首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glyoxylate reductase (GLYR) is a key enzyme in plant metabolism which catalyzes the detoxification of both photorespiratory glyoxylate and succinic semialdehdye, an intermediate of the γ-aminobutyrate (GABA) pathway. Two isoforms of GLYR exist in plants, GLYR1 and GLYR2, and while GLYR2 is known to be localized in plastids, GLYR1 has been reported to be localized in either peroxisomes or the cytosol. Here, we reappraised the intracellular localization of GLYR1 in Arabidopsis thaliana L. Heynh (ecotype Lansberg erecta) using both transiently-transformed suspension cells and stably-transformed plants, in combination with fluorescence microscopy. The results indicate that GLYR1 is localized exclusively to the cytosol regardless of the species, tissue and/or cell type, or exposure of plants to environmental stresses that would increase flux through the GABA pathway. Moreover, the C-terminal tripeptide sequence of GLYR1, -SRE, despite its resemblance to a type 1 peroxisomal targeting signal, is not sufficient for targeting to peroxisomes. Collectively, these results define the cytosol as the intracellular location of GLYR1 and provide not only important insight to the metabolic roles of GLYR1 and the compartmentation of the GABA and photorespiratory pathways in plant cells, but also serve as a useful reference for future studies of proteins proposed to be localized to peroxisomes and/or the cytosol.  相似文献   

2.
NADPH-dependent glyoxylate reductases from Arabidopsis thaliana (AtGLYR) convert both glyoxylate and succinic semialdehyde into their corresponding hydroxyacid equivalents. The primary sequence of cytosolic AtGLYR1 reveals several sequence elements that are consistent with the β-HAD (β-hydroxyacid dehydrogenase) protein family, whose members include 3-hydroxyisobutyrate dehydrogenase, tartronate semialdehyde reductase and 6-phosphogluconate dehydrogenase. Here, site-directed mutagenesis was utilized to identify catalytically important amino acid residues for glyoxylate reduction in AtGLYR1. Kinetic studies and binding assays established that Lys170 is essential for catalysis, Phe231, Asp239, Ser121 and Thr95 are more important in substrate binding than in catalysis, and Asn174 is more important in catalysis. The low activity of the mutant enzymes precluded kinetic studies with succinic semialdehyde. The crystal structure of AtGLYR1 in the absence of substrate was solved to 2.1 Å by molecular replacement using a previously unrecognized member of the β-HAD family, cytokine-like nuclear factor, thereby enabling the 3-D structure of the protein to be modeled with substrate and co-factor. Structural alignment of AtGLYR1 with β-HAD family members provided support for the essentiality of Lys170, Phe173, Asp239, Ser121, Asn174 and Thr95 in the active site and preliminary support for an acid/base catalytic mechanism involving Lys170 as the general acid and a conserved active-site water molecule. This information established that AtGLYR1 is a member of the β-HAD protein family. Sequence and activity comparisons indicated that AtGLYR1 and the plastidial AtGLYR2 possess structural features that are absent in Arabidopsis hydroxypyruvate reductases and probably account for their stronger preference for glyoxylate over hydroxypyruvate.  相似文献   

3.
The Smc5–Smc6 complex contains a heterodimeric core of two SMC proteins and non‐Smc elements (Nse1–6), and plays an important role in DNA repair. We investigated the functional roles of Nse4 and Nse1 in Dictyostelium discoideum. Nse4 and Nse3 expressed as Flag‐tagged fusion proteins were highly enriched in nuclei, while Nse1 was localized in whole cells. Using yeast two‐hybrid assays, only the interaction between Nse3 and Nse1 was detected among the combinations. However, all of the interactions among these three proteins were recognized by co‐immunoprecipitation assay using cell lysates prepared from the cells expressing green fluorescent protein (GFP)‐ or Flag‐tagged fusion proteins. GFP‐tagged Nse1, which localized in whole cells, was translocated to nuclei when co‐expressed with Flag‐tagged Nse3 or Nse4. RNAi‐mediated Nse1 and Nse4 knockdown cells (Nse1 KD and Nse4 KD cells) were generated and found to be more sensitive to UV‐induced cell death than control cells. Upon starvation, Nse1 and Nse4 KD cells had increases in the number of smaller fruiting bodies that formed on non‐nutrient agar plates or aggregates that formed under submerged culture. We found a reduction in the mRNA level of pdsA, in vegetative and 8 h‐starved Nse4 KD cells, and pdsA knockdown cells displayed effects similar to Nse4 KD cells. Our results suggest that Nse4 and Nse1 are involved in not only the cellular DNA damage response but also cellular development in D. discoideum.  相似文献   

4.
Flotillins were proposed to mediate clathrin‐independent endocytosis, and recently, flotillin‐1 was implicated in the protein kinase C (PKC)‐triggered endocytosis of the dopamine transporter (DAT). Since endocytosis of DAT was previously shown to be clathrin‐mediated, we re‐examined the role of clathrin coat proteins and flotillin in DAT endocytosis using DAT tagged with the hemagglutinin epitope (HA) in the extracellular loop and a quantitative HA antibody uptake assay. Depletion of flotillin‐1, flotillin‐2 or both flotillins together by small interfering RNAs (siRNAs) did not inhibit PKC‐dependent internalization and degradation of HA‐DAT. In contrast, siRNAs to clathrin heavy chain and μ2 subunit of clathrin adaptor complex AP‐2 as well as a dynamin inhibitor Dyngo‐4A significantly decreased PKC‐dependent endocytosis of HA‐DAT. Similarly, endocytosis and degradation of DAT that is not epitope‐tagged were highly sensitive to the clathrin siRNAs and dynamin inhibition but were not affected by flotillin knockdown. Very little co‐localization of DAT with flotillins was observed in cells ectopically expressing DAT and in cultured mouse dopaminergic neurons. Depletion of flotillins increased diffusion rates of HA‐DAT in the plasma membrane, suggesting that flotillin‐organized microdomains may regulate the lateral mobility of DAT. We propose that clathrin‐mediated endocytosis is the major pathway of PKC‐dependent internalization of DAT, and that flotillins may modulate functional association of DAT with plasma membrane rafts rather than mediate DAT endocytosis .  相似文献   

5.
In the present study, we applied a highly sensitive NanoLuc‐based technology to understand the status of superoxide dismutase 1 (SOD1) within mammalian cells. Two fragments of NanoLuc (NanoBit), large N‐terminal and small C‐terminal regions, were fused with wild‐type (wt) and mutant human SOD1 (hSOD1) genes and transfected into cells. Luciferase activity through NanoBit assembly was only detected in NanoBit‐tagged wtSOD1‐expressing cells. Furthermore, the developed NanoLuc system was used to investigate the role of protein‐protein interactions in the pathogenesis of amyotrophic lateral sclerosis (ALS). In addition to SOD1, we also applied this NanoBit system for detecting the dimerization of wild‐type, M337V‐mutated human TAR‐binding protein 43 kDa (hTDP43) and its cleaved C‐terminal fragment (TDP25M337V) as well as their interactions with SOD1. Luciferase activities of NanoBit‐tagged mutant SOD1, TDP43, or TDP25 were negligible. Finally, we found that a zinc chelator partially reduced the luciferase activity of NanoBit‐wtSOD1. Collectively, these results show that the present assay is sensitive and convenient to appreciate ALS and to develop useful agents for the modulation of SOD1 conformation.  相似文献   

6.
Caveolin‐1 (Cav1) is the primary scaffolding protein of caveolae, flask‐shaped invaginations of the plasma membrane thought to function in endocytosis, mechanotransduction, signaling and lipid homeostasis. A significant amount of our current knowledge about caveolins and caveolae is derived from studies of transiently overexpressed, C‐terminally tagged caveolin proteins. However, how different tags affect the behavior of ectopically expressed Cav1 is still largely unknown. To address this question, we performed a comparative analysis of the subcellular distribution, oligomerization state and detergent resistance of transiently overexpressed Cav1 labeled with three different C‐terminal tags (EGFP, mCherry and myc). We show that addition of fluorescent protein tags enhances the aggregation and/or degradation of both wild‐type Cav1 and an oligomerization defective P132L mutant. Strikingly, complexes formed by overexpressed Cav1 fusion proteins excluded endogenous Cav1 and Cav2, and the properties of native caveolins were largely preserved even when abnormal aggregates were present in cells. These findings suggest that differences in tagging strategies may be a source of variation in previously published studies of Cav1 and that overexpressed Cav1 may exert functional effects outside of caveolae. They also highlight the need for a critical re‐evaluation of current knowledge based on transient overexpression of tagged Cav1.   相似文献   

7.
LINE-1 ORF1 protein enhances Alu SINE retrotransposition   总被引:2,自引:0,他引:2  
Retroelements have contributed over one third of the human genome mass. The currently active LINE-1 (L1) codes for two proteins (ORF1p and ORF2p), both strictly required for retrotransposition. In contrast, the non-coding parasitic SINE (Alu) only appears to need the L1 ORF2p for its own amplification. This requirement was previously determined using a tissue culture assay system in human cells (HeLa). Because HeLa are likely to express functional L1 proteins, it is possible that low levels of endogenous ORF1p are necessary for the observed tagged Alu mobilization. By individually expressing ORF1 and ORF2 proteins from both human (L1RP and LRE3) and rodent (L1A102 and L1spa) L1 sources, we demonstrate that increasing amounts of ORF1 expressing vector enhances tagged Alu mobilization in HeLa cells. In addition, using chicken fibroblast cells as an alternate cell culture source, we confirmed that ORF1p is not strictly required for Alu mobilization in our assay. Supporting our observations in HeLa cells, we find that tagged Alu retrotransposition is improved by supplementation of ORF1p in the cultured chicken cells. We postulate that L1 ORF1p plays either a direct or indirect role in enhancing the interaction between the Alu RNA and the required factors needed for its retrotransposition.  相似文献   

8.
Synaptic vesicles recycle repeatedly in order to maintain synaptic transmission. We have previously proposed that upon exocytosis the vesicle components persist as clusters, which would be endocytosed as whole units. It has also been proposed that the vesicle components diffuse into the plasma membrane and are then randomly gathered into new vesicles. We found here that while strong stimulation (releasing the entire recycling pool) causes the diffusion of the vesicle marker synaptotagmin out of synaptic boutons, moderate stimulation (releasing ~19% of all vesicles) is followed by no measurable diffusion. In agreement with this observation, synaptotagmin molecules labeled with different fluorescently tagged antibodies did not appear to mix upon vesicle recycling, when investigated by subdiffraction resolution stimulated emission depletion (STED) microscopy. Finally, as protein diffusion from vesicles has been mainly observed using molecules tagged with pH‐sensitive green fluorescent protein (pHluorin), we have also investigated the membrane patterning of several native and pHluorin‐tagged proteins. While the native proteins had a clustered distribution, the GFP‐tagged ones were diffused in the plasma membrane. We conclude that synaptic vesicle components intermix little, at least under moderate stimulation, possibly because of the formation of clusters in the plasma membrane. We suggest that several pHluorin‐tagged vesicle proteins are less well integrated in clusters.  相似文献   

9.
Identification of the cellular proteins interacting with incompletely folded and unfolded forms of erythropoietin (EPO) in recombinant CHO (rCHO) cells leads to better insight into the possible genetic manipulation approaches for increasing EPO production. To do so, a pull‐down assay was performed with dual‐tagged (N‐terminal GST‐ and C‐terminal hexahistidine‐tagged) EPO expressed in E. coli as bait proteins and cell lysates of rCHO cells (DG44) as prey proteins. Cellular proteins interacting with dual‐tagged EPO were then resolved by two‐dimensional gel electrophoresis (2DE) and identified by MALDI‐TOF MS/MS. A total of 27 protein spots including glucose‐regulated protein 78 (GRP78) were successfully identified. Western blot analysis of GRP78 confirmed the results of the MS analyses. Taken together, a pull‐down assay followed by a proteomic approach is found to be an efficient means to identify cellular proteins interacting with foreign protein in rCHO cells. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

10.
Clathrin triskelia consist of three heavy chains and three light chains (LCs). Green fluorescent protein (GFP)‐tagged LCs are widely utilized to follow the dynamics of clathrin in living cells, but whether they reflect faithfully the behavior of clathrin triskelia in cells has not been investigated yet thoroughly. As an alternative approach, we labeled purified LCs either with Alexa 488 or Cy3 dye and compared them with GFP‐tagged LC variants. Cy3‐labeled light chains (Cy3‐LCs) were microinjected into HeLa cells either directly or in association with heavy chains. Within 1–2 min the Cy3‐LC heavy chain complexes entered clathrin‐coated structures, whereas uncomplexed Cy3‐LC did not within 2 h. These findings show that no significant exchange of LCs occurs over the time–course of an endocytic cycle. To explore whether GFP‐tagged LCs behave functionally like endogenous LCs, we characterized them biochemically. Unlike wild‐type LCs, recombinant LCs with a GFP attached to either end did not efficiently inhibit clathrin assembly in vitro, whereas Cy3‐ and Alexa 488‐labeled LC behaved similar to wild‐type LCs in vitro and in vivo. Thus, fluorochromated LCs are a valuable tool for investigating the complex behavior of clathrin in living cells.  相似文献   

11.
The use of cell‐free systems to produce recombinant proteins has grown rapidly over the past decade. In particular, cell‐free protein synthesis (CFPS) systems based on mammalian cells provide alternative methods for the production of many proteins, including those that contain disulfide bonds, glycosylation, and complex structures such as monoclonal antibodies. In the present study, we show robust production of turbo green fluorescent protein (tGFP) and streptokinase in a cell‐free system using instrumented mini‐bioreactors for highly reproducible protein production. We achieved recombinant protein production (~600 μg/ml of tGFP and 500 μg/ml streptokinase) in 2.5 hr of expression time, comparable to previously reported yields for cell‐free protein expression. Also, we demonstrate the use of two different affinity tags for product capture and compare those to a tag‐free self‐cleaving intein capture technology. The intein purification method provided a product recovery of 86%, compared with 52% for conventionally tagged proteins, while resulting in a 30% increase in total units of activity of purified recombinant streptokinase compared with conventionally tagged proteins. These promising beneficial features combined with the intein technology makes feasible the development of dose‐level production of therapeutic proteins at the point‐of‐care.  相似文献   

12.
13.
Staphylococcal superantigen‐like proteins (SSL) show no superantigenic activity but have recently been considered to act as immune suppressors. It was previously reported that SSL5 bound to P‐selectin glycoprotein ligand‐1 (PSGL‐1) and matrix metalloproteinase (MMP)‐9, leading to inhibition of leukocyte adhesion and invasion. These interactions were suggested to depend on sialic acid‐containing glycans of MMP‐9, but the roles of sialic acids in the interaction between SSL5 and MMP‐9 are still controversial. In the present study, we prepared recombinant glutathione S‐transferase‐tagged SSL5 (GST‐SSL5) and analyzed its binding capacity to MMP‐9 by pull‐down assay after various modifications of its carbohydrate moieties. We observed that GST‐SSL5 specifically bound to MMP‐9 from a human monocytic leukemia cell line (THP‐1 cells) and inhibited its enzymatic activity in a concentration‐dependent manner. After MMP‐9 was treated with neuraminidase, its binding activity towards GST‐SSL5 was markedly decreased. Furthermore, recombinant MMP‐9 produced by sialic acid‐deficient Lec2 mutant cells showed much lower affinity for SSL5 than that produced by wild‐type CHO‐K1 cells. Treatment of MMP‐9 with PNGase F to remove N‐glycan resulted in no significant change in the GST‐SSL5/MMP‐9 interaction. In contrast, the binding of GST‐SSL5 to MMP‐9 secreted from THP‐1 cells cultured in the presence of an inhibitor for the biosynthesis of O‐glycan (benzyl‐GalNAc) was weaker than the binding of GST‐SSL5 to MMP‐9 secreted from untreated cells. These results strongly suggest the importance of the sialic acid‐containing O‐glycans of MMP‐9 for the interaction of MMP‐9 with GST‐SSL5.
  相似文献   

14.
A key challenge in cell biology is to directly link protein localization to function. The green fluorescent protein (GFP)‐binding protein, GBP, is a 13‐kDa soluble protein derived from a llama heavy chain antibody that binds with high affinity to GFP as well as to some GFP variants such as yellow fluorescent protein (YFP). A GBP fusion to the red fluorescent protein (RFP), a molecule termed a chromobody, was previously used to trace in vivo the localization of various animal antigens. In this study, we extend the use of chromobody technology to plant cells and develop several applications for the in vivo study of GFP‐tagged plant proteins. We took advantage of Agrobacterium tumefaciens‐mediated transient expression assays (agroinfiltration) and virus expression vectors (agroinfection) to express functional GBP:RFP fusion (chromobody) in the model plant Nicotiana benthamiana. We showed that the chromobody is effective in binding GFP‐ and YFP‐tagged proteins in planta. Most interestingly, GBP:RFP can be applied to interfere with the function of GFP fusion protein and to mislocalize (trap) GFP fusions to the plant cytoplasm in order to alter the phenotype mediated by the targeted proteins. Chromobody technology, therefore, represents a new alternative technique for protein interference that can directly link localization of plant proteins to in vivo function.  相似文献   

15.
Fusion‐tag affinity chromatography is a key technique in recombinant protein purification. Current methods for protein recovery from mammalian cells are hampered by the need for feed stream clarification. We have developed a method for direct capture using immobilized metal affinity chromatography (IMAC) of hexahistidine (His6) tagged proteins from unclarified mammalian cell feed streams. The process employs radial flow chromatography with 300–500 μm diameter agarose resin beads that allow free passage of cells but capture His‐tagged proteins from the feed stream; circumventing expensive and cumbersome centrifugation and/or filtration steps. The method is exemplified by Chinese Hamster Ovary (CHO) cell expression and subsequent recovery of recombinant His‐tagged carcinoembryonic antigen (CEA); a heavily glycosylated and clinically relevant protein. Despite operating at a high NaCl concentration necessary for IMAC binding, cells remained over 96% viable after passage through the column with host cell proteases and DNA detected at ~8 U/mL and 2 ng/μL in column flow‐through, respectively. Recovery of His‐tagged CEA from unclarified feed yielded 71% product recovery. This work provides a basis for direct primary capture of fully glycosylated recombinant proteins from unclarified mammalian cell feed streams. Biotechnol. Bioeng. 2016;113: 130–140. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
Tagged G‐protein‐coupled receptors (GPCRs) have been used to facilitate intracellular visualization of these receptors. We have used a combination of adenoviral vector gene transfer and tagged olfactory receptors to help visualize mammalian olfactory receptor proteins in the normal olfactory epithelium of rats, and in cell culture. Three recombinant adenoviral vectors were generated carrying variously tagged versions of rat olfactory receptor I7. The constructs include an N‐terminal Flag epitope tag (Flag:I7), enhanced green fluorescent protein (EGFP) fusion protein (EGFP:I7), and a C‐terminal EGFP fusion (I7:EGFP). These receptor constructs were assayed in rat olfactory sensory neurons (OSNs) and in a heterologous system (HEK 293 cell line) for protein localization and functional expression. Functional expression of the tagged receptor proteins was tested by electroolfactogram (EOG) recordings in the infected rat olfactory epithelium, and by calcium imaging in single cells. Our results demonstrate that the I7:EGFP fusion protein and Flag:I7 are functionally expressed in OSNs while the EGFP:I7 fusion is not, probably due to inappropriate processing of the protein in the cells. These data suggest that a small epitope tag (Flag) at the N‐terminus, or EGFP located at the C‐terminus of the receptor, does not affect ligand binding or downstream signaling. In addition, both functional fusion proteins (Flag:I7 and I7:EGFP) are properly targeted to the plasma membrane of HEK 293 cells. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 56–68, 2002  相似文献   

17.
The Fc‐III tag is a newly developed fusion tag that can be applied to protein purification and detection. In the present work, we use the Fc‐III‐tagged green fluorescent protein (GFP) and human muscle creatine kinase (CK) as model systems to investigate effects of the Fc‐III tag on activities and stabilities of the expressed multicysteine‐containing proteins. Our results show the Fc‐III tag has no adverse effects on the fluorescence of GFP and reduces the occurrence of GFP misfolding due to incorrect Cys oxidation compared with the His‐tagged protein. The activity and stability of the Fc‐III‐tagged CK is slightly lower than that of the tag‐free CK, but is higher than that of the His‐tagged CK as determined by the ratio of the oxidized versus reduced CK. A major portion of His‐tagged CK is in its oxidized form, while that of the Fc‐III‐tagged CK is in its reduced form. A folding model of CK with different tags was proposed, which may provide insights into the effect of the Fc‐III tag on the conformations of disulfide‐bridged proteins.  相似文献   

18.
Accumulation of 53BP1 protein (pink) to locally induced DNA lesions by UVA lasers in living HeLa cells stably expressing GFP‐tagged histone H2B (green).  相似文献   

19.
As a de‐ubiquitin enzyme, ubiquitin C‐terminal hydrolase (UCH)‐L1 has been shown to be overexpressed in several human cancers. However, the function of UCH‐L1 in invasion of breast cancers is still unclear. Here we report that the expression of UCH‐L1 is significantly higher in cancer cells with higher invasive ability. While ectopic UCH‐L1 expression failed to alter cell proliferation in MCF‐7 cells, it caused a significant upregulation of cellular invasion. Furthermore, siRNA mediated knockdown of UCH‐L1 led to suppression of invasion in UCH‐L1 overexpressing MCF‐7 cells. In order to identify molecular mechanisms underlying these observations, a novel in vitro proximity‐dependent biotin identification method was developed by fusing UCH‐L1 protein with a bacterial biotin ligase (Escherichia coli BirA R118G, BioID). Streptavidin magnetic beads pulldown assay revealed that UCH‐L1 can interact with Akt in MCF‐7 cells. Pulldown assay with His tagged recombinant UCH‐L1 protein and cell lysate from MCF‐7 cells further demonstrated that UCH‐L1 preferentially binds to Akt2 for Akt activation. Finally, we demonstrated that overexpression of UCH‐L1 led to activation of Akt as evidenced by upregulation of phosphorylated Akt. Thus, these findings demonstrated that UCH‐L1 promotes invasion of breast cancer cells and might serve as a potential therapeutic target for treatment of human patients with breast cancers.  相似文献   

20.
Background. Protein aggregation is a major contributor to the pathogenic mechanisms of human neurodegenerative diseases. Mutations in the CSTB (cystatin B) gene [StB (stefin B)] cause EPM1 (progressive myoclonus epilepsy of type 1), an epilepsy syndrome with features of neurodegeneration and increased oxidative stress. Oligomerization and aggregation of StB in mammalian cells have recently been reported. It has also been observed that StB is overexpressed after seizures and in certain neurodegenerative conditions, which could potentially lead to its aggregation. Human StB proved to be a good model system to study amyloid fibril formation in vitro and, as we show here, to study protein aggregation in cells. Results. Endogenous human StB formed smaller, occasional cytoplasmic aggregates and chemical inhibition of the UPS (ubiquitin–proteasome system) led to an increase in the amount of the endogenous protein and also increased its aggregation. Further, we characterized both the untagged and T‐Sapphire‐tagged StB on overexpression in mammalian cells. Compared with wild‐type StB, the EPM1 missense mutant (G4R), the aggregate‐prone EPM1 mutant (R68X) and the Y31 StB variant (both tagged and untagged) formed larger cytosolic and often perinuclear aggregates accompanied by cytoskeletal reorganization. Non‐homogeneous morphology of these large aggregates was revealed using TEM (transmission electron microscopy) with StB detected by immunogold labelling. StB‐positive cytoplasmic aggregates were partially co‐localized with ubiquitin, proteasome subunits S20 and S26 and components of microfilament and microtubular cytoskeleton using confocal microscopy. StB aggregates also co‐localized with LC3 and the protein adaptor p62, markers of autophagy. Flow cytometry showed that protein aggregation was associated with reduced cell viability. Conclusions. We have shown that endogenous StB aggregates within cells, and that aggregation is increased upon protein overexpression or proteasome inhibition. From confocal and TEM analyses, we conclude that aggregates of StB show some of the molecular characteristics of aggresomes and may be eliminated from the cell by autophagy. Intracellular StB aggregation shows a negative correlation with cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号