共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The effects of barium, strontium and magnesium upon lens permeability characteristics were studied in the presence and absence of 2 mM calcium in the bathing medium. Permeability characteristics were determined by measuring lens potential, resistance and 42K efflux rates. Barium and strontium at equimolar concentrations to calcium were able to substitute for calcium in controlling lens sodium permeability. Magnesium was ineffective in this respect.Small changes in resistance and 42K efflux rates occurred when calcium was eliminated from bathing solution containing either 2 mM barium or strontium. These changes were interpreted to be the result of an increase in lens permeability to potassium. When 2 mM strontium was added to calcium-containing solution, there was no significant change in the electrical or flux parameters of the lens. However, the addition of 2 mM barium to calcium-containing solution resulted in a 54% increase in lens resistance and a 13 mV depolarization. These observations indicated a barium-induced decrease in lens permeability to potassium, and this was confirmed by an observed decrease in 42K efflux rate constant under similar experimental conditions.The rapid time course of all the observed changes implies that they are the result of changes in the permeability characteristics of membranes lying close to the surface of the lens. 相似文献
3.
Heino Susi 《Chemistry and physics of lipids》1981,29(4):359-368
The interaction of dipalmitoylphosphatidylgly cerol DPPG) liposomes with divalent ions of magnesium, calcium and barium has been investigated with laser-Raman spectroscopy over the temperature range of 0–60°C. The effect of Ca2+ ions was also investigated as a function of concentration. At a Ca2+/DPPG molar ratio of 0.1, the number of trans carbon to carbon bonds in the hydrocarbon domain of the phospholipid and the lateral order of the hydrocarbon chains was increased both below and above the gel to liquid crystal transition. At higher Ca2+ concentrations the number of trans bonds and the lateral order is further increased over the entire temperature range studied, while the transition disappears. Magnesium and barium ions have a much smaller ordering effect on the side-chain packing of DPPG liposomes. At a molar ratio of 0.3, the gel to liquid crystal transition is still discernible for DPPG liposomes in the presence of Ba2+ ions, but not in the presence of Mg2+ ions. 相似文献
4.
Time-dependent light-scattering studies have been made on mixtures of αs1 -casein and Ca2+ at fixed temperature over a range of [Ca2+] and [αs1 -casein], and also as functions of temperature- Measurements were also made of the extent of precipitate formation in the casein/Ca2+ mixtures, using centrifugation. The results are analysed in terms of a monomeroctamer equilibrium between calcium caseinate particles followed by a Smoluchowski aggregation in which only the octamers can participate. The equilibrium constant is dependent upon the charge on the protein/Ca2+ particles, and hence can be related to the extent of binding of Ca2+ to the αs1 -casein. The Smoluchowski constant is likewise shown to be charge-dependent. The variation of the reaction rate with temperature can be ascribed solely to the changing charge of the αs1 -casein/Ca2+ complex caused by changed binding of Ca2+ at different temperatures. 相似文献
5.
Na+、K+、Mg2+、Ca2+和葡萄糖溶液作为授精-激活介质对中华鲟精子受精率的影响 总被引:2,自引:0,他引:2
以不同浓度的NaCl、KCl、MgCl2、CaCl2溶液和葡萄糖溶液作为授精介质,研究了中华鲟(Acipenser sinensis)的受精效果.结果显示,适量的阳离子和葡萄糖作为激活授精介质时中华鲟卵受精率都有所提高.在实验设置浓度范围内25 mmol/L NaCI溶液、0.1 mmol/L KCl溶液、1 mmol/L MgCl2溶液、1 mmol/LCaCh溶液和50 mmol/L葡萄糖溶液浓度下,受精率分别可达到最高值,依次为87.72%、86.82%、82.24%、89.76%、80.92%.随着实验浓度继续增加,受精率反而呈下降趋势.结果显示,作为人工配制的中华鲟精子授精一激活介质,最适NaCI溶液浓度在25 mmol/L附近,最适葡萄糖溶液浓度在25 mmol/L附近,最适KCI溶液浓度≤0.1 mmol/L,最适MgCl2溶液浓度≤1 mol/L,最适CaCh溶液浓度≤1 mmol/L. 相似文献
6.
Joseph D. Robinson 《生物化学与生物物理学报:生物膜》1983,727(1):63-69
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 μM ATP and 50 μM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 μM ATP and 3 mM MgCl2. The for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+-ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 μM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis. 相似文献
7.
8.
Calmodulin-depleted isotonic erythrocyte ghosts contain 200 ng residual calmodulin/mg protein which is not removed by extensive washings at pCa2+ > 7. Specific activity and Ca2+-affinity of the (Ca2+ + Mg2+)ATPase increase at increasing calmodulin, with K0.5 Ca of 0.38 μM at calmodulin concentrations corresponding to that in erythrocytes. High Ca2+ concentrations inhibit the enzyme. Specific activity and Ca2+-affinity of the enzyme decrease at increasing Mg2+ concentrations. The Ca2+ ? Mg2+ antagonism is likewise observed at inhibitory Ca2+ concentrations. 相似文献
9.
Leon Pape 《生物化学与生物物理学报:生物膜》1982,686(2):225-232
Changes in fluorescence intensity of thiodicarbocyanine, DiS-C3(5), were correlated with direct microelectrode potential measurements in red blood cells from Amphiuma means and applied qualitatively to evaluate the effects of extracellular Ca2+, K+ and pH on the membrane potential of human red cells. Increasing extracellular [Ca2+] from 1.8 to 15 mM causes a K+-dependent hyperpolarization and decrease in fluorescence intensity in Amphiuma red cells. Both the hyperpolarization and fluorescence change disappear when the temperature is raised from 17 to 37°C. No change in fluorescence intensity is observed in human red cells with comparable increase in extracellular Ca2+ in the temperature range 5–37°C. Increasing the extracellular pH, however, causes human red cells to respond to an increase in extracellular Ca2+ with a significant but temporary loss in fluorescence intensity. This effect is blocked by EGTA, quinine or by increasing extracellular [K+], indicating that at elevated extracellular pH, human erythrocytes respond to an increase in extracellular Ca2+ with an opening of K+ channels and associated hyperpolarization of the plasma membrane. 相似文献
10.
The temperature-dependent relationship between K+ active influx, Mg2+-ATPase activity, transmembrane potential (ΔΨ) and the membrane lipid composition has been investigated in mycoplasma PG3. Native organisms were grown in a medium containing 10 μg/ml cholesterol and either oleic plus palmitic (chol (+), O + P) or elaidic (chol (+), E) acids. Adapted cells were grown in a medium free of exogenous cholesterol and supplemented with elaidic acid (chol (?), E).Arrhenius plots of 42K+ active influx gave a linear relationship for (chol (+), O + P) cells (). On the other hand, when oleic plus palmitic acids are replaced by elaidic acid, an upward discontinuity appears between 28 and 30°C, which is associated with a large increase in the apparent activation energy of the process ().Finally, a biphasic response with a break at approx. 23°C (; ) is observed for (chol (?), E) organisms. From the lack of correspondence between these effects on the K+ influx and the temperature dependence of both the Mg2+-ATPase activity and ΔΨ, it is suggested that changes in the membrane lipid composition affect the K+ transport at the level of the K+ carrier itself.Differential scanning calorimetry, steady-state fluorescence polarization of diphenylhexatriene and freeze-fracture electron microscopy experiments further suggest that the effect is largely due to modifications of the membrane microviscosity and that the K+ carrier is associated with the most fluid lipid species present in the membrane. 相似文献
11.
The ultrastructure and 90 ° light-scattering capacity of adrenal cortex mitochondria have been examined under conditions which lead to an activation of malic enzyme activity in these mitochondria. After isolation, the mitochondria display an aggregate ultrastructure which does not resemble the vesicular (orthodox) form normally seen in vivo. Under conditions of malic enzyme activation (presence of malate, NADP+, Mg2+ and 1 mm Ca2+), the ultrastructure reverts to a vesicular form as seen in vivo. Of these required components, only Ca2+ affects the ultrastructure. The ultrastructural transformation from the aggregate to the orthodox form is always accompanied by a decrease in the 90 ° light-scattering capacity. When produced by Ca2+, transformation requires energy-dependent Ca2+ uptake if an oxidizable substrate is present. In the absence of substrate, the transformation occurs as an apparent energy-independent effect. Mn2+ can substitute for Ca2+ only in the presence of substrate. In de-energized mitochondria, Mn2+ prevents the effects of Ca2+. The activation of malic enzyme is always preceded by a decrease in light scattering and transformation to the orthodox ultrastructure; however, the presence of the orthodox form is not a sufficient condition since subsequent chelation of free Ca2+ fails to reverse either the decrease in light scattering or ultrastructural transformation but does reverse the enzyme activation. In addition, levels of Mn2+ which effectively depress light-scattering capacity and produce the orthodox form, fail to activate malic enzyme significantly. The data are discussed as they relate to Ca2+-induced damage in mitochondria. 相似文献
12.
The (Na+ + K+)-ATPase obtained from sheep kidney outer medulla is irreversibly denatured by long-chain aliphatic alcohols. The denaturation proceeds by causing a change in the structure of the membrane lipids rather than by binding directly to the protein. The alcohols decrease the ability of the membrane lipid bilayer to orient the spin label 3-(4′,4′-dimethyloxazolidinyl)-5α-androstan-17β-ol. For the low molecular weight alcohols the ability of the membrane to orient the label is completely lost while for alcohols with more than five carbons only partial loss of the orienting ability of the membrane occurs. The alcohol concentrations necessary to denature the enzyme correspond to the concentrations that produce the maximal change in the ability of the membrane to orient the label, and correlate well with the hydrophobicity of the alcohols as measured by their water-octanol partition coefficients. 相似文献
13.
The 31 P NMR chemical shift of β-P of adenosine triphosphate (ATP) undergoes a substantial change (2̃–3 ppm) upon chelation of divalent ions such as Mg2+ or Ca2+. In the presence of nonsaturating amounts of Mg2+ or Ca2+, the lineshape of this resonance depends on the characteristic association and dissociation rates of these metal-ATP complexes. A procedure for computer simulation of this lineshape is outlined. A comparison of computer-simulated lineshapes with the experimental lineshapes obtained at 121 MHz was used to determine the following dissociation rate of Mg2+ and Ca2+ from their ATP complexes at 20°C and pH 8.0: Ca2+, > 3 × 105 s?1 (Hepes buffer); Mg2+, 1200 s-1 (no buffer), 1000 s-1 (Tris buffer) and 2100 s?1 (Hepes buffer). The limits of error are ± 10% in these values. For the Mg2+ complexes, the rates were determined as a function of temperature to obtain activation energies (with a maximum deviation of 10% in the least-squares fit): 8.1 (no buffer and Hepes buffer) and 6.8 (Tris buffer). Lineshapes of the β-Presonance simulated as a function of Mg2+ concentration, using 2100 s?1 for the dissociation rate, are also presented. The computer simulation of lineshapes offers a reliable and straightforward method for the determination of exchange rates of diamagnetic cations from their ATP complexes, under a variety of sample conditions. 相似文献
14.
Abstract Cell envelopes of Pseudomonas fluorescens , cytoplasmic membrane, peptidoglycan and outer membrane were obtained from a fractionation procedure and tested for their metal binding capacity. Isolated envelopes (cytoplasmic membrane, peptidoglycan and outer membrane) were chemically modified and functional carboxyl groups transformed to electropositive amine groups, using carbodiimide ethylenediamine. Transformation of carboxyl groups was evaluated by measuring total amine groups in all fractions (modified or not). Using equilibrium dialysis and Scatchard plots for the data, we have established that isolated unmodified cell envelopes (cytoplasmic membrane, peptidoglycan and outer membrane) possess at least two types of metal binding sites with different association constants ( K a and K 'a ). Introduction of positive charges into the bacterial envelopes resulted in the disappearance of one type of metal binding site which had the highest association constant value for Ni2+ , Cu2+ and Zn2+ . All fractions, modified or not, always presented at least two types of binding sites with different association constants for Cd2+ . 相似文献
15.
16.
In complexes of divalent metals with large exchange rate constant (KH2O) of the coordinated H2O, such as Ca2+ and Cu2+, the cubic structure in the ligand field is usually unstable and conformation changes are easily induced. We observed the molecular motion of phosphatidylserine (PS) in an amphipathic solvent (water / methanol / chloroform) by 1H-NMR and ESR using Ca2+ and / or Cu2+, which has a similar KH2O to that of Ca2+. We found that Ca2+ did not hinder the molecular movements of PS. However, Cu2+ reduced the movements of both headgroups and the double bonds in the fatty acids of PS. By addition of both Ca2+ and Cu2+, phase transition to a soft solid phase in the PS membrane was observed at room temperature. The results indicate that the headgroups are clustered in two-dimensional network with each ligand field displaced from the aqueous phase to the water / oil interface. The structure changes of the polar headgroups after the binding of divalent cations are considered to trigger the phase transition of this acidic phospholipid membrane. 相似文献
17.
18.
In order to identify physiological components that contribute to salinity tolerance, we compared the effects of Na+, Mg2+ and K+ salts (NaCl, Na2SO4, MgCl2, MgSO4, KCl and K2SO4), Ca2+ (CaSO4), mannitol and melibiose on the wild type and the single-gene NaCl-tolerant mutants stl1 and stl2 of Ceratopteris richardii. Compared with gametophytic growth of the wild type, stl2 showed a low level of tolerance that was restricted to Na+ salts and osmotic stress. stl2 exhibited high tolerance to both Na+ and Mg2+ salts, as well as to osmotic stress. In response to short-term exposure (3 d) to NaCl, accumulation of K+ and Na+ was similar in the wild type and stl1. In contrast, stl2 accumulated higher levels of K+ and lower levels of Na+. Ca2+ supplementation (1.0 mol m?3) ameliorated growth inhibition by Na+ and Mg2+ stress in wild type and stll, but not in stl2. In addition, under Na+ stress (175 mol m?3) wild-type, stll and stl2 gametopbytes maintained higher tissue levels of K+ and lower levels of Na+ when supplemented with Ca2+ (1.0 mol m?3). stl2 gametophytes were extremely sensitive to K+ supplementation. Growth of stl2 was greater than or equal to that of the wild type at trace concentrations of K+ but decreased substantially with increasing K+ concentration. Supplementation with K+ from 0 to 1.85 mol m?3 alleviated some of the inhibition by 75 mol m?3 NaCl in the wild type and in stl1. In stl2, growth at 75 mol m?3 NaCl was similar at 0 and 1.85 mol m?3 K+ supplementation. Although K+ supplementation above 1.85 mol m?3 did not alleviate inhibition of growth by Na+ in any genotype, stl2 maintained greater relative tolerance to NaCl at all K+ concentrations tested. 相似文献
19.
采用砂培法,研究了匍茎翦股颖对Cu2+、Zn2+、Cd2+与Pb2+胁迫的生长响应及阈限浓度,结果表明:种子萌发率随着4种重金属浓度的增加而下降。对株高的影响是当重金属浓度小于100mg/L时会促进株高生长,高于100mg/L则产生抑制作用。Cu2+显著抑制根系生长,并随浓度的增加抑制效应愈加显著;在Cu2+浓度为600mg/L时匍茎翦股颖的根长比对照下降了93.75%。Cu2+、Zn2+、Pb2+浓度小于200mg/L时会促进地上生物量的增加,但高于200mg/L时,地上生物量会随着3种重金属的增加而减少。Cu2+、Zn2+浓度小于100mg/L或Cd2+、Pb2+浓度小于200mg/L会增加叶绿素的含量,高浓度会降低叶绿素的含量;Cd2+在浓度为600mg/L时显著降低叶绿素含量,与对照相比,下降了43.55%。匍茎翦股颖生长的综合效应分析表明,匍茎翦股颖对Cu2+胁迫最敏感,具有较低的阈限浓度,而Zn2+胁迫对匍茎翦股颖的生长影响最小,阈限浓度相对较高。 相似文献
20.
Paul Jensén 《Physiologia plantarum》1982,56(3):259-265
Effects of interrupted K+ supply on different parameters of growth and mineral cation nutrition were evaluated for spring wheat (Triticum aestivum L. cv. Svenno). K+ (2.0 mM) was supplied to the plants during different periods in an otherwise complete nutrient solution. Shoot growth was reduced before root growth after interruption in K+ supply. Root structure was greatly affected by the length of the period in K+ -free nutrient solution. Root length was minimal, and root branching was maximal within a narrow range of K+ status of the roots. This range corresponded to cultivation for the last 1 to 3 days, of 11 in total, in K+ -free nutrient solution, or to continuous cultivation in solution containing 0.5 to 2 mM K+. In comparison, both higher and lower internal/external K+ concentrations had inhibitory effects on root branching. However, the differing root morphology probably had no significant influence on the magnitude of Ca2+, Mg2+ and Na+ uptake. Uptake of Ca2+ and especially Mg2+ significantly increased after K+ interruption, while Na+ uptake was constant in the roots and slowly increased in the shoots. The two divalent cations could replace K+ in the cells and maintain electroneutrality down to a certain minimal range of K+ concentrations. This range was significantly higher in the shoot [110 to 140 μmol (g fresh weight)?1] than in the root [20 to 30 μmol (g fresh weight)?1]. It is suggested that the critical K+ values are a measure of the minimal amount of K+ that must be present for physiological activity in the cells. At the critical levels, K+ (86Rb) influx and Ca2+ and Mg2+ concentrations were maximal. Below the critical K+ values, growth was reduced, and Ca2+ and Mg2+ could no longer substitute for K+ for electrostatic balance. In a short-term experiment, the ability of Ca2+ to compete with K+ in maintaining electroneutrality in the cells was studied in wheat seedlings with different K+ status. The results indicate that K+, which was taken up actively and fastest at the external K+ concentration used (2.0 mM), partly determines the size of Ca2+ influx. 相似文献