首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract. Vascular epiphytes were studied in forests at altitudes from 720 to 2370 m on the Atlantic slope of central Veracruz, Mexico. The biomass of all trees of each species > 10 cm diameter at breast height within plots between 625 and 1500 m2 was estimated. The number of species per plot ranged between 22 and 53, and biomass between 9 and 249 g dry weight/m2. The highest values, both of species and biomass, were found at an intermediate altitude (1430 m). Habitat diversity may contribute to epiphyte diversity in humid forests, but the importance of this effect could not be distinguished from the influence of climate. A remarkably high number of bromeliads and orchids grew in relatively dry forests at low altitudes. In wet upper montane forests, bromeliads were replaced by ferns, while orchids were numerous at all sites, except for a pine forest. The number of epiphytic species and their biomass on a tree of a given site were closely related to tree size. According to Canonical Correspondence Analysis, the factor determining the composition of the epiphytic vegetation of a tree was altitude and to some extent tree size, whereas tree species had practically no influence. The only trees which had an evidently negative effect on epiphytes were pines, which were particularly hostile to orchids and to a lesser degree to ferns, and Bursera simaruba, which generally had few epiphytes due to its smooth and defoliating bark.  相似文献   

2.
A method is described for estimating the rate of accumulation of epiphyte biomass on leaves of the seagrass, Heterozostera tasmanica (Martens ex Aschers.) den Hartog and for estimating the effect of epiphyte biomass on photosynthesis of the seagrass. Epiphyte biomass was determined by comparison of the weight per unit area of epiphyte-covered and epiphyte-free leaf blades. Epiphyte weight increased as age of the seagrass leaves increased. Linear regression on epiphyte biomass vs. leaf age estimated the rate of biomass accumulation. Rates varied from 5.7 to 104 μg epiphyte dry weight per cm2 of leaf surface per day at three sites in Western Port and Port Phillip Bay, Victoria. Rates of accumulation of epiphyte biomass were generally higher during December through March (summer) than in May (autumn), August (winter) or October (Spring). Light attenuation by epiphytes increase linearly with biomass. The rate of biomass accumulation of epiphytes was compared with leaf growth rate, ambient photon flux density in H. tasmanica beds and the photosynthesis—photon flux density curve of H. tasmanica. This comparison demonstrated that epiphyte biomass can accumulate fast enough to shade H. tasmanica leaves and significantly reduce the time (to less than one half of the leaf life span) in which positive net photosynthesis of the leaf blade is possible.  相似文献   

3.
Vascular epiphytes are a conspicuous and highly diverse group in tropical wet forests; yet, we understand little about their mineral nutrition across sites. In this study, we examined the mineral nutrition of three dominant vascular epiphyte groups: ferns, orchids, and bromeliads, and their host trees from samples collected along a 2600 m elevational gradient in the tropical wet forests of Costa Rica. We predicted that the mineral nutrition of ferns, orchids, and bromeliads would differ because of their putative differences in nutrient acquisition mechanisms and nutrient sources—atmospherically dependent, foliar feeding bromeliads would have lower nitrogen (N) and phosphorous (P) concentrations and more depleted δ15N values than those in canopy soil-rooted ferns because canopy soil is higher in available N, and more enriched in δ15N than the atmospheric sources of precipitation and throughfall. We also predicted that epiphyte foliar chemistry would mirror that of host trees because of the likely contribution of host trees to the nutrient cycle of epiphytes via foliar leaching and litter contributions to canopy soil. In the same vein, we predicted that epiphyte and host tree foliar chemistry would vary with elevation reflecting ecosystem-level nutrients—soil N availability increases and P availability decreases with increasing elevation. Our results confirmed that canopy soil-rooted epiphytes had higher N concentrations than atmospheric epiphytes; however, our predictions were not confirmed with respect to P which did not vary among groups indicating fixed P availability within sites. In addition, foliar δ15N values did not match our prediction in that canopy soil-rooted as well as atmospheric epiphytes had variable signatures. Discriminant function analysis (DFA) on foliar measurements determined that ferns, orchids, and bromeliads are statistically distinct in mineral nutrition. We also found that P concentrations of ferns and orchids, but not bromeliads, were significantly correlated with those of host trees indicating a possible link in their mineral nutrition’s via canopy soil. Interestingly, we did not find any patterns of epiphyte foliar chemistry with elevation. These data indicate that the mineral nutrition of the studied epiphyte groups are distinct and highly variable within sites and the diverse uptake mechanisms of these epiphyte groups enhance resource partitioning which may be a mechanism for species richness maintenance in tropical forest canopies.  相似文献   

4.
Herbaceous vascular epiphytes were screened in a total sample of 13 445 trees (in 153 species) and 348 lianas (in 30 species) 30 cm girth at breast height in a 30 ha plot of tropical evergreen forest at Varagalaiar, Indian Western Ghats. Of these, 4.3% of trees and 3.7% of lianas were infested with epiphytes. Epiphyte diversity totaled 26 species in 19 genera and 10 families. Sixteen species were angiosperms in three families (Orchidaceae 54%; Piperaceae and Araceae 8%) and 10 species (38%) were pteridophytes in seven families. The orchid, Pholidota pallida was most abundant and occurred on 178 (29.6%) stems. Asplenium nidus occurred on the maximum of 62 host species. The species richness estimators employed for species accumulation curves after 100 times randomization of sample order have stabilized the curve at 18th and 19th hectares respectively for Incidence-based Coverage Estimator and Chao2. A total of 588 trees and 13 liana stems lodged epiphytes, 74% of which were evergreen species and 26% deciduous. Epiphyte density was greater (56%) in deciduous species (Bischofia javanica 30% and Vitex altissima 8%). A significant positive relationship was found between trunk size and epiphyte association. Larger epiphyte species occurred mostly on middle and larger stems and smaller epiphyte species occurred on smaller stems. The majority of epiphytes (92%) were of autochorous dispersal type, bearing capsule or dust diaspores, while the remaining species with berries and nutlets are dispersed by small vertebrates.  相似文献   

5.
The diversity of epiphytes, their temporal abundance variation and the anatomical structure of host–epiphyte interfaces were studied in the agarophyte Gracilaria gracilis from a natural bed in Bahía Bustamante, Chubut Province, Argentina. Twenty-nine algal species were recorded as epiphytes during 2 years of monthly sampling (March 2006–February 2008). Total epiphyte density ranged between 0.037 ind. cm?2 (November 2006) and 39.37 ind. cm?2 (April 2007), with higher density values throughout the second sampling year. Ceramiales species were the most abundant epiphytes. The density of Ceramium rubrum ranged from 0.09 ind. cm?2 (52 % of the total amount) in September 2006 to 17.4 ind. cm?2 (44.18 % of the total amount) in April 2007. Epiphyte infection was more dependent on spore recruitment and sporeling development, especially on thalli derived from fragmentation, than on seasonal environmental variations. The different infections were analysed, taking into account the epiphytic attachment strength and invasiveness and the degree of damage inflicted on the host. Calothrix confervicola was one of the most abundant species. This epiphyte, weakly attached to the host surface, generated no host tissue damage. In contrast, C. rubrum, Polysiphonia abscissa and other Ceramiales were the species that caused more damage to the host because their rhizoids penetrated the cortical portion of the host thallus, sometimes reaching the medullary tissue. Some generalisations and characterisations of the different epiphyte groups in relation to their consequences to Gracilaria spp. are presented.  相似文献   

6.
Aim Non‐vascular epiphytes have been largely ignored in studies examining the biotic and abiotic determinants of spatial variation in epiphyte diversity. Our aim was to test whether the spatial patterning of species richness, biomass and community composition across geographic regions, among trees within regions, and among branches within trees is consistent between the vascular and non‐vascular components of the temperate rain forest flora. Location Coastal lowland podocarp‐broadleaved forests on the west coast of the South Island of New Zealand. Methods We collected single samples (30 × 25 cm) from 96 epiphyte assemblages located on the inner branches of 40 northern rata (Metrosideros robusta) trees. For each sample, branch characteristics such as branch height, branch diameter, branch angle, branch aspect, and minimum and maximum epiphyte mat depth were recorded. The biomass for each individual epiphyte species was determined. Results Northern rata was host to a total of 157 species, comprising 32 vascular and 125 non‐vascular species, with liverworts representing 41% of all species. Within epiphyte mats, the average total organic biomass of 3.5 kg m?2 of branch surface area consisted largely of non‐living biomass and roots. Vascular and non‐vascular epiphytes showed strikingly different spatial patterns in species richness, biomass and composition between sites, among trees within sites, and among branches within trees, which could not be explained by the branch structural characteristics we measured. The two plant groups had no significant association in community composition (r = 0.04, P = 0.08). However, the species richness of vascular plant seedlings was strongly linked to the presence/absence of lichens. Main conclusions Non‐vascular plants contributed substantially to the high species richness and biomass recorded in this study, which was comparable to that of some tropical rain forests. High variability in community composition among epiphyte mats, and very low correlation with any of the environmental factors measured possibly indicate high levels of stochasticity in seed or spore colonization, establishment success or community assembly among branches in these canopy communities. Although we found some evidence that vascular plant seedling establishment was linked to the presence of lichens and the biomass of non‐living components in the epiphyte mats, there was no correlation in the spatial patterning or determinants of species richness between non‐vascular and vascular plants. Consequently, variation in total epiphyte biodiversity could not be predicted from the measurement of vascular plant diversity alone, which highlights the crucial importance of sampling non‐vascular plants when undertaking epiphyte community studies.  相似文献   

7.
There is evidence for the existence of varying degrees of host preference in vascular epiphytes; certain tree species can be positively, neutrally, or negatively associated with epiphytes. The objective of this study was to evaluate whether tree species of the cloud forest differ in their suitability as a substrate for epiphytic bromeliads. To evaluate the association between epiphytic bromeliad cover and host tree species, we sampled 62 plots (each of 200 m2) in four cloud forest fragments in Veracruz, Mexico. For all trees ≥10 cm in diameter at breast height (DBH), we recorded species name, DBH, and percentage cover of bromeliads in categories of tree coverage. In total, 587 trees belonging to 52 species were recorded. All of the 10 tree species used to assess differences in epiphyte cover (each with a minimum of nine individuals) supported bromeliads, but mean bromeliad cover differed significantly among the tree species. The tree species that concentrated the highest bromeliad cover were Quercus sartorii (29.86%) and Liquidambar styraciflua (21.72%). Our results indicate that, while none of the tree species analyzed was a limiting host for epiphytic bromeliads in general, varying levels of bromeliad cover occur depending on the host species in tropical montane cloud forest fragments suggesting that certain tree species are better hosts than others. The implications for conservation efforts of differential tree species suitability as epiphyte hosts are discussed.  相似文献   

8.
Abstract Plants that rely on other plants for support (i.e. epiphytes and vines) are common in many forest ecosystems. However, they are poorly understood relative to terrestrial plants, especially in the Southern Hemisphere. To help bridge this gap, we evaluated the diversity and distribution of vascular epiphytes and vines on seven common tree species in a conifer‐broadleaf forest on New Zealand's North Island. Ground‐based surveys of 274 host trees were used to test whether epiphyte and vine diversity increased with tree diameter, and whether diversity‐diameter relationships differed among host tree species. Occurrence patterns of individual epiphyte and vine species were also assessed. We first evaluated the accuracy of ground‐based inventories by comparing surveys of trees made from the ground to those made from a canopy walkway. On average, 1 in 10 species of epiphytes and vines were unseen from the ground. However, sampling accuracy did not differ among the three host tree species growing along the walkway, suggesting unbiased comparisons could be made between hosts. Results from ground‐based surveys showed that species diversity of epiphytes and vines increased with host tree diameter. However, epiphytes showed stronger diversity‐diameter relationships than vines. Epiphyte diversity increased markedly in four host species and less strongly in the remaining three host species. Conversely, vines showed weak diversity‐diameter relationships in all host species. Occurrence patterns of individual species helped to explain diversity‐diameter relationships. All common epiphyte species occurred more frequently on large trees, regardless of host species, but occurrence patterns in most vine species were unrelated to tree size. Rather, the vines often showed strong host ‘preferences’. Overall results illustrate a rich diversity of distributional patterns in New Zealand's epiphytes and vines, and suggest that a similarly diverse set of ecological and evolutionary processes are responsible for them.  相似文献   

9.
Cladophora glomerata is a widely distributed filamentous freshwater alga that hosts a complex microalgal epiphyte assemblage. We manipulated nutrients and epiphyte abundances to access their effects on epiphyte biomass, epiphyte species composition, and C. glomerata growth. C. glomerata did not grow in response to these manipulations. Similarly, nutrient and epiphyte removal treatments did not alter epiphyte biovolume. Epiphyte species composition, however, changed dramatically with nutrient enrichment. The epiphyte assemblage on unenriched C. glomerata was dominated by Epithemia sorex and Epithemia adnata, whereas the assemblage on enriched C. glomerata was dominated by Achnanthidium minutissimum, Nitzschia palea and Synedra spp. These results indicate that nutrients strongly structure epiphyte species composition. Interactions between C. glomerata and its epiphytes were not affected by epiphyte species composition in our experiment but may be when C. glomerata is actively growing.  相似文献   

10.
Forestry managers have been searching for ways to reduce the impacts of logging on Amazonian biodiversity, but some basic factors are still not considered in native forestry operations, among them the diversity of epiphytes associated with the logged trees. Our goals in this study were to determine the floristic composition, quantify the species richness, and characterize the species diversity of the vascular epiphytic community present in three timber tree species in Acre State, Brazil. We collected and identified all epiphytes in 30 randomly selected trees ≥35 cm DBH of each of three important timber species, Tabebuia serratifolia, Manilkara inundata and Couratari macrosperma. We also documented the epiphyte diversity in 120 randomly selected trees ≥35 cm DBH of 56 other species to determine whether the three timber species have different epiphyte diversity than the tree community at large. The epiphyte samples in the three timber species showed 77 species, 13 of which were new records for the flora of Acre state. The epiphyte community in the randomly selected trees presented a total of 56 species. The timber species phorophytes hosted on average three times more epiphyte species per tree than the other 120 randomly selected trees. These results show that a substantial portion of local floristic richness can be lost during logging activity due if not properly managed by rescuing epiphytes after felling the trees. Although these epiphytes could contribute positively to forestry sustainability due to their ornamental value, increasing the economic yield per hectare, there are no local initiatives for economic use of epiphytes.  相似文献   

11.
Shade coffee plantations can be important refuges for epiphytes, but are not suitable for all species. To test if the performance of early life stages, often the most sensitive phase, is responsible for the species’ ability to colonize coffee plantations, we compared growth and mortality rates of three epiphytic bromeliad species that differ in their ability to colonize secondary arboreal vegetation by transplanting juveniles to trees in forests, and shade trees in old and young coffee plantations in Central Veracruz, Mexico. Growth rates of Tillandsia viridiflora, generally restricted to forests, and Tillandsia juncea, an early colonizer, were related to the pattern of the species occurrence among habitats with growth rates of T. viridiflora being generally higher in forests and growth of T. juncea higher in coffee plantations. Performance of the third species, Tillandsia heterophylla, which is intermediate in habitat preference, was not clearly related to habitat. No difference in growth rates was found between plants transplanted in wet or dry season. In general, mortality in transplanted bromeliads was relatively low (mostly < 5% per month). In coffee plantations herbivory had a severe effect during part of the wet season, when mortality in young coffee plantations reached between 15 and 24 percent per month. Given the substantial contribution of herbivory to the mortality of juvenile plants and the significant differences between habitats, herbivory may be co‐limiting the colonization of young coffee plantations by some epiphytic bromeliads.  相似文献   

12.
A first study on the biodiversity of non-vascular epiphytes in cacao (Theobroma cacao L.) plantations in western Ecuador yielded 112 species (51 bryophytes, 61 lichens). Epiphyte assemblages of cacao plantations resembled those of tropical rain forests but species richness was usually lower and individual species were found at lower heights on the trunks. The vast majority of the species are widespread neotropical or pantropical species; one species, Spruceanthus theobromae (Spruce) Gradst., is endemic to cacao plantations of western Ecuador. Differences in management intensity, by manual removal of epiphytes from tree trunks (limpia), had a significant impact on epiphyte species diversity. Total species richness was significantly reduced in plantations with high management intensity, due mainly to the decreased diversity of lichens and liverworts; moss diversity was not affected by management regime. Total percentage cover of bryophytes was highest in plantations with low management intensity, while lichen cover was greatest in plantations with high management intensity. Crustose lichens and smooth mats growing closely appressed to the substrate were little affected by the limpia and their growth may have been promoted when larger-sized species were removed, by reducing competition. Cacao plantations with low and moderate management intensity serve as an important substitute habitat for ecological specialists (sun epiphytes, shade epiphytes) of the rain forest and are of considerable significance for their conservation.  相似文献   

13.
Question: What are the qualitative and quantitative long‐term changes in the vascular epiphyte assemblage on a particular host tree species? Location: Lowland rain forest of the San Lorenzo Crane Plot, Republic of Panama. Methods: We followed the fate of the vascular epiphyte assemblage on 99 individuals of the palm Socratea exorrhiza by three censuses over the course of five years. Results: The composition of the epiphyte assemblage changed little during the course of the study. While the similarity of epiphyte vegetation decreased on individual palms through time, the similarity analysed over all palms increased. Even well established epiphyte individuals experienced high mortality with only 46% of the originally mapped individuals surviving the following five years. We found a positive correlation between host tree size and epiphyte richness and detected higher colonization rates of epiphytes per surface area on larger trees. Conclusions Epiphyte assemblages on individual S. exorrhiza trees were highly dynamic while the overall composition of the epiphyte vegetation on the host tree species in the study plot was stable. We suggest that higher recruitment rates, due to localized seed dispersal by already established epiphytes, on larger palms promote the colonization of epiphytes on larger palms. Given the known growth rates and mortality rates of the host tree species, the maximum time available for colonization and reproduction of epiphytes on a given tree is estimated to be ca. 60 years. This time frame will probably be too short to allow assemblages to be ever saturated.  相似文献   

14.
To illustrate the ecological factors and process leading to the observed diversity patterns of vascular epiphytes, we examined the effect and importance of host tree traits on epiphyte richness and spatial aggregation of epiphytes. The study was conducted in warm-temperate forest in Japan. The recorded host traits were diameter, height, species, habitat topography, and growth rate, and we analyzed the effects and importance of these traits on three species groups: total epiphytic species, epiphytic orchid species, and epiphytic pteridophyte species. Diameter and species of host trees had the greatest influence on epiphytes and their magnitudes were roughly similar in all species groups. Growth rate and topography were less important than host size and species. Growth rate had a negative effect on all three groups, and topography was important for pteridophytes. Epiphyte richness did not exhibit clear spatial aggregation. Our results suggest that size, stability, and quality of the host are equally important in determining epiphyte colonization.  相似文献   

15.
Vascular epiphytes contribute to the structural, compositional, and functional complexity of tropical montane cloud forests because of their high biomass, diversity, and ability to intercept and retain water and nutrients from atmospheric sources. However, human-caused climate change and forest-to-pasture conversion are rapidly altering tropical montane cloud forests. Epiphyte communities may be particularly vulnerable to these changes because of their dependence on direct atmospheric inputs and host trees for survival. In Monteverde, Costa Rica, we measured vascular epiphyte biomass, community composition, and richness at two spatial scales: (1) along an elevation gradient spanning premontane forests to montane cloud forests and (2) within trees along branches from inner to outer crown positions. We also compared epiphyte biomass and distribution at these scales between two different land-cover types, comparing trees in closed canopy forest to isolated trees in pastures. An ordination of epiphyte communities at the level of trees grouped forested sites above versus below the cloud base, and separated forest versus pasture trees. Species richness increased with increasing elevation and decreased from inner to outer branch positions. Although richness did not differ between land-cover types, there were significant differences in community composition. The variability in epiphyte community organization between the two spatial scales and between land-cover types underscores the potential complexity of epiphyte responses to climate and land-cover changes.  相似文献   

16.
Vascular epiphytes are an understudied and particularly important component of tropical forest ecosystems. However, owing to the difficulties of access, little is known about the properties of epiphyte-host tree communities and the factors structuring them, especially in Asia. We investigated factors structuring the vascular epiphyte-host community and its network properties in a tropical montane forest in Xishuangbanna, SW China. Vascular epiphytes were surveyed in six plots located in mature forests. Six host and four micro-site environmental factors were investigated. Epiphyte diversity was strongly correlated with host size (DBH, diameter at breast height), while within hosts the highest epiphyte diversity was in the middle canopy and epiphyte diversity was significantly higher in sites with canopy soil or a moss mat than on bare bark. DBH, elevation and stem height explained 22% of the total variation in the epiphyte species assemblage among hosts, and DBH was the most important factor which alone explained 6% of the variation. Within hosts, 51% of the variation in epiphyte assemblage composition was explained by canopy position and substrate, and the most important single factor was substrate which accounted for 16% of the variation. Analysis of network properties indicated that the epiphyte host community was highly nested, with a low level of epiphyte specialization, and an almost even interaction strength between epiphytes and host trees. Together, these results indicate that large trees harbor a substantial proportion of the epiphyte community in this forest.  相似文献   

17.
In situ nitrogen uptake by leaves and epiphytes was studied in a Mediterranean seagrass (Posidonia oceanica) meadow impacted from a fish farm and a pristine meadow, using 15NH4 and 15NO3 as tracers. In the impacted meadow both leaves and epiphytes yielded higher N concentrations and showed higher specific N uptake, suggesting a linkage between N uptake and its accumulation. Epiphytes took up N faster than leaves in relation to their corresponding biomass, but when assessed per unit area, N uptake was higher in leaves. Leaf N uptake was negatively correlated with epiphyte N uptake. With increasing epiphyte load on leaves, N leaf uptake decreased while N epiphyte uptake increased, indicating that epiphyte overgrowth hinders N uptake by P. oceanica leaves. Epiphyte contribution to total N uptake increased, while that of leaves decreased at the impacted meadow. However, 2-3 times less N was transferred daily from the water column to the benthic compartment, through seagrass and epiphyte uptake on total, at the impacted meadow. Therefore, it is probably still the loss of the key species - the seagrass - which plays the most important role in N cycling in seagrass ecosystems.  相似文献   

18.
E. Bornemisza 《Plant and Soil》1982,67(1-3):241-246
Nitrogen inputs to the coffee ecosystem are dominated by additions of fertilizer-N (100–300 kg N ha?1 yr?1). Small nitrogen inputs from rains and variable from inputs fixation by the leguminous shade trees can amount to 1–40 kg N ha?1 yr?1. Organic matter mineralization can be an important nitrogen source also. Nitrogen losses from the system include removal of N in the harvest (15–90 kg N ha?1 yr?1), the removal of coffee and shade tree prunings for firewood, losses from erosion, leaching losses and gaseous losses. Unfortunately, very little information exists for leaching and gaseous losses and for the factors that regulate these processes. The overall nitrogen cycle in shaded coffee plantings includes three interrelated subsystems. These are the coffee, shade and weeds subcycles.  相似文献   

19.
《Aquatic Botany》1987,27(2):159-167
Epiphyte biomass on Posidonia australis Hook f. and artificial seagrass leaves was analysed in relation to distance from leaf tip at different time periods following the autumnal shedding. The distribution pattern indicated no significant difference in the exponential nature of biomass increase.Similarities between epiphyte biomass distribution on real and artificial leaves is consistent with the hypothesis that biomass distribution on real leaves is not influenced significantly by metabolic interactions between host plant and epiphytes. Although a time component is involved in epiphyte biomass accumulation, the major factor in determining epiphyte biomass distribution is the relative position along the leaf.  相似文献   

20.
The vertical distribution of the density and richness of vascular and nonvascular epiphytes on some mature trees was studied in two 1 km2 plots in Miombo Woodland in Zambia (n = 20) and the Democratic Republic of Congo (D.R.C.) (n = 20). The aim was to assess the diversity of arboreal epiphytes and to investigate general distribution patterns of epiphytes along some individual mature phorophytes. Species richness was low on both sampling sites (24 in D.R.C. and nineteen in Zambia) with Orchidaceae being the richest family. Epiphyte density for both sampling plots was high with 92% of the available surface area being occupied. Lichens showed the highest density of 67.2% followed by moss 18.4%, orchids 7.9% and ferns 6.5%. Species richness and density showed a clear zonation within the canopy. Richness and density peaked in the upper and mid‐canopy and was positively correlated with available surface area, branch aspect and to some extent bark pH, but not with bark texture. This study demonstrated that tree canopies can harbour a diversity of epiphyte species, and the findings constitute baseline information in such environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号