首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Madagascar's ecosystems are subject to high levels of anthropogenic disturbance and stochastic events, including cyclones. We investigated the abundance of gray‐headed lemurs (Eulemur cinereiceps) and vegetation structure in the fragmented forest of Manombo from 1995 to 2007, including 10 yr following Cyclone Gretelle in January 1997. We predicted that the density of this arboreal, frugivorous lemur would be similar in the pre‐ and post‐cyclone intervals only if tree measures demonstrate trends toward recovery in the post‐cyclone period. Initial impacts included severe damage to over 60 percent of trees. After 10 yr, all vegetation metrics except for stem density remained low relative to the pre‐cyclone period, including dbh, height, and basal area. To investigate vegetation changes separately from cyclone effects, we compared forest structure in the pre‐cyclone period alone. Basal area declined but dbh and stem density did not vary between 1995 and 1997; thus, anthropogenic activities or other factors did not consistently alter forest structure in this 2‐yr period. Subsequent changes may be linked to cyclone response, presumably in synergy with human disturbance. Contrary to predictions, recent gray‐headed lemur population densities were nearly identical to those recorded in 1995 (13.5 ± 3.2 vs. 13.6 ± 6.4 individuals/km2, respectively). Lemur populations may have remained stable or declined initially and then recovered in the last 10 yr. Life history and ecological adaptations may explain their resistance or resilience when faced with habitat change. Recent models suggest that lemurs have evolved in response to unpredictable environmental conditions. Such environmental variability may increase with projected climate change.  相似文献   

2.
In 1998, we measured the effects of Hurricane Georges after it passed over long‐term research sites in Puerto Rican dry forest. Our primary objectives were to quantify hurricane effects on forest structure, to compare effects in a large tract of forest versus a series of nearby forest fragments, to evaluate short‐term response to hurricane disturbance in terms of mortality and sprouting, and to assess the ability of hurricanes to maintain forest structure. We sampled damage from 33 plots (1.3 ha) across a 3000‐ha tract of forest as well as in 19 fragments. For stems with 2.5‐cm minimum diameter, 1004 stems/ha (12.4%) suffered structural damage, while 69 percent of the undamaged stems were at least 50 percent defoliated. Basal area lost to structural damage equaled 4.0 m2/ha (22%) in south‐facing native forests. Structural damage and defoliation increased with stem diameter and were more common in certain dry forest species. South‐facing forests and those on ridgetops incurred more damage than north‐facing forests or those comprised primarily of introduced species. Stem mortality was only 2 percent of all stems after 9 mo. Structural damage did not necessarily result in stem mortality. Hurricane‐induced mortality was not associated with stem height or diameter, but was ten times greater than background mortality. Basal sprouting was proportional to the amount of structural damage incurred in a stand. Forest fragments experienced the same patterns of hurricane effects as the reference forest. The low, dense structure of Caribbean dry forest can be maintained by hurricane damage to larger stems and induction of basal sprouting to generate multistemmed trees.  相似文献   

3.
Abstract Severe tropical cyclones greatly modify habitat of arboreal folivores by destroying forest canopy, reducing structure and complexity and defoliating remaining trees. We hypothesized that forest modification following severe Cyclone Larry would stress arboreal folivores of the Family Pseudocheiridae and be reflected in increased home ranges and a decrease in body condition. We conducted 19 pre‐cyclone and 24 post‐cyclone spotlighting surveys at a site with severe cyclone damage, and 18 post‐cyclone surveys at a site with minor damage. We detected a greater number of lemuroid, Hemibelideus lemuroides and green, Pseudochirops archeri, ringtail possums as these possums remained in the severely damaged canopy and forest edge. In contrast, Herbert River ringtail possums, Pseudochirulus herbertensis, were detected in smaller numbers. We radio‐tracked eight P. herbertensis before the cyclone, following two of these and nine new animals after the category 4 cyclone. No significant post‐cyclone alteration in home range area or span was recorded in data pooled across the two sites or in limited post‐cyclone data at the severely disturbed site, but a greater variability in home range was observed after cyclone (pooled across sites: 1.72 ± 0.77 ha; 197 ± 47 m) than before the cyclone (1.35 ± 0.30 ha; 196 ± 23 m). In contrast, pooled pre‐ and post‐cyclone home range areas and spans were larger at the severely‐disturbed site (2.08 ± 0.56 ha; 231 ± 32 m) than at the site with minor damage (0.68 ± 0.11 ha; 114 ± 25 m), suggesting resources were more widely spread at the former site. Post‐cyclone home ranges were also larger at the severely damaged site (severe: 3.33 ± 1.36 ha, n = 3; minor: 0.52 ± 0.07 ha, n = 4). Condition of P. herbertensis (mass/tail length) did not differ significantly pre‐ and post‐cyclone or between less and severely disturbed sites. These results and observations of breeding after cyclone suggest that possum populations may be resilient to severe cyclone damage under the relatively wet conditions experienced post‐Cyclone Larry.  相似文献   

4.
Epiphytes generally occupy arboreal perches, which are inherently unstable environments due to periodic windstorms, branch falls, and treefalls. During high wind events, arboreal bromeliads are often knocked from the canopy and deposited on the forest floor. In this study, we used a common epiphytic tank bromeliad, Guzmania berteroniana (R. & S.) Mez, to determine if fallen bromeliads can survive, grow, and reproduce on the forest floor and evaluate the potential impact of adult dispersal on plant and soil nutrient pools. Bromeliads were transplanted to and from tree stems and the forest floor and monitored intensively for six months; survival, growth, and impacts on ecosystem nutrient pools were followed on a subset of plants for 16 months. Six months after transplanting, bromeliad mortality was low (3%), and 19 percent of study individuals had flowered and produced new juvenile shoots. Mortality on the subset of plants followed for 16 months was 14–30 percent. Although survival rates were relatively high in all habitats, bromeliads transplanted to trees grew significantly more root length (x?± SE: 189 ± 43 cm) than those moved to the forest floor (53 ±15 cm) and experienced lower rates of leaf area loss. All transplanted bromeliads rapidly altered the substrate they occupied. Individuals transplanted to and among trees rapidly decreased base cation concentrations but significantly increased P concentrations of their underlying substrate. On the ground, bromeliads increased C, N, and P concentrations within nine months of placement. Our results suggest that in this montane tropical forest, bromeliads respond rapidly to displacement, locally modify their substrates, and can access the resources needed for survival regardless of habitat.  相似文献   

5.
Hurricanes frequently affect the forests of South and Central America; however, few studies have quantified their effects to forest structure, especially when concentrating on the food supply of an animal population. Hurricane Iris made landfall in Southern Belize on 8 October 2001, severely damaging a 52 hectare site where the behavioral ecology of a population of Central American Black Howlers (Alouatta pigra) had been under study for 2.5 yr. The hurricane resulted in a mortality rate of 35 percent for major food trees, which was primarily attributed to uprooting, snapping, and major delimbing. This damage accounted for 97 percent of the food tree loss between the two sample periods. Tree species differences were found in both the percentage loss and category of damage to food trees. Trees of different heights also experienced different percentage loss and levels of damage; subcanopy and emergent trees experienced higher loss than canopy trees, and subcanopy trees were frequently uprooted. This was partially attributed to a lack of buttressing on these subcanopy trees. Buttressing was found to decrease the frequency of uprooting. Tree size was the only factor that did not influence either damage or death. Trees from which fruit were eaten by black howlers died more than twice as often as did trees eaten for leaves.  相似文献   

6.
Abstract We examined the impact of severe cyclone ‘Larry’ on the vegetation structure of monoculture and mixed species timber plantations, restoration plantings and reference sites in upland rainforests on the Atherton Tableland, north Queensland, Australia. Sites were initially assessed in 2000 and resurveyed in 2006, 6–8 months after the cyclone traversed the region. In both surveys, timber plantations had a relatively open canopy, grassy understorey and few shrubs or small‐sized trees; whereas restoration plantings had a relatively closed canopy, an understorey of bare ground, leaf litter and rainforest seedlings, a high density of small‐diameter trees and a moderate representation of special life forms characteristic of rainforest. Cyclone damage varied with tree size, site type, proximity to the cyclone and stem density. First, the proportion of trees that were severely damaged by the cyclone (major branches broken, stem snapped or pushed over) increased with the diameter of trees across all site types. Second, damage to larger‐sized trees (>10 cm d.b.h., >20 cm d.b.h.) was proportionally highest in monoculture plantations, intermediate in mixed species plantations and rainforest, and lowest in restoration plantings. Third, within site types, damage levels decreased with distance from the cyclone track and with stem density. There was no evidence that topographical position influenced damage levels, at least for timber plantations. We tentatively attribute the high levels of damage experienced by timber plantations to their relatively open structure and the large size of stems in plantations. Restoration plantings generally escaped severe damage by the cyclone, but their continued development towards rainforest conditions may require a coordinated monitoring and maintenance programme to address the potential threat of weed invasion.  相似文献   

7.
Neighboring upland and nutrient‐poor seasonally flooded Amazon forests were penetrated by a fire in 2009, providing a natural comparative experiment of fire damage for these widespread forest types. In upland, only 16 ± 10% (±2 SEM) of stems and 21 ± 8% of basal area were lost to fire, while seasonally flooded forest lost 59 ± 13% of stems and 57 ± 13% of basal area. Drier understory contributes to greater flammability. Much of the area occupied by seasonally flooded woody vegetation (>11.5 percent of the Amazon region) is vulnerable to fire due to high flammability and slow recovery.  相似文献   

8.
Changes in the structure and composition of a dry forest fragment were described for a 4-yr period (1994–1998) in the southeastern Brazil (19°12′05″ S and 47°08′02″ W). This is the first dynamic study of a vanishing type of dry forest, which grows on base-rich soils originating from the basalt bedrock of western Minas Gerais State. A survey of trees ≥ 3.2 cm dbh (diameter at breast height, or 1.30 m) was conducted in 26 transects of 50 m × 6 m (0.78 ha). The species were classified into three regeneration guilds – pioneer, light-demanding and shade-tolerant – on the basis of others studies and personal observation. There was a decrease of 10.1% in the number of trees between 1994 and 1998. However, the basal area had an increase of 1.5% in the same period. Size class distributions in 1994 and 1998 were significantly different. The smallest trees (diameter < 10 cm) had the highest mortality rates. Although stand composition showed little change, a few species showed significant imbalance between recruitment and mortality. The studied fragment had mortality (2.3% yr–1) and recruitment (1.6% yr–1) rates similar to other tropical rain forests for trees ≥ 10 cm dbh. The present fragment of forest (turnover time = 39.5 yr, at cut level 10 cm dbh) lies among the most dynamic tropical forests. The main compositional changes were the increase of shade-tolerant trees and decline of pioneer species. The changes in composition and structure over the survey period may reflect the recovery of the forest after 4 yr of conservation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Droughts and forest fires, induced by the El Niño/Southern Oscillation (ENSO) event, have increased considerably over the last decades affecting millions of hectares of rainforest. We investigated the effects of the 1997–1998 forest fires and drought, associated with an exceptionally severe ENSO event, on fruit species important in the diet of Malayan sun bears (Helarctos malayanus) in lowland dipterocarp forest, East Kalimantan, Indonesian Borneo. Densities of sun bear fruit trees (≥10 cm DBH) were reduced by ~80%, from 167±41 (SD) fruit trees ha?1 in unburned forest to 37±18 fruit trees ha?1 in burned forest. Densities of hemi-epiphytic figs, one of the main fallback resources for sun bears during periods of food scarcity, declined by 95% in burned forest. Species diversity of sun bear food trees decreased by 44% in burned forest. Drought also affected sun bear fruit trees in unburned primary forest, with elevated mortality rates for the duration of 2 years, returning to levels reported as normal in region in the third year after the ENSO event. Mortality in unburned forest near the burn-edge was higher (25±5% of trees ≥10 cm DBH dead) than in the forest interior (14±5% of trees), indicating possible edge effects. Combined effects of fire and drought in burned primary forest resulted in an overall tree mortality of 78±11% (≥10 cm DBH) 33 months after the fire event. Disturbance due to fires has resulted in a serious decline of fruit resources for sun bears and, due to the scale of fire damage, in a serious decline of prime sun bear habitat. Recovery of sun bear populations in these burned-over forests will depend on regeneration of the forest, its future species composition, and efforts to prevent subsequent fire events.  相似文献   

10.
Abstract Severe Tropical Cyclone Larry damaged a large swathe of rainforest to the west of Innisfail in north‐eastern Queensland on 20 March 2006. Within the path of the most destructive core of the cyclone were sites previously established along human‐made (powerlines and highways) and natural (streams) linear canopy openings for a study of edge effects on adjacent rainforest plant communities and associated microclimates. Vegetation damage and understorey microclimate parameters were measured 6 months after the passage of Cyclone Larry and compared with results before the cyclone. We examined the spatial patterns of vegetation damage in relation to natural and artificial linear clearing edges and the vegetation structural factors influencing these patterns as well as resulting alterations to microclimate regimes experienced in the rainforest understorey. Vegetation damage was spatially patchy and not elevated near linear clearing edges relative to the forest interior and did not differ between edge types. Vegetation damage was influenced, albeit relatively weakly, by structural traits of individual trees and saplings, especially size (diameter at breast height, d.b.h.) and successional status: tree damage was greater in pioneer species and in larger trees, while sapling damage was greater in canopy tree species than in understorey tree or shrub species. Changes in the understorey microclimate mirrored the degree of damage to vegetation. Where vegetation damage appeared greater, the understorey microclimate was brighter, warmer, drier and windier than below less‐damaged areas of the forest canopy. Overall, understorey light availability, wind speed and the diurnal ranges of air temperature and vapour pressure deficit increased dramatically after Cyclone Larry, while pre‐cyclone edge gradients in light availability were lost and temperature and vapour pressure deficit gradients were reversed.  相似文献   

11.
In 1990 and 1991, Samoa was struck by two cyclones, Ofa and Val. In the Tafua Rain Forest Preserve on the island of Savai'i, one part of the forest also burned after the first cyclone. Here we report on patterns of regeneration and changes in tree species composition in the Tafua lowland rain forest after five years of recovery from cyclone and fire disturbance. In the unburned area, tree canopy cover increased from 27 percent after the last cyclone to 58 percent, and in the burned area from below 12 to 49 percent. Nine of the ten most common tree species decreased in relative abundance in the entire forest after the last cyclone. One fast growing pioneer species, Macaranga harveyana now makes up 42 percent of the total number of trees (>5 cm DBH) in the unburned area and 86 percent in the burned area. Large interspecific differences occur in size distribution and there are at least four distinguishable regeneration patterns, which may be related to shade tolerance. Mean number of species per plot was generally higher in the unburned area than in the burned area, while the Shannon evenness index was higher in the unburned than in the burned area only for trees above 1 cm DBH. Species with fruits known to be fed upon by birds and/or bats generally made up a larger proportion of all trees in the burned than in the unburned area. In contrast to other studies of post‐cyclone regeneration, in which recovery is often rapid due to resprouting of trees, recovery in the Tafua forest was a slow process with regeneration more dependent on vertebrate seed dispersal than on resprouting.  相似文献   

12.
Epiphytes are conspicuous structural elements of tropical forest canopies. Individual tree crowns in lowland forests may support more than 30 ant species, yet we know little about the effects of epiphytes on ant diversity. We examined the composition of arboreal ant communities on Annona glabra trees and their interactions with the epiphytic orchid Caularthron bilamellatum in Panama. We surveyed the ants on 73 trees (45 with C. bilamellatum and 28 lacking epiphytes) and recorded their nest sites and behavioral dominance at baits. We found a total of 49 ant species (in 20 genera), ranging 1–9 species per tree. Trees with C. bilamellatum had higher average (±SD) ant species richness (4.2±2.28) than trees without epiphytes (2.7±1.21). Hollow pseudobulbs (PBs) of C. bilamellatum were used as nest sites by 32 ant species, but only 43 percent of suitable PBs were occupied. Ant species richness increased with PB abundance in trees, but nest sites did not appear to be a limiting resource on A. glabra. We detected no close association between ants and the orchid. We conclude that higher ant species richness in the presence of the orchid is due to bottom‐up effects, especially the year‐round supply of extrafloral nectar. The structure of ant communities on A. glabra partly reflects interference competition among behaviorally dominant species and stochastic factors, as observed in other forests.  相似文献   

13.
The ability to resist hurricane damage is a property of both individuals and communities, and can have strong effects on the structure and function of many tropical forests. We examined the relative importance of tree size, species, biogeographic origin, local topography, and damage from previous storms in long‐term permanent plots in a rehabilitated subtropical moist forest in Puerto Rico following Hurricane Georges in order to better predict patterns of resistance. Severe damage included uprooted trees, snapped stems, or crowns with greater than 50 percent branch loss. Hurricane induced mortality after 21 mo was 5.2 percent/yr, more than seven times higher than background mortality levels during the nonhurricane periods. Species differed greatly in their mortality and damage patterns, but there was no relationship between damage and wood density or biogeographic origin. Rather, damage for a given species was correlated with mean annual increment, with faster growing species experiencing greater damage, suggesting that growth rate may reflect a variety of life history tradeoffs. Size was also predictive of damage, with larger trees suffering more damage. Trees on ridges and in valleys received greater damage than trees on slopes. A strong relationship was noted between previous hurricane damage and present structural damage, which could not solely be explained by the patterns with size and species. We suggest that resistance of trees to hurricane damage is therefore not only correlated with individual and species characteristics but also with past disturbance history, which suggests that in interpreting the effects of hurricanes on forest structure, individual storms cannot be treated as discrete, independent events.  相似文献   

14.
Comprehending the size distribution within a population and grasping its connection to tree maturation (onset of reproductive phase) is pivotal for formulating sustainable management strategies and conserving numerous tree species. The objective of this study was to compare the structure and probability of fruit production of Carapa guianensis in two types of forest (varzea, or floodplain, vs. terra firme, or upland) in the northeastern Amazon, Brazil. The study was conducted in four permanent plots of 300 × 300 m (two for each type of forest). All individuals ≥10 cm in diameter at breast height (DBH) were mapped and measured for DBH, height, and canopy characteristics (shape and position), and liana infestation. Sixty-seven trees were inventoried in the upland forest and 297 in the floodplain forest. The trees were larger in the upland (33.36 ± 1.84 cm) than in the floodplain (21.92 ± 1.5 cm) and more than half (56%) of the upland trees and more than two thirds (67%) of floodplain trees were reproductive. The minimum diameter for fruit production in the floodplain (10.2 cm of DBH) was more than two times smaller than in the upland (25.5 cm of DBH). The probability of fruit production of a tree of the same size was twice as high in the floodplain compared with the upland, and trees with rounded canopies had a higher probability of fruit production in the upland. Our results showed that the probability of fruit production can be modeled with variables of tree size and canopy shape, and that intrinsic factors of the forests influence the reproductive maturity of C. guianensis which presents greater precocity and productive potential of seeds in the estuarine floodplain forest of the Amazon River.  相似文献   

15.
Laurel wilt disease (LWD), a fungal disease vectored by the non-native redbay ambrosia beetle (Xyleborus glabratus Eichhoff), has caused mortality of redbay (Persea borbonia (L.) Spreng.) in the coastal plain of Georgia since 2003. Despite its rapid spread, little research has evaluated its impacts on redbay population structure and forest communities. Diseased populations of redbay in five sites (2–4 years post infestation) were compared to healthy populations in three uninfested sites in five counties in Georgia. The results showed high redbay mortality, shifts in size structure, and changes in community composition. An average of 90 % of redbay trees ≥3 cm diameter at breast height (DBH) were dead in infested sites, compared to 0–35 % in control sites. Mortality was seen in individuals of the smallest stem diameter category (<1.00 cm diameter at ground height). DBH of live redbay trees in control sites was twice that of those in infested sites. Photosynthetically active radiation was 4.8 times greater at infested sites than control sites due to loss of redbay canopy. Community structure measurements showed redbay trees had the greatest mean importance value (IV) at control sites compared to the 8th mean IV at infested sites for live stems. Two species co-dominant to redbay, sweetbay (Magnolia virginiana L.) and loblolly bay (Gordonia lasianthus (L.) J. Ellis), were of higher importance at infested than control sites, suggesting they are increasing in dominance following the mortality of redbay. This study shows LWD has impacted redbay populations and altered associated forest communities in Georgia.  相似文献   

16.
Drought causes reduced growth of trembling aspen in western Canada   总被引:1,自引:0,他引:1       下载免费PDF全文
Adequate and advance knowledge of the response of forest ecosystems to temperature‐induced drought is critical for a comprehensive understanding of the impacts of global climate change on forest ecosystem structure and function. Recent massive decline in aspen‐dominated forests and an increased aspen mortality in boreal forests have been associated with global warming, but it is still uncertain whether the decline and mortality are driven by drought. We used a series of ring‐width chronologies from 40 trembling aspen (Populus tremuloides Michx.) sites along a latitudinal gradient (from 52° to 58°N) in western Canada, in an attempt to clarify the impacts of drought on aspen growth by using Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). Results indicated that prolonged and large‐scale droughts had a strong negative impact on trembling aspen growth. Furthermore, the spatiotemporal variability of drought indices is useful for explaining the spatial heterogeneity in the radial growth of trembling aspen. Due to ongoing global warming and rising temperatures, it is likely that severer droughts with a higher frequency will occur in western Canada. As trembling aspen is sensitive to drought, we suggest that drought indices could be applied to monitor the potential effects of increased drought stress on aspen trees growth, achieve classification of eco‐regions and develop effective mitigation strategies to maintain western Canadian boreal forests.  相似文献   

17.
Riparian forest plantings are a well‐established restoration technique commonly used to stabilize banks and intercept nutrient flow from adjacent agricultural fields. Tree species planted for these efforts may not reflect mature forest communities within the same region. Given contemporary research on links between biodiversity and ecosystem functioning, we conducted a leaf‐litter decomposition study to investigate how mixing of detrital resources that reflect forest community composition would regulate in‐stream leaf litter. Leaf litter bags containing material from a mature forest (Liriodendron tulipifera, Acer rubrum, Quercus rubra, full factorial treatments = 7) and a restored riparian forest (Cornus sericea, Fraxinus pennsylvanica, Platanus occidentalis, full factorial treatments = 7) were deployed in a stream reach that experienced riparian reforestation in 2004. Litter from the restored riparian community had less mass remaining (45.28 ± 2.27%) than that from the mature riparian community (54.95 ± 2.19%) after 5 weeks. In addition, mixed litter treatments in the restored riparian community had less mass remaining (40.54 ± 2.37%) than single‐species treatments (51.80 ± 4.05%), a pattern not observed in the mature forest community. Results highlight the importance of planting mixed‐species assemblages as this structure may regulate processes such as decomposition and food‐web structure, processes often not targeted in the restoration plans.  相似文献   

18.
Abstract. In 1964 a census of all trees > 9.7 cm diameter at breast height (DBH) was conducted on 22 plots totalling 13.2 ha in lowland tropical evergreen rain forest on Kolombangara, Solomon Islands. Over the following 30 yr (1964–1994), populations of all individuals > 4.85 cm DBH of the 12 most common tree species and amounts of disturbance have been monitored on a declining number of these plots (in 1994, nine plots totalling 5.4 ha were still being recorded). Between November 1967 and April 1970, Kolombangara was struck by four cyclones, although only two of these caused substantial amounts of damage to the canopy structure. Multivariate analysis has identified six forest types on Kolombangara (Greig-Smith et al. 1967). The species richness and diversity of trees in the 1964 census, turnover rates of the populations monitored over 1964–1975, and the amount of disturbance sustained during a cyclone in 1970, were all positively correlated across five of the forest types. The sixth forest type was a consistent outlier in these analyses and is believed to have been seriously disturbed by humans about a century ago. The floristics, turnover and disturbance data support Connell's intermediate disturbance hypothesis. The most species-rich forest types contained a higher proportion of fast-growing individuals and species that are early-successional and which have low density timber. Properties of these species rendered them more susceptible to damage when struck by the 1970 cyclone. They showed higher turnover rates because disturbance-dependent species are also characterised by higher mortality and recruitment rates. Thus, periodic cyclones appear to favour the maintenance of differences in species diversity and composition between forest types.  相似文献   

19.
美国德克萨斯州在2011年经历了史上最严重的干旱,这一事件造成约3亿多株树木死亡。在大时空尺度上(面积约9×10~6 hm~2,时间跨度近20年),基于近1800个森林样地,4次周期性调查中的约209663株树木,使用主成份分析(PCA)和广义线性混合效应模型(GLM)回归,对树木死亡的时空差异及其干旱强度与长度对树木死亡造成的中长期复杂影响进行了研究。采用树木密度、树木基面积、林地年龄、样地调查时间间隔作为树木间的竞争指标,分析了造成大旱前后周期水平和年度水平上的样地树木死亡差异的原因。综合分析了不同地理区域、树木种组、胸径大小和林地起源的4个划分标准下树木死亡对死亡率的相对贡献。结果表明:松属树木的死亡率最低(7.92%);高度低、胸径小的树木的死亡率较大,分别为29.79%和26.00%。人工林的树木死亡率(10.26%)低于天然林(13.47%);西海湾平原生态区树木的死亡率在干旱后达到最大(22.27%);西南区的树木死亡率在干旱后也达到最大(13.78%);海拔和纬度对树木死亡率影响不明显。德州东部森林整体死亡格局形成原因较为复杂,各地理区域、林地起源、树木大小和不同树种,...  相似文献   

20.
Oaks (Quercus) are major components of temperate forest ecosystems in the Northern Hemisphere where they form intermediate or climax communities. Sessile oak (Quercus petraea) forests represent the climax vegetation in eastern Germany and western Poland. Here, sessile oak forms pure stands or occurs intermixed with Scots Pine (Pinus sylvestris). A large body of research is available on gene flow, reproduction dynamics, and genetic structure in fragmented landscapes and mixed populations. At the same time, our knowledge regarding large, contiguous, and monospecific populations is considerably less well developed. Our study is an attempt to further develop our understanding of the reproduction ecology of sessile oak as an ecologically and economically important forest tree by analyzing mating patterns and genetic structure within adult trees and seedlings originating from one or two reproduction events in an extensive, naturally regenerating sessile oak forest. We detected positive spatial genetic structure up to 30 meters between adult trees and up to 40 meters between seedlings. Seed dispersal distances averaged 8.4 meters. Pollen dispersal distances averaged 22.6 meters. In both cases, the largest proportion of the dispersal occurred over short distances. Dispersal over longer distances was more common for pollen but also appeared regularly for seeds. The reproductive success of individual trees was highly skewed. Only 41 percent of all adult trees produced any offspring while the majority did not participate in reproduction. Among those trees that contributed to the analyzed seedling sample, 80 percent contributed 1–3 gametes. Only 20 percent of all parent trees contributed four or more gametes. However, these relatively few most fertile trees contributed 51 percent of all gametes within the seedling sample. Vitality and growth differed significantly between reproducing and nonreproducing adult trees with reproducing trees being more vital and vigorous than nonreproducing individuals. Our study demonstrates that extensive, apparently homogenous oak forests are far from uniform on the genetic level. On the contrary, they form highly complex mosaics of remarkably small local neighborhoods. This counterbalances the levelling effect of long‐distance dispersal and may increase the species’ adaptive potential. Incorporating these dynamics in the management, conservation, and restoration of oak forests can support the conservation of forest genetic diversity and assist those forests in coping with environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号