首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The small GTPase Rac1 is involved in multiple cytosolic functions but recent data point out that Rac1 also translocates to the nucleus to regulate signalling pathways that control gene expression and progression through the cell cycle. Here, we identify the nuclear import receptor karyopherin α2 (KPNA2) as a direct interaction partner of Rac1. The C‐terminal polybasic region of Rac1 contains a nuclear localization signal (NLS), whereas Rac2 and Rac3 lack a functional NLS and do not bind to KPNA2. The presence of the NLS in Rac1 determines the specificity of the interaction and is a prerequisite for the nuclear import. Although this interaction is independent of the Rac1 GDP/GTP loading, the induction of the translocation requires Rac1 activation. The activation of Rac1 via the cytotoxic necrotizing factor 1 and the concurrent inhibition of its proteasomal degradation are crucial for the nuclear accumulation of Rac1. Conversely, the reduction of KPNA2 expression inhibits the nuclear import of Rac1. For the first time, our results show a direct interaction between Rac1 and KPNA2 and argue for a KPNA2‐dependent nuclear import of Rac1. Liquid chromatography tandem mass spectrometry (LC‐MS/MS) analysis revealed that nuclear Rac1 coimmunoprecipitates with numerous proteins. In the nucleus, Rac1 may participate in a variety of so far uncharacterized processes.  相似文献   

2.
To explore the inhibitions of human nuclear receptor hLRH-1 via RNA interference, siRNAs expressing vectors pShLRH-1.1 and pShLRH-1.2, and targeting hLRH-1 were designed and constructed. The recombinants were introduced into hepatocellular carcinoma cells, BEL-7402, mediated by lipofectaminTM. RT-PCR was carried out to examine the inhibition ratio of hLRH-1 expression. The same method was also applied to analyze the expression of farnesyl pyrophosphate synthetase (FPPS) gene. Our results demonstrated that after transient transfection, both pShLRH-1.1 and pShLRH-1.2 could trigger the efficient inhibition of hLRH-1 in cultured cells, BEL-7402. The inhibition ratios were up to 80%. By comparing with non-transfection and vector-transfection control, the expression of FPPS in cells with inhibition of hLRH-1 was up-regulated significantly. Thus, the inhibition of expression of hLRH-1 in cultured cells was achieved via RNA interference in this study. Our results also suggested that hLRH-1 acts as a negative regulator in FPPS expression.  相似文献   

3.
基于载体的RNA干涉介导人核受体hLRH-1的表达抑制实验研究   总被引:2,自引:1,他引:2  
为探讨经RNA干涉法诱导人核受体hLRH-1的表达抑制的可行性,通过设计并构建能表达靶向人核受体hLRH-1基因的siRNAs的干涉载体pShLRH-1.1和pShLRH-1.2,经脂质体介导法转染人肝癌细胞BEL-7402,RT-PCR法鉴定hLRH-1基因的表达抑制效应,同时以同样方法分析焦磷酸法呢酯合成酶基因的表达情况。瞬时转染后分析结果表明,所构建的干涉载体pShLRH-1.1和pShLRH-1.2均能在细胞水平有效诱导hLRH-1基因的表达抑制,抑制率高达约80%;与未转染和空载体转染对照组相比,hLRH-1基因表达受抑的细胞中焦磷酸法呢酯合成酶基因的表达呈明显上调,提示hLRH-1可能在焦磷酸法呢酯合成酶基因的表达中起负调作用。  相似文献   

4.
During systemic RNA interference (RNAi) in Caenorhabditis elegans, RNA spreads across different cells and tissues in a process that requires the systemic RNA interference deficient-1 (sid-1) gene, which encodes an integral membrane protein. SID-1 acts cell-autonomously and is required for cellular import of interfering RNAs. Heterologous expression of SID-1 in Drosophila Schneider 2 cells enables passive uptake of dsRNA and subsequent soaking RNAi. Previous studies have suggested that SID-1 may serve as an RNA channel, but its precise molecular role remains unclear. To test the hypothesis that SID-1 mediates a direct biochemical recognition of RNA molecule and subsequent permeation, we expressed the extracellular domain (ECD) of SID-1 and purified it to near homogeneity. Recombinant purified SID-1 ECD selectively binds dsRNA but not dsDNA in a length-dependent and sequence-independent manner. Genetic missense mutations in SID-1 ECD causal for deficient systemic RNAi resulted in significant reduction in its affinity for dsRNA. Furthermore, full-length proteins with these mutations decrease SID-1-mediated RNA transport efficiency, providing evidence that dsRNA binding to SID-1 ECD is related to RNA transport. To examine the functional similarity of mammalian homologs of SID-1 (SIDT1 and SIDT2), we expressed and purified mouse SIDT1 and SIDT2 ECDs. We show that they bind long dsRNA in vitro, supportive of dsRNA recognition. In summary, our study illustrates the functional importance of SID-1 ECD as a dsRNA binding domain that contributes to RNA transport.  相似文献   

5.
6.
West Nile virus (WNV) is a single‐stranded, positive sense RNA virus of the family Flaviviridae and is a significant pathogen of global medical importance. Flavivirus replication is known to be exclusively cytoplasmic, but we show here for the first time that access to the nucleus of the WNV strain Kunjin (WNVKUN) RNA‐dependent RNA polymerase (protein NS5) is central to WNVKUN virus production. We show that treatment of cells with the specific nuclear export inhibitor leptomycin B (LMB) results in increased NS5 nuclear accumulation in WNVKUN‐infected cells and NS5‐transfected cells, indicative of nucleocytoplasmic shuttling under normal conditions. We used site‐directed mutagenesis to identify the nuclear localisation sequence (NLS) responsible for WNVKUN NS5 nuclear targeting, observing that mutation of this NLS resulted in exclusively cytoplasmic accumulation of NS5 even in the presence of leptomycin B. Introduction of NS5 NLS mutations into FLSDX, an infectious clone of WNVKUN, resulted in lethality, suggesting that the ability of NS5 to traffic into the nucleus in integral to WNVKUN replication. This study thus shows for the first time that NLS‐dependent trafficking into the nucleus during infection of WNVKUN NS5 is critical for viral replication. Excitingly, specific inhibitors of NS5 nuclear import reduce WNVKUN virus production, proving the principle that inhibition of WNVKUN NS5 nuclear import is a viable therapeutic avenue for antiviral drug development in the future.  相似文献   

7.
Nuclear poly(A)‐binding proteins (PABPs) are evolutionarily conserved proteins that play key roles in eukaryotic gene expression. In the fission yeast Schizosaccharomyces pombe, the major nuclear PABP, Pab2, functions in the maturation of small nucleolar RNAs as well as in nuclear RNA decay. Despite knowledge about its nuclear functions, nothing is known about how Pab2 is imported into the nucleus. Here, we show that Pab2 contains a proline‐tyrosine nuclear localization signal (PY‐NLS) that is necessary and sufficient for its nuclear localization and function. Consistent with the role of karyopherin β2 (Kapβ2)‐type receptors in the import of PY‐NLS cargoes, we show that the fission yeast ortholog of human Kapβ2, Kap104, binds to recombinant Pab2 and is required for Pab2 nuclear localization. The absence of arginine methylation in a basic region N‐terminal to the PY‐core motif of Pab2 did not affect its nuclear localization. However, in the context of a sub‐optimal PY‐NLS, we found that Pab2 was more efficiently targeted to the nucleus in the absence of arginine methylation, suggesting that this modification can affect the import kinetics of a PY‐NLS cargo. Although a sequence resembling a PY‐NLS motif can be found in the human Pab2 ortholog, PABPN1, our results indicate that neither a functional PY‐NLS nor Kapβ2 activity are required to promote entry of PABPN1 into the nucleus of human cells. Our findings describe the mechanism by which Pab2 is imported into the nucleus, providing the first example of a PY‐NLS import system in fission yeast. In addition, this study suggests the existence of alternative or redundant nuclear import pathways for human PABPN1.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Excessive soil salinity diminishes crop yield and quality. In a previous study in tomato, we identified two closely linked genes encoding HKT1‐like transporters, HKT1;1 and HKT1;2, as candidate genes for a major quantitative trait locus (kc7.1) related to shoot Na+/K+ homeostasis – a major salt tolerance trait – using two populations of recombinant inbred lines (RILs). Here, we determine the effectiveness of these genes in conferring improved salt tolerance by using two near‐isogenic lines (NILs) that were homozygous for either the Solanum lycopersicum allele (NIL17) or for the Solanum cheesmaniae allele (NIL14) at both HKT1 loci; transgenic lines derived from these NILs in which each HKT1;1 and HKT1;2 had been silenced by stable transformation were also used. Silencing of ScHKT1;2 and SlHKT1;2 altered the leaf Na+/K+ ratio and caused hypersensitivity to salinity in plants cultivated under transpiring conditions, whereas silencing SlHKT1;1/ScHKT1;1 had a lesser effect. These results indicate that HKT1;2 has the more significant role in Na+ homeostasis and salinity tolerance in tomato.  相似文献   

15.
目的:探讨抑制Mcl-1基因表达对淋巴瘤Raji细胞增殖和凋亡的影响及机制。方法:NC-siRNA、Mcl-1-siRNA转染Raji细胞,以不作任何处理的细胞作为空白对照组,48h后Western blot检测各组细胞中Mcl-1的蛋白表达;CCK8实验和流式细胞仪分别检测细胞的增殖和凋亡情况;Western blot检测Cleaved caspase3、Notch1、Hes1蛋白表达。结果:转染Mcl-1-siRNA后Mcl-1的蛋白表达显著降低;与对照组及NC-siRNA组比较,Mcl-1-siRNA组细胞存活率显著降低,细胞凋亡率显著升高,Cleaved caspase3蛋白显著上调表达,Notch1和Hes1蛋白显著下调表达。结论:RNA干扰抑制Mcl-1基因表达可显著降低Raji细胞增殖及诱导细胞凋亡,其机制与抑制Notch1信号通路有关。  相似文献   

16.
Nuclear localization signals (NLSs) contain one or two clusters of basic residues and are recognized by the import receptor importin‐α. There are two NLS‐binding sites (major and minor) on importin‐α and the major NLS‐binding site is considered to be the primary binding site. Here, we used crystallographic and biochemical methods to investigate the binding between importin‐α and predicted ‘minor site‐specific’ NLSs: four peptide library‐derived peptides, and the NLS from mouse RNA helicase II/Guα. The crystal structures reveal that these atypical NLSs indeed preferentially bind to the minor NLS‐binding site. Unlike previously characterized NLSs, the C‐terminal residues of these NLSs form an α‐helical turn, stabilized by internal H‐bond and cation‐π interactions between the aromatic residues from the NLSs and the positively charged residues from importin‐α. This helical turn sterically hinders binding at the major NLS‐binding site, explaining the minor‐site preference. Our data suggest the sequence RXXKR[K/X][F/Y/W]XXAF as the optimal minor NLS‐binding site‐specific motif, which may help identify novel proteins with atypical NLSs .  相似文献   

17.
18.
19.
Proteins belonging to the enhancer of RNA interference‐1 subfamily of 3′–5′ exoribonucleases participate in divergent RNA pathways. They degrade small interfering RNAs (siRNAs), thus suppressing RNA interference, and are involved in the maturation of ribosomal RNAs and the degradation of histone messenger RNAs (mRNAs). Here, we report evidence for the role of the plant homologue of these proteins, which we termed ENHANCED RNA INTERFERENCE‐1‐LIKE‐1 (ERIL1), in chloroplast function. In vitro assays with AtERIL1 proved that the conserved 3′–5′ exonuclease activity is shared among all homologues studied. Confocal microscopy revealed that ERL1, a nucleus‐encoded protein, is targeted to the chloroplast. To gain insight into its role in plants, we used Nicotiana benthamiana and Arabidopsis thaliana plants that constitutively overexpress or suppress ERIL1. In the mutant lines of both species we observed malfunctions in photosynthetic ability. Molecular analysis showed that ERIL1 participates in the processing of chloroplastic ribosomal RNAs (rRNAs). Lastly, our results suggest that the missexpression of ERIL1 may have an indirect effect on the microRNA (miRNA) pathway. Altogether our data point to an additional piece of the puzzle in the complex RNA metabolism of chloroplasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号