首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Abstract. To determine whether increased water motion affects patterns of regeneration in the subtidal burrowing brittlestar Hemipholis elongata (phylum Echinodermata), individuals were subjected to laboratory-controlled turbulence conditions. Half of each replicate aquarium experienced oscillatory (wave-like) turbulence while the other half had no turbulence. Individual brittlestars from which arm-tips had been removed were allowed to burrow and to regenerate. Regenerated arm-tip length and weight were tested for differences between organisms in calm and turbulent conditions. Regenerated arm-tip length differed significantly between control and treatment, but arm-tip dry weight and skeleton/tissue ratio of regenerated arm-tips did not. To quantify plasticity in the skeleton, 15 morphological measurements made on the proximal face of vertebral ossicles (using scanning electron microscopy) were integrated as an index of overall ossicle size. We found a significant difference in the overall size index of the vertebral ossicles between treatments, but could not determine which of the measurements contributed most to the difference. The results indicate that regeneration in H. elongata is a complex process that can be modified by environmental conditions.  相似文献   

2.
    
Abstract. In this study, we investigated a functional trade-off between trunk attachment and trunk-spine development in the acanthocephalan Corynosoma cetaceum . The worms live attached to the stomach and upper intestine of their cetacean definitive hosts, using the proboscis and spiny foretrunk as the main holdfast; the spiny hindtrunk can also attach by bending ventrally. When the hindtrunk bends, ventral compression generates an anterior fold (AF) and a posterior fold (PF). A morphological analysis based on 7,823 individuals collected from 10 franciscana dolphins, Pontoporia blainvillei , revealed that spines were smaller and more variable in size and occurrence in the folds than on neighboring areas; the growth of fold spines seemed to be inhibited to various degrees. Spines were more reduced in the AF than in the PF, and spines of both folds were more reduced in females than in males. Patterns of reduction appeared to be directly related to the intensity of fold compression associated with hindtrunk bending. Fold compression could induce plastic inhibition of spine growth, and/or could make fold spines maladaptive, spines being reduced by natural selection. Apparently, fold spines neither contact the substrate, nor are they exposed to the environment when the hindtrunk attaches. Therefore, fold spines could have reduced, or lost, their primary function, at least in the definitive host. The reduction and variability of spines in C. cetaceum seem to be unique among Corynosoma species.  相似文献   

3.
    
Lindera melissifolia (Walt.) Blume seedlings were raised in a growth chamber to determine the effects of light availability on shoot growth pattern, and basic leaf and stem growth. Lindera melissifolia seedlings exhibited a sympodial shoot growth pattern for 3 months following emergence from the soil medium, but this pattern was characterized by a reduction in leaf blade area approximately 30 days after emergence, followed by increases in leaf blade area. Seedlings receiving low light were 76% taller than seedlings receiving high light. Seedlings receiving low light also had larger leaf blade dimensions, blade area, seedling leaf area, and greater mass. Seedlings raised in high light had a greater proportional distribution of biomass in the roots, suggesting possible water stress from greater vapor pressure deficits. Furthermore, these seedlings displayed sharp angles of blade inclination and blade folding – acclimation that reduces exposure to light and subsequent higher leaf temperatures in open environments. These differences in morphological response to light resulted in high phenotypic variability in L. melissifolia seedlings. Lindera melissifolia seedling development showed a brief period of phenotypic plasticity, followed by ontogenetic plasticity. The short period of phenotypic plasticity may, however, have profound ecological implications for the conservation and recovery of this federally endangered shrub. Further experimentation should take into account the development of ontogenetic standards for comparisons of plant traits in addition to temporal standards.  相似文献   

4.
    
Arctic charr Salvelinus alpinus juveniles reared from eggs collected from four Scottish populations showed inherited variation in their expression of trophic morphology, measured as a suite of eight characteristics of the head and mouth, before their first exogenous feeding. This demonstrated a genetic component to trophic morphology expression. During a period of 5 months following first feeding, typified by rapid growth, the differential between groups exposed to a common rearing and feeding environment was reduced significantly. It was concluded that this was the result of common environmental exposure acting on phenotypic plasticity in trophic morphology.  相似文献   

5.
    
Abstract. Phenotypic plasticity is the ability of some organisms to exhibit different phenotypes in response to environmental conditions. Many sessile marine invertebrates are morphologically plastic. In colonial cnidarians, compact morphologies are often associated with high-velocity flow regimes, whereas elongated morphologies are associated with calmer water. This ability to alter morphology in response to flow regime likely represents an adaptive strategy: these morphologies may permit efficient suspension feeding and gas exchange while reducing the risk of dislodgment in a particular flow regime. Which flow-related factors (e.g., CO2 accumulation, drag forces, prey delivery) actually signal a colony to alter its morphology are unclear. In this study, we test the hypothesis that differences in flow regime or some correlate of flow regime (in the absence of differences in prey delivery) signal a colonial cnidarian to change its morphology. To separate prey delivery from water flow, hydroid ( Bougainvillia muscus ) colonies were fed equivalent amounts in still water, regardless of the flow regime treatment to which they were exposed the rest of the time. Our results show that, regardless of prey delivery, colonies grew in ways characteristic of calm water (with a higher percentage of tall pedicels and secondary hydranths, and fewer basal stolon branches) and of high flow (with more hydranths, free stolons, and a denser basal stolon network) environments. This work suggests that, for this hydroid, prey flux is not a proximate cue mediating morphological plasticity in response to flow regime.  相似文献   

6.
    
Plasticity of various life‐history traits has evoked continuing interest among biologists. For example, the plasticity of offspring characteristics as well as maternal effects may be affected by time limitation and by limitation caused by changing environmental conditions. However, it is difficult to tell apart the effect of a time constraint, experienced by the mother, from food limitation, which is experienced by the offspring at the end of the season. In this study, we controlled for food limitation and simulated a time constraint for the mother. We tested how the seed beetle, Coccotrypes dactyliperda, adapts its reproductive investment after encountering a period of low availability of seeds as oviposition sites, as compared with females that encountered a seed at an early adult stage, while maintaining a similar food supply for offspring of both groups. We show that time limitation has a significant effect on the reproductive investment patterns of females. Females that were prevented from ovipositing, but provided with abundant food and later given oviposition sites, produced more, but smaller offspring than control females. Although the number of offspring increased, there was no indication of competition for food between offspring. We propose that, in order to compensate for the loss of time, mothers that experienced a shortage of oviposition sites influence their offspring to mature faster at the cost of a smaller than average body size. This study emphasizes the importance of considering more than one offspring generation in order to correctly estimate female fitness. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 728–736.  相似文献   

7.
8.
We studied seasonal and spatial variability in the reproductive life-history traits of Caribbean gambusia, Gambusia puncticulata puncticulata, using collections representing dry and wet periods from eight pond sites located across the three Cayman Islands. Caribbean gambusia exhibited a seasonal life-history response over the 5-month interval between the relatively dry and wet periods, marked by shifts to larger adult sizes and smaller broods made up of larger offspring. This seasonal shift in the life-history pattern coincided with increased rainfall, lower salinity, lower water temperature, and higher food availability. Overall, there was a reproductive trade-off involving a reciprocal relationship between brood size and mean embryo mass, and a direct relationship between brood size and total embryo mass. Levels of various environmental variables, including salinity, submerged aquatic vegetation cover, and capture depth, were apparently unrelated to the life-history pattern. Furthermore, the life-history pattern did not reflect an island effect. However, a correlation between the seasonal difference in salinity and offspring size suggested that the Cayman Island life-history pattern may correspond in part with the environmental stability hypothesis.  相似文献   

9.
    
Phenotypic plasticity can allow organisms to respond to environmental changes by producing better matching phenotypes without any genetic change. Because of this, plasticity is predicted to be a major mechanism by which a population can survive the initial stage of colonizing a novel environment. We tested this prediction by challenging wild Drosophila melanogaster with increasingly extreme larval environments and then examining expression of alcohol dehydrogenase (ADH) and its relationship to larval survival in the first generation of encountering a novel environment. We found that most families responded in the adaptive direction of increased ADH activity in higher alcohol environments and families with higher plasticity were also more likely to survive in the highest alcohol environment. Thus, plasticity of ADH activity was positively selected in the most extreme environment and was a key trait influencing fitness. Furthermore, there was significant heritability of ADH plasticity that can allow plasticity to evolve in subsequent generations after initial colonization. The adaptive value of plasticity, however, was only evident in the most extreme environment and had little impact on fitness in less extreme environments. The results provide one of the first direct tests of the adaptive role of phenotypic plasticity in colonizing a novel environment.  相似文献   

10.
    
F ST and RST estimates for Arctic charr from six microsatelite markers collected from two neighbouring Scottish lakes, Loch Maree and Loch Stack, confirm the presence of two distinct genetic groupings representing separate populations within each lake. In both lakes, there was also a clear body size dimorphism, with large and small body size forms that segregated according to genetic grouping. There was evidence of only subtle foraging ecology differences between morphs, with the small body size morph in both lakes being more generalist in its foraging in the summer (consuming mostly plankton but also some macrobenthos) than the large body size morph, which specialized on planktonic prey. Trophic morphology (head and mouth shape) did not differ significantly between morphs (although the small sample size for Maree makes this a preliminary finding). Cluster analysis of the microsatelite data and the presence of private alleles showed that morphologically similar forms in different lakes were not genetically similar, as would be expected under a multiple invasion hypothesis. Thus, the data do not support a hypothesis of a dual invasion of both lakes by two common ancestors but instead suggest an independent origin of the two forms in each lake. Thus parallel sympatric divergence as a result of common selection pressures in both lakes is the most parsimonious explanation of the evolutionary origin of these polymorphisms. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 748–757.  相似文献   

11.
12.
13.
    
In urban landscapes the crowding of humans and their waste products may alleviate intra‐specific interactions of common mosquitoes. Here, we present the results of a semi‐natural experiment addressing the effects of water from a sewage overflow stream on density dependent fitness components and phenotypic traits of a common tropical and subtropical urban mosquito, Culex quinquefasciatus Say (Diptera: Culicidae). This semi‐natural experiment was designed to quantify the relative importance of density dependence, weather forces and water quality on larval mortality, sex ratio and size at adult emergence. Results showed that mortality hazards were independent of larval density, decreased in sewage overflow water and increased with minimum temperatures. Under all rearing conditions adult mosquito size decreased with density. Mosquitoes from sewage overflow water emerged faster, were bigger and had an increased ratio of females to males. All these traits may contribute to the regulation of mosquito populations.  相似文献   

14.
The robust jaws and large, thick-enameled molars of the Plio–Pleistocene hominins Australopithecus and Paranthropus have long been interpreted as adaptations for hard-object feeding. Recent studies of dental microwear indicate that only Paranthropus robustus regularly ate hard items, suggesting that the dentognathic anatomy of other australopiths reflects rare, seasonal exploitation of hard fallback foods. Here, we show that hard-object feeding cannot explain the extreme morphology of Paranthropus boisei. Rather, analysis of long-term dietary plasticity in an animal model suggests year-round reliance on tough foods requiring prolonged postcanine processing in P. boisei. Increased consumption of such items may have marked the earlier transition from Ardipithecus to Australopithecus, with routine hard-object feeding in P. robustus representing a novel behaviour.  相似文献   

15.
    
Adaptive phenotypic plasticity may respond to present ambient conditions. Sexual and social signals in both sexes may express phenotype performance. Plumage signals that change discontinuously allow relating discrete variation to previous performance. Both sexes of the pied flycatcher Ficedula hypoleuca present white patches on the wings and on the forehead, which constitute sexual and social signals. Forehead patches are moulted together with body plumage in Africa, while wing patches are partly moulted in Africa and partly in the breeding area soon after breeding. We studied individual inter‐year changes (corrected for regression to the mean) in the size of forehead and wing patches of both sexes in seven years for females or six years for males in two nearby study areas in central Spain. We found that initial signal extent strongly delimits the possible subsequent changes negatively. There is a negative association of male age with forehead patch changes. Cold and rainy springs are associated in females with decreases in both patch areas and vice versa, while no association with climate is observed in male wing patch changes. Cold pre‐breeding conditions predict positive changes in female wing and male forehead patches. Breeding success is positively associated with forehead patch changes in females. Late‐breeding males experience more positive changes in forehead patch size than early‐breeding males. Some of these trends can be explained by variable costs of breeding in certain conditions for subsequent signal production and/or maintenance, while absence of trends in some cases may be explained by sex differences in costs of breeding and interactions with phenotypic quality of breeders.  相似文献   

16.
Flood response is a crucial component of the life strategy of many plants, but it is seldom studied in non-flooded tolerant species, even though they may be subjected to stressful environmental conditions. Phenotypic plasticity in reaction to environmental stress affects the whole plant phenotype and can alter the character correlations that constitute the phenotypic architecture of the individual, yet few studies have investigated the lability of phenotypic integration to water regime. Moreover, little has been done to date to quantify the sort of selective pressures that different components of a plant's phenotype may be experiencing under contrasting water regimes. Genetic differentiation and phenotypic plasticity at the single-trait and multivariate levels were investigated in 47 accessions of the weedy plant Arabidopsis thaliana, and the relationship of plastic characters to reproductive fitness was quantified. Results indicate that these plants tend to be highly genetically differentiated for all traits, in agreement with predictions made on the basis of environmental variation and mating system. Varied patterns of apparent selection under flooded and non-flooded conditions were also uncovered, suggesting trade-offs in allocation between roots and above-ground biomass, as well as between leaves and reproductive structures. While the major components of the plants' multivariate phenotypic architecture were not significantly affected by environmental changes, many of the details were different under flooded and non-flooded conditions.  相似文献   

17.
Dislodgement by the large drag forces imparted by breaking waves is an important cause of mortality for intertidal snails. The risk of drag-induced dislodgement can be reduced with: (1) a smaller shell of lower maximum projected surface area (MPSA); (2) a streamlined shell shape characterized by a squatter shell; and/or (3) greater adhesive strength attained through a larger foot area or increased foot tenacity. Snails on exposed coasts tend to express traits that increase dislodgement resistance. Such habitat-specific differences could result from direct selection against poorly adapted phenotypes on exposed shores but may reflect gastropod adaptation to high wave action achieved through phenotypic plasticity or genetic polymorphism. With this in mind, we examined the size, shape and adhesive strength of populations of two gastropod species, Austrocochlea constricta (Lamarck) and Nerita atramentosa (Reeve), from two adjacent shores representing extremes in wave exposure. Over a 5 day period, maximum wave forces were more than 10 times greater on the exposed than sheltered shore. Size-frequency distributions indicate that a predator consuming snails within the 1.3-1.8 cm length range regulates sheltered shore populations of both snail species. Although morphological scaling considerations suggest that drag forces should not place physical limits on the size of these gastropods, exposed shore populations of both snails were small relative to the maximum size documented for these species. Therefore, selective forces at the exposed site might favour smaller individuals with increased access to microhabitat refuges. Unexpectedly, however, neither snail species exhibited between-shore differences in shape, foot area or foot tenacity, which are likely to have adaptive explanations. Hence, it is possible that these snails are incapable of adaptive developmental responses to high wave action. Instead, the homogeneous and wave-exposed nature of Australia's southern coastline may have favoured the evolution of generalist strategies in these species.  相似文献   

18.
    
Phenotypic plasticity refers to the ability of an organism to alter its physiology/morphology/behavior in response to changes in environmental conditions. Although encompassing various phenomena spanning multi-ple levels of organization, most plastic responses seem to take place by altering gene expression and eventually altering ontogenetic trajectory in response to environmental variation. Epigenetic modifications provide a plausi-ble link between the environment and alterations in gene expression, and the alterations in phenotype based on environmentally induced epigenetic modifications can be inherited transgenerationally. Even closely related species and populations with different genotypes may exhibit differences in the patterns and the extents of plastic responses, indicating the wide existence of plasticity genes which are independent of trait means and directly respond to environmental stimuli by triggering phenotypic changes. The ability of plasticity is not only able to affect the adaptive evolution of species significantly, but is also an outcome of evolutionary processes. Therefore, phenotypic plasticity is a potentially important molder of adaptation and evolution.  相似文献   

19.
    
It is not clear which forms of plasticity in fitness‐related traits are associated with invasive species. On one hand, it may be better to have a robust performance across environments. On the other, it may be beneficial to take advantage of limited favorable conditions. We chose to study a worldwide invasive species, Potamopyrgus antipodarum, and compare the plasticity of life‐history traits of a sample of invasive genotypes to a sample of ancestral‐range genotypes. We examined the responses to salinity in this freshwater snail because it varies spatially and temporally in the introduced range and contributes to variation in fitness in our system. We used a recently developed statistical method that quantifies aspects of differences in the shape among reaction norms. We found that the invasive lineages survived and reproduced with an increased probability at the higher salinities, and were superior to ancestral‐range lineages in only two traits related to reproduction. Moreover, we found that in terms of traits related to growth, the invasive lineages have a performance optimum that is shifted to higher salinities than the ancestral‐range lineages as well as having a narrower niche breadth. Contrary to the prediction of the general purpose genotype hypothesis, we found that invasive lineages tended to be opportunistic specialists.  相似文献   

20.
    
In animal communication systems, matching mating signals and preferences enable species identification and successful reproduction. In some species, the environment introduces substantial variation in signals and/or preferences. Only a few studies have tested how the match between signals and preferences is maintained despite phenotypic variation. Signal–preference coupling in the context of phenotypic plasticity is the focus of this study. The bivoltine cricket Gryllus rubens displays seasonal differences in the pulse rate of its mating songs. The seasonal effect on other fine‐temporal characters of the songs besides pulse rate, such as pulse and interval duration, duty cycle, as well as the dominant frequency, is not known and is described in the first part of the study for a Kentucky population. In the second part of the study, we tested preferences of spring and fall females to determine whether they match the seasonal plasticity of male songs using single‐speaker phonotaxis experiments. We found that fall songs had a faster pulse rate, shorter pulse and interval durations, and a higher dominant frequency than spring songs. Female preferences shifted in parallel with male song plasticity, that is, spring females preferred the spring song and fall females the fall song. In addition, female responsiveness to male song was plastic as well, that is, fall females were significantly more responsive than spring females. The parallel plasticity of male songs and female preferences facilitates successful communication despite the environmentally induced variation. The potential origin and function of behavioral plasticity in G. rubens are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号