13.
While the common conceptual role of resource subsidies is one of bottom-up nutrient and energy supply, inputs can also alter the structural complexity of environments. This can further impact resource flow by providing refuge for prey and decreasing predation rates. However, the direct influence of different organic subsidies on predator–prey dynamics is rarely examined. In forested wetlands, leaf litter inputs are a dominant energy and nutrient resource and they can also increase benthic surface cover and decrease water clarity, which may provide refugia for prey and subsequently reduce predation rates. In outdoor mesocosms, we investigated how inputs of leaf litter that alter benthic surface cover and water clarity influence the mortality and growth of gray treefrog tadpoles (Hyla versicolor) in the presence of free-swimming adult newts (Notophthalmus viridiscens), which are visual predators. To manipulate surface cover, we added either oak (Quercus spp.) or red pine (Pinus resinosa) litter and crossed these treatments with three levels of red maple (Acer rubrum) litter leachate to manipulate water clarity. In contrast to our predictions, benthic surface cover had no effect on tadpole survival while darkening the water caused lower survival. In addition, individual tadpole mass was lowest in the high maple leachate treatments, suggesting an interaction between bottom-up effects of leaf litter and top-down effects of predation risk that altered mortality and growth of tadpoles. Our results indicate that realistic changes in forest tree composition, which cause concomitant changes in litter inputs to wetlands, can substantially alter community interactions.  相似文献   

14.
Detritus is a central feature in marine, freshwater, and terrestrial ecosystems. Despite the ubiquity of detritus, ecologists have largely ignored its role in influencing food web structure. We used a meta‐analytic approach to ask three questions about how detritus affects food web structure in a wide variety of ecosystems. First, what is the effect strength of detritus on primary producers, detritivores, herbivores, and predators? Second, what functional role does detritus serve for consumers (energetic, habitat, or both)? Third, how does the effect of detritus on consumers vary between aquatic and terrestrial ecosystems? We found that detritus has strong positive effects on primary producers and consumers in a wide range of ecosystems types. Detritus has a positive direct effect on detritivores by providing both an energetic resource and habitat (refuge from predators). Detritus has equally strong positive effects on herbivores and predators, driven by a positive direct effect of habitat. Detritus has positive effects on consumers in both aquatic and terrestrial ecosystems with 1.7 times stronger effects in terrestrial ecosystems. These results suggest that detritus has strong effects on food‐web structure in a variety of ecosystem types. Even the portion of the food web that is linked most strongly to living plant tissue as its primary energy source is strongly positively affected.  相似文献   

15.
In the past decades, afforestation of grassland landscapes has gained importance both as an economic activity and a mechanism to mitigate anthropogenic carbon emissions. This study evaluates the effect of pine afforestation on grassland streams analyzing changes in two integrative ecological indicators: leaf litter breakdown and primary production. We compare those results with changes in structural attributes of benthic biota (primary producers and invertebrates). Six contiguous first-order streams were selected in the upper basin of the Ctalamochita river (Córdoba, Argentina): three reference streams draining grasslands and three streams draining Pinus elliottii afforestations. Two in situ experiments were performed to compare leaf litter breakdown and primary production between grassland and afforested streams. Additionally, invertebrate assemblages in leaf litter and riffles, and periphyton standing stock were sampled and assessed. Nine out of 26 structural indicators showed differences between stream types but indicators measuring changes at the basal level of the food web (i.e. detritus and primary producers) were less sensitive than those recording changes in consumers. Our attempt to measure direction and magnitude of changes on stream functioning following afforestation was halted by our simple implemented methodology (i.e. leaf pack method for leaf litter decay and biofilm accrual on natural stone substrates for primary production assessments); only 1 out of 4 indicators differed. We argue that the lack of strong differences in elemental measurements of primary production and needle decay between afforested and grassland streams resulted from compensating opposing forces controlling such processes, i.e. higher grazing vs. higher sunlight in grassland streams and higher shredding vs. lower microbial decomposition mediated by lower temperature in afforested streams. Attributes related to the invertebrate compartment showed the highest sensitivity to afforestation, emphasizing their value as biological indicators of stream ecological integrity.  相似文献   

16.
In connection with the liming of an acid lake in southern Norway, a series of litter bags was placed in a pH-gradient in the limed lake and a nearby unlimed lake. During the experiments, which lasted two years, no significant differences in decomposition rates between the various localities at the same depth were noticed. The chironomid collector Tanytarsus pallidicornis was the dominant invertebrate species in the benthic samples. This demonstrates the importance of fine particulate organic matter as a food source in the lake. Collector dominance was lower in the leaf packs, which consisted mostly of coarse particulate organic matter. A poor fauna of detritus grazers probably contributed to the unchanged rates of decomposition of the leaves after liming.  相似文献   

17.
Effects of gizzard shad on benthic communities in reservoirs   总被引:1,自引:0,他引:1  
Effects of gizzard shad Dorosoma cepedianum on benthic communities in a large southern reservoir (Lake Texoma, U.S.A.) were examined during two field enclosure and exclosure experiments in which enclosures were stocked at high and low densities in 1998 and 1999, respectively. In both years, chironomid abundance significantly increased in treatments that excluded large fishes from foraging on sediments. Mean abundance of chironomids and ostracods were significantly higher ( P  < 0·05) in exclosures than enclosures stocked with gizzard shad at 1140–1210 kg ha−1. In 1999, benthic invertebrate abundances did not differ ( P  > 0·08) between exclosure and enclosures stocked at 175–213 kg ha−1. Per cent organic matter, algal abundance and abundance of other macroinvertebrates in sediments did not differ significantly among treatments in either year. Although chironomid abundance was reduced in gizzard shad enclosures in 1998, food habits from this and other studies showed that adult gizzard shad in Lake Texoma only consumed detritus and algae. It is likely that high sedimentation rates in Lake Texoma limit the ability of gizzard shad to regulate algae and detritus in benthic sediments. Thus, it is concluded that disturbance of benthic sediments by gizzard shad caused the observed reduction in chironomid abundance, rather than through consumption or competition for resources.  相似文献   

18.
Ecological functions of volatile organic compounds in aquatic systems   总被引:1,自引:0,他引:1  
In terrestrial ecosystems, volatile organic compounds (VOCs) are widely acknowledged as an important group of infochemicals. They play a major role in pollinator attraction by terrestrial plants and as insect pheromones. Furthermore, they are the mediating agent of so-called 'tritrophic interactions'. When plants are attacked by herbivorous insects, volatile signal substances are emitted, which act as attractants for parasitoids that kill the herbivores, thereby protecting the plant from herbivory. Despite the generally acknowledged importance of VOCs in terrestrial chemical ecology, their functions in aquatic food webs are largely unknown. VOCs produced by algae and cyanobacteria are a major concern in water processing, since aquatic primary producers are the reason for regularly encountered taste and odour problems in drinking water. Only very recently, research in aquatic chemical ecology has started to investigate possible ecological functions for the production of VOCs by algae and cyanobacteria. Volatile aldehydes released by wounded cells of marine planktonic diatoms seem to act as defensive compounds against herbivorous copepods on the population level. Just recently, it was found that VOCs released from benthic algae and cyanobacteria can be utilised as food and/or habitat finding cues by aquatic invertebrates such as freshwater gastropods and nematodes. Here, I review concepts and recent experimental studies on the ecological functions of such VOCs in aquatic ecosystems. Understanding the factors that lead to the liberation of volatile compounds is an essential prerequisite to properly assessing their ecological functions. It appears that (similar to terrestrial plant-herbivore interactions) VOCs can also play a steering role for both attraction and defence in aquatic ecosystems.  相似文献   

19.
Most nutrient enrichment studies in aquatic systems have focused on autotrophic food webs in systems where primary producers dominate the resource base. We tested the heterotrophic response to long-term nutrient enrichment in a forested, headwater stream. Our study design consisted of 2 years of pretreatment data in a reference and treatment stream and 2 years of continuous nitrogen (N) + phosphorus addition to the treatment stream. Studies were conducted with two leaf species that differed in initial C:N, Rhododendron maximum (rhododendron) and Acer rubrum (red maple). We determined the effects of nutrient addition on detrital resources (leaf breakdown rates, litter C:N and microbial activity) and tested whether nutrient enrichment affected macroinvertebrate consumers via increased biomass. Leaf breakdown rates were ca. 1.5 and 3× faster during the first and second years of enrichment, respectively, in the treatment stream for both leaf types. Microbial respiration rates of both leaf types were 3× higher with enrichment, and macroinvertebrate biomass associated with leaves increased ca. 2–3× with enrichment. The mass of N in macroinvertebrate biomass relative to leaves tended to increase with enrichment up to 6× for red maple and up to 44× for rhododendron leaves. Lower quality (higher C:N) rhododendron leaves exhibited greater changes in leaf nutrient content and macroinvertebrate response to nutrient enrichment than red maple leaves, suggesting a unique response by different leaf species to nutrient enrichment. Nutrient concentrations used in this study were moderate and equivalent to those in streams draining watersheds with altered land use. Thus, our results suggest that similarly moderate levels of enrichment may affect detrital resource quality and subsequently lead to altered energy and nutrient flow in detrital food webs. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

20.
Summary 1. Heterotrophic microorganisms are crucial for mineralising leaf litter and rendering it more palatable to leaf‐shredding invertebrates. A substantial part of leaf litter entering running waters may be buried in the streambed and thus be exposed to the constraining conditions prevailing in the hyporheic zone. The fate of this buried organic matter and particularly the role of microbial conditioning in this habitat remain largely unexplored. 2. The aim of this study was to determine how the location of leaf litter within the streambed (i.e. at the surface or buried), as well as the leaf litter burial history, may affect the leaf‐associated aquatic hyphomycete communities and therefore leaf consumption by invertebrate detritivores. We tested the hypotheses that (i) burial of leaf litter would result in lower decomposition rates associated with changes in microbial assemblages compared with leaf litter at the surface and (ii) altered microbial conditioning of buried leaf litter would lead to decreased quality and palatability to their consumers, translating into lower growth rates of detritivores. 3. These hypotheses were tested experimentally in a second‐order stream where leaf‐associated microbial communities, as well as leaf litter decomposition rates, elemental composition and toughness, were compared across controlled treatments differing by their location within the streambed. We examined the effects of the diverse conditioning treatments on decaying leaf palatability to consumers through feeding trials on three shredder taxa including a freshwater amphipod, of which we also determined the growth rate. 4. Microbial leaf litter decomposition, fungal biomass and sporulation rates were reduced when leaf litter was buried in the hyporheic zone. While the total species richness of fungal assemblages was similar among treatments, the composition of fungal assemblages was affected by leaf litter burial in sediment. 5. Leaf litter burial markedly affected the food quality (especially P content) of leaf material, probably due to the changes in microbial conditioning. Leaf litter palatability to shredders was highest for leaves exposed at the sediment surface and tended to be negatively related to leaf litter toughness and C/P ratio. In addition, burial of leaf litter led to lower amphipod growth rates, which were positively correlated with leaf litter P content. 6. These results emphasise the importance of leaf colonisation by aquatic fungi in the hyporheic zone of headwater streams, where fungal conditioning of leaf litter appears particularly critical for nutrient and energy transfer to higher trophic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号