首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our previous study, we have confirmed that in phosgene‐induced acute lung injury (ALI) rats, mesenchymal stem cells (MSCs) can treat the disease. Moreover, heat shock protein 70 (Hsp70) can be used as a protective protein, and Hsp70 upregulated drastically when exposed to stressful conditions. We aimed to assess that MSCs overexpressed Hsp70 could enhance the capacity of MSCs and have a good therapeutic effect on phosgene‐induced ALI. We transduced MSCs with Hsp70 and then we tested the function of the transduced MSCs. Sprague Dawley rats inhaled phosgene in a closed container for 5 minutes. The transduced MSCs and MSCs were administered via the trachea immediately. Rats in each group were killed at 6, 24, and 48 hours after exposure. Compared to MSCs, MSCs overexpressed Hsp70 enhanced MSCs viability, antiapoptotic ability, and migration ability, and these effects disappeared when using the phosphatidylinositol 3?kinase/protein kinase B (PI3K/AKT) pathway inhibitor. Furthermore, the results of pathological alterations improved. The lung wet‐to‐dry ratio declined. The lung injury index total protein content and total cells in bronchoalveolar lavage fluid (BALF) also declined. The level of tumor necrosis factor α declined and the level of interleukin‐10 improved in BALF and serum. MSCs overexpressed Hsp70 can enhance the capacity and efficacy of MSCs in the treatment of phosgene‐induced ALI and may be mediated through the PI3k/AKT signaling pathway. This article introduces a new approach to stem cell therapy for improving the efficacy of phosgene‐induced ALI.  相似文献   

2.
The mechanisms of pulmonary repair in acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are poorly known. Hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) are key factors involved in alveolar epithelial repair, present in the bronchoalveolar lavage fluid (BALF) from patients with ALI/ARDS. The role of BALF mediators in their production remains to be determined. We evaluated the overall effect of BALF from 52 patients (27 ventilated patients with ALI/ARDS, 10 ventilated patients without ALI, and 15 nonventilated control patients) on HGF and KGF synthesis by lung fibroblasts. Fibroblasts were cultured in the presence of BALF. HGF and KGF protein secretion was measured using ELISA, and mRNA expression was evaluated using quantitative real-time RT-PCR. Only BALF from ALI/ARDS patients upregulated both HGF and KGF mRNA expression and protein synthesis (+271 and +146% for HGF and KGF, respectively). BALF-induced HGF synthesis from ALI/ARDS patients was higher than that from ventilated patients without ALI (P < 0.05). HGF secretion was correlated with BALF IL-1beta levels (rho = 0.62, P < 0.001) and BALF IL-1beta/IL-1 receptor antagonist ratio (rho = 0.54, P < 0.007) in the ALI/ARDS group. An anti-IL-1beta antibody partially (>50%) inhibited the BALF-induced HGF and PGE(2) secretion, whereas NS-398, a specific cyclooxygenase-2 (COX-2) inhibitor, completely inhibited it. Anti-IL-1beta antibodies as well as NS-398 reversed the COX-2 upregulation induced by BALF. Therefore, IL-1beta is a main BALF mediator involved in HGF secretion, which is mediated through a PGE(2)/COX-2-dependent mechanism. BALF mediators may participate in vivo in the production of HGF and KGF by lung fibroblasts during ALI/ARDS.  相似文献   

3.
To explore the impact of myocardial injection of mesenchymal stem cells (MSCs) and specific recombinant human VEGF165 (hVEGF165) plasmid on collagen remodelling in rats with furazolidone induced dilated cardiomyopathy (DCM). DCM was induced by furazolidone (0.3 mg/bodyweight (g)/day per gavage for 8 weeks). Rats were then divided into four groups: (i) PBS group (n = 18): rats received equal volume myocardial PBS injection; (ii) MSCs group (n = 17): 100 μl culture medium containing 105 MSCs were injected into four sites of left ventricular free wall (25 μl per site); (iii) GENE group (n = 18): pCMVen‐MLC2v‐EGFP‐VEGF165 plasmid [5 × 109 pfu (0.2 ml)] were injected into four sites of left ventricular free wall (0.05 ml per site)] and (iv) MSCs+GENE group (n = 17): rats received both myocardial MSCs and pCMVen‐MLC2v‐EGFP‐VEGF165 plasmid injections. After 4 weeks, cardiac function was evaluated by echocardiography. Myocardial mRNA expressions of type I, type III collagen and transforming growth factor (TGF)‐β1 were detected by RT‐PCR. The protein expression of hVEGF165 was determined by Western blot. Myocardial protein expression of hVEGF165 was demonstrated in GENE and MSCs+GENE groups. Cardiac function was improved in MSCs, GENE and MSCs+GENE groups. Collagen volume fraction was significantly reduced and myocardial TGF‐β1 mRNA expression significantly down‐regulated in both GENE and MSCs+GENE groups, collagen type I/III ratio reduction was more significant in MSCs+GENE group than in MSCs or GENE group. Myocardial MSCs and hVEGF165 plasmid injection improves cardiac function possibly through down‐regulating myocardial TGF‐β1 expression and reducing the type I/III collagen ratio in this DCM rat model.  相似文献   

4.
Mesenchymal stem cells (MSCs) have emerged as a potential cell‐based therapy for pulmonary emphysema in animal models. Our previous study demonstrated that human induced pluripotent stem cell–derived MSCs (iPSC‐MSCs) were superior over bone marrow–derived MSCs (BM‐MSCs) in attenuating cigarette smoke (CS)‐induced airspace enlargement possibly through mitochondrial transfer. This study further investigated the effects of iPSC‐MSCs on inflammation, apoptosis, and proliferation in a CS‐exposed rat model and examined the effects of the secreted paracrine factor from MSCs as another possible mechanism in an in vitro model of bronchial epithelial cells. Rats were exposed to 4% CS for 1 hr daily for 56 days. At days 29 and 43, human iPSC‐MSCs or BM‐MSCs were administered intravenously. We observed significant attenuation of CS‐induced elevation of circulating 8‐isoprostane and cytokine‐induced neutrophil chemoattractant‐1 after iPSC‐MSC treatment. In line, a superior capacity of iPSC‐MSCs was also observed in ameliorating CS‐induced infiltration of macrophages and neutrophils and apoptosis/proliferation imbalance in lung sections over BM‐MSCs. In support, the conditioned medium (CdM) from iPSC‐MSCs ameliorated CS medium‐induced apoptosis/proliferation imbalance of bronchial epithelial cells in vitro. Conditioned medium from iPSC‐MSCs contained higher level of stem cell factor (SCF) than that from BM‐MSCs. Deprivation of SCF from iPSC‐MSC‐derived CdM led to a reduction in anti‐apoptotic and pro‐proliferative capacity. Taken together, our data suggest that iPSC‐MSCs may possess anti‐apoptotic/pro‐proliferative capacity in the in vivo and in vitro models of CS‐induced airway cell injury partly through paracrine secretion of SCF.  相似文献   

5.
《Cytotherapy》2014,16(6):764-775
Background aimsStem cells may be a promising therapy for acute respiratory distress syndrome. Recent in vivo and in vitro studies suggested that the mesenchymal stromal cells (MSCs) have anti-oxidative stress properties. We hypothesized that intravenous injection of bone marrow–derived mesenchymal stem cells (MSCs) could attenuate Escherichia coli–induced acute lung injury (ALI) in mice by controlling the oxidative stress status.MethodsEighty mice were randomly divided into four groups: group 1 (control group) received 25 μL of saline as a vehicle; group 2 contained E coli–induced ALI mice; group 3 included mice that received MSCs before induction of ALI; group 4 included mice that received MSCs after induction of ALI. Lung samples were isolated and assayed for oxidative stress variables and histopathologic analysis. Total anti-oxidant capacity was measured in broncho-alveolar lavage.ResultsPre- and post-injury MSC injection increased survival, reduced pulmonary edema and attenuated lung injuries in ALI mice. Histologically, MSCs exhibited a considerable degree of preservation of the pulmonary alveolar architecture. An increase of anti-oxidant enzyme activities and a decrease of myeloperoxidase activity and malondialdehyde levels in the MSC recipient groups versus the ALI group were found. Furthermore, the total anti-oxidant capacity and reduced glutathione levels were significantly increased in MSCs recipient groups versus the ALI group. Weak +ve inducible nitric oxide synthase immuno-expression in groups that received MSCs was detected. Pre-injury MSC injection showed better effects than did post-injury MSC injection.ConclusionsSystemic bone marrow–derived MSC injection was effective in modulating the oxidative stress status in E coli–induced acute lung injury in mice.  相似文献   

6.
Acute lung injury (ALI) is a severe clinical condition responsible for high mortality and the development of multiple organ dysfunctions, because of the lack of specific and effective therapies for ALI. Increasing evidence from pre‐clinical studies supports preventive and therapeutic effects of mesenchymal stem cells (MSCs, also called mesenchymal stromal cells) in ALI/ARDS (acute respiratory distress syndrome). Therapeutic effects of MSCs were noticed in various delivery approaches (systemic, local, or other locations), multiple origins (bone marrow or other tissues), or different schedules of administrations (before or after the challenges). MSCs could reduce the over‐production of inflammatory mediators, leucocyte infiltration, tissue injury and pulmonary failure, and produce a number of benefit factors through interaction with other cells in the process of lung tissue repair. Thus, it is necessary to establish guidelines, standard operating procedures and evaluation criteria for translating MSC‐based therapies into clinical application for patients with ALI.  相似文献   

7.

Background

Stem cell transplantation is a promising method for the treatment of chronic obstructive pulmonary disease (COPD), and mesenchymal stem cells (MSCs) have clinical potential for lung repair/regeneration. However, the rates of engraftment and differentiation are generally low following MSC therapy for lung injury. In previous studies, we constructed a pulmonary surfactant-associated protein A (SPA) suicide gene system, rAAV-SPA-TK, which induced apoptosis in alveolar epithelial type II (AT II) cells and vacated the AT II cell niche. We hypothesized that this system would increase the rates of MSC engraftment and repair in COPD rats.

Methods

The MSC engraftment rate and morphometric changes in lung tissue in vivo were investigated by in situ hybridization, hematoxylin and eosin staining, Masson’s trichrome staining, immunohistochemistry, and real-time PCR. The expression of hypoxia inducible factor (HIF-1α) and stromal cell-derived factor-1 (SDF-1), and relationship between HIF-1α and SDF-1 in a hypoxic cell model were analyzed by real-time PCR, western blotting, and enzyme-linked immunosorbent assay.

Results

rAAV-SPA-TK transfection increased the recruitment of MSCs but induced pulmonary fibrosis in COPD rats. HIF-1α and SDF-1 expression were enhanced after rAAV-SPA-TK transfection. Hypoxia increased the expression of HIF-1α and SDF-1 in the hypoxic cell model, and SDF-1 expression was augmented by HIF-1α under hypoxic conditions.

Conclusions

Vacant AT II cell niches increase the homing and recruitment of MSCs to the lung in COPD rats. MSCs play an important role in lung repair and promote collagen fiber deposition after induction of secondary damage in AT II cells by rAAV-SPA-TK, which involves HIF-1α and SDF-1 signaling.  相似文献   

8.
ObjectivesAcute lung injury (ALI) not only affects pulmonary function but also leads to intestinal dysfunction, which in turn contributes to ALI. Mesenchymal stem cell (MSC) transplantation can be a potential strategy in the treatment of ALI. However, the mechanisms of synergistic regulatory effects by MSCs on the lung and intestine in ALI need more in‐depth study.Materials and methodsWe evaluated the therapeutic effects of MSCs on the murine model of lipopolysaccharide (LPS)‐induced ALI through survival rate, histopathology and bronchoalveolar lavage fluid. Metagenomic sequencing was performed to assess the gut microbiota. The levels of pulmonary and intestinal inflammation and immune response were assessed by analysing cytokine expression and flow cytometry.ResultsMesenchymal stem cells significantly improved the survival rate of mice with ALI, alleviated histopathological lung damage, improved intestinal barrier integrity, and reduced the levels of inflammatory cytokines in the lung and gut. Furthermore, MSCs inhibited the inflammatory response by decreasing the infiltration of CD8+ T cells in both small‐intestinal lymphocytes and Peyer''s patches. The gut bacterial community diversity was significantly altered by MSC transplantation. Furthermore, depletion of intestinal bacterial communities with antibiotics resulted in more severe lung and gut damages and mortality, while MSCs significantly alleviated lung injury due to their immunosuppressive effect.ConclusionsThe present research indicates that MSCs attenuate lung and gut injury partly via regulation of the immune response in the lungs and intestines and gut microbiota, providing new insights into the mechanisms underlying the therapeutic effects of MSC treatment for LPS‐induced ALI.  相似文献   

9.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with high morbidity and mortality, and have no specific therapy. Keratinocyte growth factor (KGF) is a critical factor for pulmonary epithelial repair and acts via the stimulation of epithelial cell proliferation. Mesenchymal stem cells (MSCs) have been proved as good therapeutic vectors. Thus, we hypothesized that MSC-based KGF gene therapy would have beneficial effects on lipopolysaccharide(LPS)-induced lung injury. After two hours of intratracheal LPS administration to induce lung injury, mice received saline, MSCs alone, empty vector-engineered MSCs (MSCs-vec) or KGF-engineered MSCs (MSCs-kgf) via the tail vein. The MSCs-kgf could be detected in the recipient lungs and the level of KGF expression significantly increased in the MSCs-kgf mice. The MSC-mediated administration of KGF not only improved pulmonary microvascular permeability but also mediated a down-regulation of proinflammatory responses (reducing IL-1β and TNF-α) and an up-regulation of anti-inflammatory responses (increasing cytokine IL-10). Furthermore, the total severity scores of lung injury were significantly reduced in the MSCs-kgf group compared with the other three groups. The underlying mechanism of the protective effect of KGF on ALI may be attributed to the promotion of type II lung epithelial cell proliferation and the enhancement of surfactant synthesis. These findings suggest that MSCs-based KGF gene therapy may be a promising strategy for ALI treatment.  相似文献   

10.
Pneumonia is a chronic disorder of the respiratory system associated with worsening quality of life and a significant economic burden. Pinitol, a plant cyclic polyol, has been documented for immune‐inflammatory potential. The aim of present investigation was to evaluate the potential and possible mechanism of action of pinitol against lipopolysaccharide (LPS)‐induced pneumonia in the experimental animal model. Pneumonia was induced in Sprague‐Dawley rats by intratracheal administration of LPS (2 mg/kg). Animals were treated with either vehicle or dexamethasone or pinitol (5 or 10 or 20 mg/kg). Potential of pinitol against LPS‐induced pulmonary insult was assessed based on behavioral, biochemical, molecular, and ultrastructural studies. Intratracheal instillation of LPS induced significant (P < .05) inflammatory infiltration in bronchoalveolar lavage fluid (BALF) and lung tissue reflected by elevated pleural effusion volume, lung edema, BALF polymorphonuclear leukocytes count and lung myeloperoxidase levels, which was attenuated by pinitol (10 and 20 mg/kg) administration. Pinitol also markedly (P < .05) inhibited LPS‐induced alterations in electrocardiographic, hemodynamic changes, right ventricular, and lung function tests. The LPS‐induced downregulated nuclear factor erythroid 2–related factor 2 (Nrf‐2) and heme oxygenase‐1 (HO‐1), whereas upregulated transforming growth factor‐β (TGF‐β), tumor necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), IL‐6, NOD‐, LRR‐, and pyrin domain‐containing protein 3 (NLRP3), and inducible nitric oxide synthase (iNOs) lung messenger RNA expressions were significantly (P < .05) inhibited by pinitol. Western blot analysis suggested pinitol markedly (P < .05) decreased nuclear factor‐κB (NF‐κB), inhibitor of nuclear factor κB (IkBα), toll‐like receptor 4 (TLR‐4), and cyclooxygenase‐II (COX‐II) protein expressions in the lung. These findings were further supported by histological and ultrastructural analyses of lung tissue that show pinitol significantly (P < .05) ameliorates LPS‐induced aberrations in lung tissue. In conclusion, pinitol attenuated LPS‐induced pneumonia via inhibition of TLR‐4 to downregulate the NF‐κB/IκBα signaling cascade and thus ameliorated the production of proinflammatory cytokines (TNF‐α, ILs, NLRP3, and TGF‐β), inflammatory mediators (COX‐II and iNOs) and elevated oxidative stress (Nrf‐2 and HO‐1).  相似文献   

11.
Three‐dimensional (3D) cell culture has been reported to increase the therapeutic potentials of mesenchymal stem cells (MSCs). In this study, we aimed to investigate the therapeutic effects of 3D spheroids of human adipose‐derived MSCs for acute kidney injury (AKI). In vitro studies indicated that 3D spheroids of MSCs produced higher levels of extracellular matrix proteins (including collagen I, fibronectin and laminin), and exhibited stronger anti‐apoptotic and anti‐oxidative capacities than two‐dimensional (2D) cultured cells. Furthermore, 3D culture increased the paracrine secretion of cytokines by MSCs, including angiogenic factors (VEGF and basic fibroblast growth factor), anti‐apoptotic factors (epidermal growth factor and hepatocyte growth factor), the anti‐oxidative factor insulin‐like growth factor and the anti‐inflammatory protein tumour necrosis factor‐alpha stimulated gene/protein 6. Consistent with in vitro experiments, 3D spheroids of MSCs showed enhanced survival and paracrine effects in vivo. More importantly, when injected into the kidney of model rats with ischemia‐reperfusion (I/R)‐induced AKI, 3D spheroids were more beneficial in protecting the I/R kidney against apoptosis, reducing tissue damage, promoting vascularization and ameliorating renal function compared with 2D cultured cells. Therefore, the 3D culture strategy improved the therapeutic effects of MSCs, and might be promising for AKI treatment.  相似文献   

12.
Autophagy, a type II programmed cell death, is essential for cell survival under stress, e.g. lung injury, and bone marrow‐derived mesenchymal stem cells (BM‐MSCs) have great potential for cell therapy. However, the mechanisms underlying the BM‐MSC activation of autophagy to provide a therapeutic effect in ischaemia/reperfusion‐induced lung injury (IRI) remain unclear. Thus, we investigate the activation of autophagy in IRI following transplantation with BM‐MSCs. Seventy mice were pre‐treated with BM‐MSCs before they underwent lung IRI surgery in vivo. Human pulmonary micro‐vascular endothelial cells (HPMVECs) were pre‐conditioned with BM‐MSCs by oxygen‐glucose deprivation/reoxygenation (OGD) in vitro. Expression markers for autophagy and the phosphoinositide 3‐kinase/protein kinase B (PI3K/Akt) signalling pathway were analysed. In IRI‐treated mice, administration of BM‐MSCs significantly attenuated lung injury and inflammation, and increased the level of autophagy. In OGD‐treated HPMVECs, co‐culture with BM‐MSCs attenuated endothelial permeability by decreasing the level of cell death and enhanced autophagic activation. Moreover, administration of BM‐MSCs decreased the level of PI3K class I and p‐Akt while the expression of PI3K class III was increased. Finally, BM‐MSCs‐induced autophagic activity was prevented using the inhibitor LY294002. Administration of BM‐MSCs attenuated lung injury by improving the autophagy level via the PI3K/Akt signalling pathway. These findings provide further understanding of the mechanisms related to BM‐MSCs and will help to develop new cell‐based therapeutic strategies in lung injury.  相似文献   

13.
14.
WRN mutation causes a premature aging disease called Werner syndrome (WS). However, the mechanism by which WRN loss leads to progeroid features evident with impaired tissue repair and regeneration remains unclear. To determine this mechanism, we performed gene editing in reprogrammed induced pluripotent stem cells (iPSCs) derived from WS fibroblasts. Gene correction restored the expression of WRN. WRN+/+ mesenchymal stem cells (MSCs) exhibited improved pro‐angiogenesis. An analysis of paracrine factors revealed that hepatocyte growth factor (HGF) was downregulated in WRN?/? MSCs. HGF insufficiency resulted in poor angiogenesis and cutaneous wound healing. Furthermore, HGF was partially regulated by PI3K/AKT signaling, which was desensitized in WRN?/? MSCs. Consistently, the inhibition of the PI3K/AKT pathway in WRN+/+ MSC resulted in reduced angiogenesis and poor wound healing. Our findings indicate that the impairment in the pro‐angiogenic function of WS‐MSCs is due to HGF insufficiency and PI3K/AKT dysregulation, suggesting trophic disruption between stromal and epithelial cells as a mechanism for WS pathogenesis.  相似文献   

15.
Maresin Conjugates in Tissue Regeneration 1 (MCTR1) is a newly identified macrophage‐derived sulfido‐conjugated mediator that stimulates the resolution of inflammation. This study assessed the role of MCTR1 in alveolar fluid clearance (AFC) in a rat model of acute lung injury (ALI) induced by lipopolysaccharide (LPS). Rats were intravenously injected with MCTR1 at a dose of 200 ng/rat, 8 hours after administration of 14 mg/kg LPS. The level of AFC was then determined in live rats. Primary rat ATII (Alveolar Type II) epithelial cells were also treated with MCTR1 (100 nmol/L) in a culture medium containing LPS for 8 hours. MCTR1 treatment improved AFC (18.85 ± 2.07 vs 10.11 ± 1.08, P < .0001) and ameliorated ALI in rats. MCTR1 also significantly promoted AFC by up‐regulating epithelial sodium channel (ENaC) and Na+‐K+‐adenosine triphosphatase (Na, K‐ATPase) expressions in vivo. MCTR1 also activated Na, K‐ATPase and elevated phosphorylated‐Akt (P‐Akt) by up‐regulating the expression of phosphorylated Nedd4‐2 (P‐Nedd4‐2) in vivo and in vitro. However, BOC‐2 (ALX inhibitor), KH7 (cAMP inhibitor) and LY294002 (PI3K inhibitor) abrogated the improved AFC induced by MCTR1. Based on the findings of this study, MCTR1 may be a novel therapeutic approach to improve reabsorption of pulmonary oedema during ALI/acute respiratory distress syndrome (ARDS).  相似文献   

16.
17.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is the clinical syndrome of persistent lung inflammation caused by various direct and indirect stimuli. Despite advances in the understanding of disease pathogenesis, few therapeutic have emerged for ALI/ARDS. Thus, in the present study we evaluated the therapeutic potential of ethyl gallate (EG), a plant flavanoid in the context of ALI using in vivo (BALB/c) and in vitro models (human monocytes). Our in vivo data supports the view that EG alleviates inflammatory condition in ALI as significant reduction in BALF neutrophils, ROS, proinflammatory cytokines and albumin levels were observed with the single i.p of EG post LPS exposure. Also, histochemical analysis of mice lung tissue demonstrated that EG restored LPS stimulated cellular influx inside the lung airspaces. Unraveling the mechanism of action, our RT-PCR and western blot analysis suggest that enhanced expression of HO-1 underlies the protective effect of EG on ROS level in mice lung tissue. Induction of HO-1 in turn appears to be mediated by Nrf2 nuclear translocation and consequent activation and ablation of Nrf2 activity through siRNA notably abrogated the EG induced protective effect in LPS induced human monocytes. Furthermore, our results indicate that EG generated moderate amounts of H2O2 could induce Nrf2 translocation in the in vitro systems. However, given the insignificant amount of H2O2 recorded in the injected material in the in vivo system, additional mechanism for EG action could not be excluded. Nevertheless our results highlight the protective role of EG in ALI and provide the novel insight into its usefulness as a therapeutic tool for the treatment of ALI.  相似文献   

18.
Mechanical ventilation (MV) used in patients with acute respiratory distress syndrome (ARDS) can increase lung inflammation and pulmonary fibrogenesis. Src is crucial in mediating the transforming growth factor (TGF)‐β1‐induced epithelial–mesenchymal transition (EMT) during the fibroproliferative phase of ARDS. Nintedanib, a multitargeted tyrosine kinase inhibitor that directly blocks Src, has been approved for the treatment of idiopathic pulmonary fibrosis. The mechanisms regulating interactions among MV, EMT and Src remain unclear. In this study, we suggested hypothesized that nintedanib can suppress MV‐augmented bleomycin‐induced EMT and pulmonary fibrosis by inhibiting the Src pathway. Five days after administrating bleomycin to mimic acute lung injury (ALI), C57BL/6 mice, either wild‐type or Src‐deficient were exposed to low tidal volume (VT) (6 ml/kg) or high VT (30 ml/kg) MV with room air for 5 hrs. Oral nintedanib was administered once daily in doses of 30, 60 and 100 mg/kg for 5 days before MV. Non‐ventilated mice were used as control groups. Following bleomycin exposure in wild‐type mice, high VT MV induced substantial increases in microvascular permeability, TGF‐β1, malondialdehyde, Masson's trichrome staining, collagen 1a1 gene expression, EMT (identified by colocalization of increased staining of α‐smooth muscle actin and decreased staining of E‐cadherin) and alveolar epithelial apoptosis (< 0.05). Oral nintedanib, which simulated genetic downregulation of Src signalling using Src‐deficient mice, dampened the MV‐augmented profibrotic mediators, EMT profile, epithelial apoptotic cell death and pathologic fibrotic scores (< 0.05). Our data indicate that nintedanib reduces high VT MV‐augmented EMT and pulmonary fibrosis after bleomycin‐induced ALI, partly by inhibiting the Src pathway.  相似文献   

19.
Hematopoietic stem cell transplantation (HSCT) is the ultimate choice of treatment for patients with hematological diseases and cancer. The success of HSCT is critically dependent on the number and engraftment efficiency of the transplanted donor hematopoietic stem cells (HSCs). Various studies show that bone marrow‐derived mesenchymal stromal cells (MSCs) support hematopoiesis and also promote ex vivo expansion of HSCs. MSCs exert their therapeutic effect through paracrine activity, partially mediated through extracellular vesicles (EVs). Although the physiological function of EVs is not fully understood, inspiring findings indicate that MSC‐derived EVs can reiterate the hematopoiesis, supporting the ability of MSCs by transferring their cargo containing proteins, lipids, and nucleic acids to the HSCs. The activation state of the MSCs or the signaling mechanism that prevails in them also defines the composition of their EVs, thereby influencing the fate of HSCs. Modulating or preconditioning MSCs to achieve a specific composition of the EV cargo for the ex vivo expansion of HSCs is, therefore, a promising strategy that can overcome several challenges associated with the use of naïve/unprimed MSCs. This review aims to speculate upon the potential role of preconditioned/primed MSC‐derived EVs as “cell‐free biologics,” as a novel strategy for expanding HSCs in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号