首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tomohiko Kuwabara  Norio Murata 《BBA》1982,680(2):210-215
The 33-kDa protein was purified in a high yield from thylakoid membranes of spinach chloroplasts. The extinction coefficient and A1%1cm value at 276 nm of the protein were 22000 M?1·cm?1 and 6.8, respectively. The 33-kDa protein and a polypeptide appearing at 32 kDa in the SDS-polyacrylamide gel electrophoresis of thylakoid membranes were compared by peptide mapping after limited proteolysis. This indicates that the 32-kDa band is entirely due to the 33-kDa protein. The molar ratio of chlorophyll to the 33-kDa protein in the chloroplasts was estimated to be 300. This suggests that one photosynthetic unit possesses one or two molecules of the 33-kDa protein.  相似文献   

2.
Removal of coupling factor protein (CF1) from spinach thylakoid membranes results in an enhancement of proton permeability but has no effect on chloride or potassium permeability. Anion permeability was measured by the rate of thylakoid packed volume changes. Potassium permeability was monitored by turbidity changes, packed thylakoid volume changes and ion flux studies using 86Rb+ as a tracer. 45Ca2+ was used to measure divalent cation fluxes. CF1-depleted chloroplasts had an unaltered rate of Ca2+ uptake, but the rate of Ca2+ efflux appeared to be increased. Calcium efflux rates could also be increased by the addition of a proton specific uncoupler, FCCP.  相似文献   

3.
Over‐reduction of the photosynthetic electron transport (PET) chain should be avoided, because the accumulation of reducing electron carriers produces reactive oxygen species (ROS) within photosystem I (PSI) in thylakoid membranes and causes oxidative damage to chloroplasts. To prevent production of ROS in thylakoid membranes the H+ gradient (ΔpH) needs to be built up across the thylakoid membranes to suppress the over‐reduction state of the PET chain. In this study, we aimed to identify the critical component that stimulates ΔpH formation under illumination in higher plants. To do this, we screened ethyl methane sulfonate (EMS)‐treated Arabidopsis thaliana, in which the formation of ΔpH is impaired and the PET chain caused over‐reduction under illumination. Subsequently, we isolated an allelic mutant that carries a missense mutation in the γ‐subunit of chloroplastic CF0CF1‐ATP synthase, named hope2. We found that hope2 suppressed the formation of ΔpH during photosynthesis because of the high H+ efflux activity from the lumenal to stromal side of the thylakoid membranes via CF0CF1‐ATP synthase. Furthermore, PSI was in a more reduced state in hope2 than in wild‐type (WT) plants, and hope2 was more vulnerable to PSI photoinhibition than WT under illumination. These results suggested that chloroplastic CF0CF1‐ATP synthase adjusts the redox state of the PET chain, especially for PSI, by modulating H+ efflux activity across the thylakoid membranes. Our findings suggest the importance of the buildup of ΔpH depending on CF0CF1‐ATP synthase to adjust the redox state of the reaction center chlorophyll P700 in PSI and to suppress the production of ROS in PSI during photosynthesis.  相似文献   

4.
《BBA》1987,891(1):28-39
ATPase activity of CF0CF1 from spinach chloroplasts is specifically stimulated by chloroplast lipids (Pick, U., Gounaris, K., Admon, A. and Barber, J. (1984) Biochim. Biophys. Acta 765, 12–20). The association of CF0-CF1 with isolated lipids and their mixtures has been examined by analyzing the stimulation of ATPase and ATP-Pi exchange activities, by binding studies and by measurement of proton conductance of reconstituted proteoliposomes. Monogalactosyldiacylglycerol is the only chloroplast lipid which by itself activates ATP hydrolysis. A mild saturation of the fatty acids of the lipid partially inhibits the activation. CF0-CF1 has a higher binding capacity for monogalactosyldiacylglycerol (1.5 mg/mg protein) than for other thylakoid glycolipids. However, ATPase activation is not correlated with the amount of bound lipid but rather with its type. For the same amount of bound lipid, monogalactosyldiacylglycerol best activates ATP hydrolysis, while the acidic lipids phosphatidylglycerol and sulphoquinovosyldiacylglycerol inhibit ATPase activity. Optimal activation of ATP-Pi exchange requires, in addition to monogalactosyldiacylglycerol, digalactosyldiacylglycerol and sulphoquinovosyldiacylglycerol at a ratio of 6:3:1, respectively. Correlations between proton conductance, ATP-Pi exchange and uncoupler stimulation of ATPase activity indicate that sulphoquinovosyldiacylglycerol reduces the permeability of the proteoliposomes to protons. The results suggest that: (a) association of CF0-CF1 with polyunsaturated monogalactosyldiacylglycerol greatly stimulates ATPase activity; (b) reconstitution of coupled CF0-CF1 proteoliposomes requires a careful balance of the natural glycolipids of thylakoid membranes in similar proportions to their occurrence in chloroplasts, and (c) sulphoquinovosyldiacylglycerol may control the permeability of chloroplast membranes to protons.  相似文献   

5.
A. Telfer  J. Barber 《BBA》1978,501(1):94-102
1. Ionophore A23187 induces uncoupling of potassium ferricyanide-dependent O2 evolution by envelope-free chloroplasts and oxaloacetate-dependent O2 evolution by intact chloroplasts. The half maximal concentration (C12) for stimulation of oxygen evolution in both cases is approximately 4 μM · 100 μg chlorophyll · ml?1.2. Ionophore A23187 also induces inhibition of CO2 and 3-phosphoglycerate-dependent O2 evolution by intact chloroplasts in the presence of 3 mM MgCl2. The half maximal concentrations (C12) for inhibition of O2 evolution are 3 μM and 5 μM respectively · 100 μg?1 chlorophyll · ml?1.3. A very high concentration of ionophore A23187 (10 μM · 20 μg?1 chlorophyll · ml?1) plus 0.1 mM EDTA lowers the fluorescence yield of intact chloroplasts suspended in a cation-free medium in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, indicating loss of divalent cation from the diffuse double layers of the thylakoid membranes.4. These results are discussed in relation to ionophore A23187-induced divalent cation/proton exchange at both the thylakoid and the envelope membranes of intact chloroplasts.  相似文献   

6.
Summary Wahsed thylakoid membranes from pea chloroplasts incorporate label from (35S)-methionine into protein when supplemented with S-30 soluble factors from E. coli. One of the products associated with the thylakoids is soluble in butanol, precipitated by ether and has an apparent molecular mss of 8200D on urea-lithium dodecyl sulphate (LDS) polyacrylamide gels. In addition, the protein covalently binds dicyclohexylcarbo-diimide (DCCD) which causes it to migrate as two slower forms on gels. Based on these criteria we establish that the proteolipid or subunit III of CF0 (the intrinsic sector of the ATPase complex) is synthesized by the thylakoid bound polysomes.  相似文献   

7.
P. J. Shaw  J. A. Henwood 《Planta》1985,165(3):333-339
The proteins ribulose 1,5-bisphosphate carboxylase/oxygenase, ATP synthase, light-harvesting chlorophyll a/b protein, and cytochrome f, have been localized in mesophyll chloroplasts of barley (Hordeum vulgare L.) by electron microscopy of immunogold-labelled sections. The light-harvesting chlorophyll a/b protein and cytochrome f are shown to be present in the grana, both within the stacks and at the margins, and in the stromal membranes. Although the absolute amount of labelling for these proteins is greater in the grana than in the stromal membranes, when expressed as label/membrane length the partitioning appears approximately equal between appressed and non-appressed membranes for both the light-harvesting chlorophyll a/b protein and cytochrome f. ATP synthase is restricted to the non-appressed thylakoid membranes, and ribulose 1,5-bisphosphate carboxylase/oxygenase is uniformly distributed through the stromal contents.Abbreviations CF1 ATP synthase - LHCPII light-harvesting chlorophyll a/b protein - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase  相似文献   

8.
Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach   总被引:1,自引:0,他引:1  
The effects of nano-TiO2 (rutile) on the photochemical reaction of chloroplasts of spinach were studied. The results showed that when spinach was treated with 0.25% nano-TiO2, the Hill reaction, such as the reduction rate of FeCy, and the rate of evolution oxygen of chloroplasts was accelerated and noncyclic photophosphorylation (nc-PSP) activity of chloroplasts was higher than cyclic photophosphorylation (c-PSP) activity, the chloroplast coupling was improved and activities of Mg2+-ATPase and chloroplast coupling factor I (CF1)-ATPase on the thylakoid membranes were obviously activated. It suggested that photosynthesis promoted by nano-TiO2 might be related to activation of photochemical reaction of chloroplasts of spinach.  相似文献   

9.
The effects of the local anesthetic dibucaine on coupling between electron transport and ATP synthesis-hydrolysis by the coupling-factor complex (CF0CF1 ATPase) were investigated in thylakoid membranes from Spinacia oleracea L. cv. Monatol. Evidence is presented that inhibition of ATP synthesis was produced by a specific uncoupling mechanism which was based on dibucaine-membrane surface interactions rather than on the interaction of dibucaine with the ATPase complex. Dibucaine reduced the osmotic space of thylakoid vesicles. At low pH of the medium it stimulated ATP hydrolysis beyond the rates obtained with optimum concentrations of ‘classical’ uncouplers. After addition of dibucaine, there was displacement of membrane-bound Mg2+ and strong thylakoid stacking in the presence of only low Mg2+ concentrations. Inhibition of ATP synthesis and transmembrane pH gradient increased with medium pH. Hydrolysis of ATP by isolated CF1 and the CF0CF1 complex was only slightly affected by dibucaine. The data are discussed assuming the involvement of localized proton channels on the membrane surface in protonic coupling of electron transport and ATP synthesis. A hypothesis for the mechanisms of action of local anesthetics at the thylakoid membrane is presented.  相似文献   

10.
Abstract The chloroplast ultrastructure, especially the thylakoid organization, the polypeptide composition of the thylakoid membranes and photosynthetic O2 evolution rate, chlorophyll (Chl) content and Chi a/b ratio were studied in leaves of nine plants growing in contrasting biotopes in the wild in South Finland. All the measurements were made at the beginning of the period of main growth on leaves approaching full expansion, when the CO2-saturated O2 evolution rate (measured at 20°C and 1500 μmol photons m?2s?1) was at a maximum, ranging from 19.2 to 6.9 μmol O2 cm?2 h?1. Among the species, the Chi a/b ratio varied between 3.75 and 2.71. In the mesophyll chloroplasts, the ratio of the total length of appressed to non-appressed thylakoid membranes varied between 1.07 and 1.79, the number of partitions per granum varied between 2.8 and 12.0 and the grana area between 21 and 42% of the chloroplast area. There was a significant relationship between the rate of O2 evolution of the leaf discs and the thylakoid organization in the mesophyll chloroplasts. The higher the O2 evolution rate, the lower was the ratio of the total length of appressed to non-appressed thylakoid membranes and also the lower the grana area. Although the relationship of the photosynthetic rate with the Chi content and the Chi a/b ratio of the leaves was not as clear, a significant negative correlation existed between the Chi a/b ratio and the ratio of appressed to non-appressed thylakoid membranes, indicating lateral heterogeneity in the distribution of different Chl- protein complexes.  相似文献   

11.
The isolation of the chloroplast ATP synthase complex (CF0-CF1) and of CF1 from Dunaliella bardawil is described. The subunit structure of the D. bardawil ATPase differs from that of the spinach in that the D. bardawil α subunit migrates ahead of the β subunit and ε-migrates ahead of subunit II of CF0 when separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The CF1 isolated from D. bardawil resembles the CF1 isolated from Chladmydomonas reinhardi in that a reversible, Mg2+-dependent ATPase is induced by selected organic solvents. Glycerol stimulates cyclic photophosphorylation catalyzed by D. bardawil thylakoid membranes but inhibits photophosphorylation catalyzed by spinach thylakoid membranes. Glycerol (20%) also stimulates the rate of ATP-Pi exchange catalyzed by D. bardawil CF0-CF1 proteoliposomes but inhibits the activity with the spinach enzyme. The ethanol-activated, Mg2+-ATPase of the D. bardawil CF1 is more resistant to glycerol inhibition than the octylglucoside-activated, Mg2+-ATPase of spinach CF1 or the ethanol-activated, Mg2+-dependent ATPase of the C. reinhardi CF1. Both cyclic photophosphorylation and ATP-Pi exchange catalyzed by D. bardawil CF0-CF1 are more sensitive to high concentrations of NaCl than is the spinach complex.  相似文献   

12.
A 3-phosphoglycerate phosphatase activity of about 2 micromoles per minute per milligram chlorophyll is associated with the thylakoid membranes of spinach chloroplasts. The Km for 3-phosphoglycerate is 3 millimolar. The enzyme can be solubilized from thylakoid membranes by treatment with 0.33 molar MgCl2 or sodium deoxycholate. The activity is not stimulated by sulfhydryl reagents or the addition of 10 millimolar MgCl2. The enzymic activity is insensitive to ethylenediaminetetraacetate. The pH optimum is broad, between 5.5 to 7.5. Although the substrate specificity is broad, 3-phosphoglycerate is the best substrate of those tested at neutral pH. However, p-nitrophenyl phosphate was a more effective substrate at pH 5.5. The enzyme exhibits the general characteristics of an acid phosphatase.  相似文献   

13.
Catalytic and noncatalytic sites of the chloroplast coupling factor (CF1) were selectively modified by incubation with the dialdehyde derivative of fluorescent adenosine diphosphate analog 1,N6-ethenoadenosine diphosphate. The modified CF1 was reconstituted with EDTA-treated thylakoid membranes of chloroplasts. The effects of light-induced transmembrane proton gradient and phosphate ions on the fluorescence of 1,N6-ethenoadenosine diphosphate, covalently bound to the catalytic sites of ATP synthase, were studied. Quenching of fluorescence of covalently bound 1,N6-ethenoadenosine diphosphate was observed under illumination of thylakoid membranes with saturating white light. Addition of inorganic phosphate to the reaction mixture in the dark increased the fluorescence of the label. Quenching reappeared under repeated illumination; however, addition of phosphate ions had no effect on the fluorescence yield in this case. When 1,N6-ethenoadenosine diphosphate was covalently bound to noncatalytic sites of ATP synthase, no similar fluorescence changes were observed. The relation between the observed changes of 1,N6-ethenoadenosine diphosphate fluorescence and the mechanism of energy-dependent structural changes in the catalytic site of ATP synthase is discussed.  相似文献   

14.
Treatment of isolated chloroplasts with high-energy pulses of the ruby laser causes graded structural changes in the chloroplast membranes and is here correlated with the biochemical changes produced. The laser treatment caused decreases in the photoinducible absorption changes of cytochromes b559, b563, and P520 (the carotenoid shift), but smaller decreases in cytochrome f. The decreases correlated with the quantum efficiency alterations produced by the laser treatment. Ferricyanide photoreduction and O2 evolution was only slightly affected by the laser treatment. The slow phase of the dark recovery kinetics of P520 was increased maximally by the lowest laser input energies and NADP+ photoreduction induced by carbonylcyanide-P-trifluoromethoxyphenylhydrazone (FCCP) was decreased maximally by the lowest energies, suggesting that uncoupling of the chloroplasts was the most sensitive parameter. This was corroborated by our previous observation (5) that chloroplast membrane bound surface particles (coupling factor) was the ultrastructural change most sensitive to the laser pulses. Electron flow from photosystem II to photosystem I was not altered by the laser treatment. The laser treatments did not cause a detectable decrease in total chlorophyll in the chloroplasts, however, approximately 10% of the total chlorophyll was present in the solution phase after the treatment, whereas no detectable cytochromes were present in the solution phase.  相似文献   

15.
A modified ‘cold chase’ technique was used to study tight [14C]ADP and [14C]ATP binding to noncatalytic sites of chloroplast ATP synthase (CF0F1). The binding was very low in the dark and sharply increased with light intensity. Dissociation of labeled nucleotides incorporated into noncatalytic sites of CF0F1 or CF1 reconstituted with EDTA-treated thylakoid membranes was also found to be light-dependent. Time dependence of nucleotide dissociation is described by the first order equation with a k d of about 5 min−1. The exposure of thylakoid membranes to 0.7–24.8 μM nucleotides leads to filling of up to two noncatalytic sites of CF0F1. The sites differ in their specificity: one preferentially binds ADP, whereas the other – ATP. A much higher ATP/ADP ratio of nucleotides bound at noncatalytic sites of isolated CF1 dramatically decreases upon its reconstitution with EDTA-treated thylakoid membranes. It is suggested that the decrease is caused by conformational changes in one of the α subunits induced by its interaction with the δ subunit and/or subunit I–II when CF1 becomes bound to a thylakoid membrane.  相似文献   

16.
The composition and structural organization of thylakoid membranes of a low chlorophyll mutant of Beta vulgaris was investigated using spectroscopic, kinetic and electrophoretic techniques. The data obtained were compared with those of a standard F1 hybrid of the same species. The mutant was depleted in chlorophyll b relative to the hybrid and it had a higher photosystem II/photosystem I reaction center (Q/P700) ratio and a smaller functional chlorophyll antenna size. Analysis of thylakoid membranes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the mutant lacked a portion of the chlorophyll a/b light-harvesting complex but was enriched in the photosystem II reaction center chlorophyll protein complex. Comparison of functional antenna sizes and of photosystem stoichiometries determined electrophoretically were in good agreement with those determined spectroscopically. Both approaches indicated that about 30% of the total chlorophyll was associated with photosystem I and about 70% with photosystem II. A greater proportion of photosystem IIβ was detected in the mutant. The results suggest that a higher photosystem II to photosystem I ratio in the sugar beet mutant has apparently compensated for the smaller photosystem II chlorophyll light-harvesting antenna in its chloroplasts. Moreover, a lack of chlorophyll a/b light-harvesting complex correlates with the abundance of photosystem IIβ. It is proposed that a developmental relationship exists between the two types of photosystem II where photosystem IIβ is a precursor form of photosystem IIα occurring prior to the addition of the chlorophyll a/b light-harvesting complex and grana formation.  相似文献   

17.
Karlický  V.  Podolinská  J.  Nadkanská  L.  Štroch  M.  Čajánek  M.  Špunda  V. 《Photosynthetica》2010,48(3):475-480
The present study was conducted to examine changes in photosynthetic pigment composition and functional state of the thylakoid membranes during the individual steps of preparation of samples that are intended for a separation of pigmentprotein complexes by nondenaturing polyacrylamide gel electrophoresis. The thylakoid membranes were isolated from barley leaves (Hordeum vulgare L.) grown under low irradiance (50 μmol m−2 s−1). Functional state of the thylakoid membrane preparations was evaluated by determination of the maximal photochemical efficiency of photosystem (PS) II (FV/FM) and by analysis of excitation and emission spectra of chlorophyll a (Chl a) fluorescence at 77 K. All measurements were done at three phases of preparation of the samples: (1) in the suspensions of osmotically-shocked broken chloroplasts, (2) thylakoid membranes in extraction buffer containing Tris, glycine, and glycerol and (3) thylakoid membranes solubilized with a detergent decyl-β-D-maltosid. FV/FM was reduced from 0.815 in the first step to 0.723 in the second step and to values close to zero in solubilized membranes. Pigment composition was not pronouncedly changed during preparation of the thylakoid membrane samples. Isolation of thylakoid membranes affected the efficiency of excitation energy transfer within PSII complexes only slightly. Emission and excitation fluorescence spectra of the solubilized membranes resemble spectra of trimers of PSII light-harvesting complexes (LHCII). Despite a disrupted excitation energy transfer from LHCII to PSII antenna core in solubilized membranes, energy transfer from Chl b and carotenoids to emission forms of Chl a within LHCII trimers remained effective.  相似文献   

18.
1. [14C]ADP is incorporated into washed broken chloroplasts in the light. The bound labelled nucleotides which cannot be removed by washing are almost exclusively related to coupling factor CF1. [14C]ADP binding exhibits a monophasic concentration curve with a Km of 2 μM.2. By illumination of the chloroplasts, previously incorporated labelled nucleotides are released. A fast release is obtained in the presence of unlabelled ADP and ATP, indicating an energy-dependent exchange. A slow and incomplete release is induced by light in the absence of unlabelled adenine nucleotides. Obviously, under those conditions, an adenine nucleotide depleted CF1 conformation is established.3. Re-binding of [14C]ADP by depleted membranes is an energy-independent process. Even after solubilization of adenylate-depleted CF1, [14C]ADP is incorporated into the protein. By re-binding of ADP in the dark, CF1 is converted to a non-exchangeable form.4. Energy-dependent adenine nucleotide exchange on CF1 is suggested to include three different conformational states of the enzyme: (1) a stable, non-exchangeable form which contains firmly bound nucleotides, is converted to (2), an unstable form containing loosely bound adenine nucleotides. This conformation allows adenylate exchange; it is in equilibrium with (3) a metastable, adenylate-depleted form. The transition from state (1) to state (2) is the energy-requiring step.  相似文献   

19.
Scott Bingham  Jerome A. Schiff 《BBA》1979,547(3):512-530
Techniques are described for the isolation of plastid thylakoid membranes from light-grown and dark-grown cells of Euglena gracilis var. bacillaris, and from mutants affecting plastid development. These membranes, which have minimal contamination with other cell fractions, are localized in sucrose gradients by using the thylakoid membrane sulfolipid as a specific marker. The plastid thylakoid membrane polypeptides isolated from these membranes were separated on SDS polyacrylamide gels and yielded patterns containing 30–40 polypeptides. Light-grown strain Z gave patterns identical with bacillaris. Since the plastid thylakoid polypeptide patterns obtained from dark-grown wild-type cells and from a bleached mutant W3BUL in which plastid DNA is undetectable are identical, it appears that the proplastid thylakoid polypeptides of wild-type cannot be coded in plastid DNA and are probably coded in nuclear DNA. The plastid thylakoid polypeptide patterns obtained from various dark-grown mutants are identical to those obtained from dark-grown wild-type cells. Light-grown mutants, making large but abnormal chloroplasts, show a correlation between the amount of chlorophyll formed and the amount of a plastid thylakoid polypeptide thought to be associated with one of the pigment-protein light-harvesting complexes. Treatment with SAN 9789 (4-chloro-5-(methyl-amino)-2-(α,α,α,-trifluoro-m-tolyl)-3-(2H(pyridazinone) known to block carotenoid synthesis at the level of phytoene, causes a progressive loss of all plastid thylakoid polypeptides during growth in darkness and results in the establishment of a new, lower steady-state level of sulfolipid. At least ten of the plastid thylakoid polypeptides become labeled when isolated chloroplasts are supplied with radioactive amino acids; of these six are undectable in W3BUL and are, therefore, candidates for coding by plastid DNA.  相似文献   

20.
A good correlation exists between the extent of thylakoid aggregation (grana reconstitution) and the increase in the chlorophyll a fluorescence yield (FDCMU; DCMU = 3-(3′,4′-dichlorophenyl)-1, 1-dimethyl urea) caused by the addition of monovalent or divalent cations to low-salt disorganized (agranal) chloroplasts. The extent of grana stacking was monitored by the yield of heavy subchloroplast fractions after digitonin disruption of chloroplasts. A good correlation of the cation effect on both parameters was also found in light subchloroplast fractions (10,000g supernatants) obtained from sonicated “low-salt” Tricine-suspended pea chloroplasts. Addition of cations to the agranal protochloroplasts of etiolated pea or bean leaves exposed to periodic light-dark cycles, suspended in low-salt Tricine buffer, does not affect formation of heavy subchloroplast fractions, nor does it affect their chlorophyll a fluorescence yield level (FDCMU). The cation effect on the increase of the chlorophyll a fluorescence yield level seems to be due to the cation-induced thylakoid structural changes leading to grana stacking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号