首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acholeplasma laidlawii B was grown on the branched-chain fatty acids, 14-methylpentadecanoic acid and 14-methylhexadecanoic acid, and the straight-chain palmitic acid. The incorporation of the branched-chain fatty acids was very effective; more than 90% of the fatty acids of the lipids of this organism consisted of the branched-chain constituents. A somewhat smaller amount (81%) was found in the cells grown with palmitic acid. Differential scanning calorimetry of the isolated membranes showed that distinct lipid phase transitions occurred in between 15 and 31 °C for the 14-methylpentadecanoic acid, 11 and 29 °C for the 14-methylhexadecanoic acid, and 14 and 36 °C for the palmitic acid-enriched membranes. Freeze-fracture electron microscopy showed that the lipid phase transitions were accompanied by particle aggregation only in the case of palmitic acid-enriched membranes. When the branched-chain acid-enriched membranes were quenched from temperatures below the onset of the lipid phase transition, a random distribution of particles on both fracture faces of the membrane was observed. The membranes were incubated with pig pancreatic phospholipase A2 at various temperatures. Below the onset of the lipid phase transition phosphatidylglycerol was not accessible for this enzyme in palmitate-enriched membranes. However, a fast hydrolysis of 60–75% of the phosphatidylglycerol could be measured in the branched-chain acid-enriched membranes at temperatures below the onset of the lipid phase transition. The residual phosphatidylglycerol could be hydrolyzed at a slower, temperature-dependent rate. The observations show that lipids containing branched-chain acids undergo a cooperative lipid phase transition which does not result in a tight packing of the lipids of the bilayer below the phase transition.  相似文献   

2.
About 30% of the phosphatidylglycerol in oleic acid-enriched Acholeplasma laidlawii membranes are not hydrolyzed at temperatures below 10 °C by phospholipase A2 from porcine pancreas. Removal of 53% of the membrane proteins by proteolysis did not reduce the size of this inaccessible phosphatidylglycerol pool. However, modification of the membrane proteins with 2,4,6-trinitrobenzenesulfonic acid or glutaraldehyde did make an additional 70% of this protected pool of phosphatidylglycerol accessible to phospholipase A2. Complete hydrolysis of phosphatidylglycerol at low incubation temperatures was achieved only after heat treatment of the membranes which resulted in an extensive aggregation of intrinsic membrane proteins as visualized by freeze-etch electron microscopy. Phospholipase A2 from bee venom was more effective in hydrolyzing phosphatidylglycerol at low temperature than the pancreatic enzyme. These results show that the inaccessibility of phosphatidylglycerol is not due to resealing of isolated membranes, the presence of a crystalline phase in the membrane lipids, or a shielding effect of surface proteins. The protection against hydrolysis may be due to an interaction of phosphatidylglycerol with intrinsic membrane proteins which is stabilized at low temperatures. Increasing the temperature favors the exchange of protein-bound phosphatidylglycerol with other membrane lipids resulting in complete hydrolysis.  相似文献   

3.
Lipid bilayer structure in the membrane of Mycoplasma laidlawii   总被引:18,自引:0,他引:18  
X-ray diffraction patterns from intact, isolated Mycoplasma laidlawii membranes at temperatures above and below the thermal phase transition of the membrane lipids reveal important features of the molecular structure of the membrane.  相似文献   

4.
The membrane composition and lipid physical properties have been systematically investigated as a function of fatty acid composition for a series of Acholeplasma laidlawii B membrane preparations made homogeneous in various fatty acids by growing cells on single fatty acids and avidin, a potent fatty acid synthetic inhibitor. The membrane protein molecular weight distribution is essentially constant as a function of fatty acid composition, but the lipid/protein ratio varies over a 2-fold range when different fatty acid growth supplements are used. The membrane lipid head-group composition varies somewhat under these conditions, particularly in the ratio of the two major neutral glycolipids. Differential thermal analytical investigations of the thermotropic phase transitions of various combinations of membrane components suggest that these compositional changes are unlikely to result in qualitative changes in the nature of lipid-protein or lipid-lipid interactions, although lesser changes of a quantitative nature probably do occur. The total lipids of membranes made homogeneous in their lipid fatty acyl chain composition exhibit sharper than normal gel-to-liquid-crystalline phase transitions of which midpoint temperatures correlate very well with the phase transition temperatures of synthetic hydrated phosphatidylcholines with like acyl chains. Our results indicate that using avidin and suitable fatty acids to grow A. laidlawii B, it is possible to manipulate the position and the sharpness of the membrane lipid phase transition widely and independently without causing major modifications in other aspects of the membrane composition. This fact makes the fatty acid-homogeneous A. laidlawii B membrane a very useful biological membrane preparation in which to study lipid physical properties and their functional consequences.  相似文献   

5.
The electron paramagnetic resonance spectra of spin-labeled fatty acid in intact mycoplasma cells and isolated membrane preparations have been compared. With Mycoplasma hominis and Acholeplasma laidlawii preparations, the freedom of motion of the spin-label was higher in labeled intact cells than in labeled isolated membranes but no differences could be detected between the labeled intact cells and membranes isolated from the labeled intact cells. It is proposed that the higher freedom of motion of the spin-label in the intact cells is due to a higher fluidity of the outer half of the lipid bilayer of mycoplasma membranes rather than to alterations in the structure of the membrane upon isolation.  相似文献   

6.
The physical state of the membrane lipids, as determined by fatty acid composition and environmental temperature, has a marked effect on both the temperature range within which Acholeplasma laidlawii B cells can grow and on growth rates within the permissible temperature ranges. The minimum growth temperature of 8 °C is not defined by the fatty acid composition of the membrane lipids when cells are enriched in fatty acids giving rise to gel to liquid-crystalline membrane lipid phase transitions occurring below this temperature. The elevated minimum growth temperatures of cells enriched in fatty acids giving rise to lipid phase transitions occurring at higher temperatures, however, are clearly defined by the fatty acid composition of the membrane lipids. The optimum and maximum growth temperatures are also influenced indirectly by the physical state of the membrane lipids, being significantly reduced for cells supplemented with lower melting, unsaturated fatty acids. The temperature coefficient of growth at temperatures near or above the midpoint of the lipid phase transition is 16 to 18 kcalmol, but this value increases abruptly to 40 to 45 kcalmol at temperatures below the phase transition midpoint. Both the absolute rates and temperature coefficients of cell growth are similar for cells whose membrane lipids exist entirely or predominantly in the liquid-crystalline state, but absolute growth rates decline rapidly and temperature coefficients increase at temperatures where more than half of the membrane lipids become solidified. Cell growth ceases when the conversion of the membrane lipid to the gel state approaches completion, but growth and replication can continue at temperatures where less than one tenth of the total lipid remains in the fluid state. An appreciable heterogeneity in the physical state of the membrane lipids can apparently be tolerated by this organism without a detectable loss of membrane function.  相似文献   

7.
Myristic acid specifically deuterated at several positions along the acyl chain was biosynthetically incorporated into the membrane lipids of Acholeplasma laidlawii B to the level of ?90%. 2H-NMR was used to study the molecular order and lipid phase composition of the membranes as a function of temperature. Isolated membranes and intact cells give rise to similar 2H spectra. Below 25°C the spectra exhibit a broad gel phase component which at 0°C reaches the rigid limit value expected for an immobilized methylene group. Spectral moments were used to determine the relative amounts of gel and liquid crystalline phase lipids throughout the gel-liquid crystal phase transition. The results indicate that at the growth temperature (37 or 30°C) the A. laidlawii B membrane lipids are ~85–90% in the gel state, and that protein has little effect on lipid order of the liquid crystalline lipid, but leads to an increase in the linewidth by approx. 20%.  相似文献   

8.
Membranes from unsaturated fatty acid auxotrophs of Escherichia coli were studied by spin labeling and freeze-fracturing. From measurements of the partition of the spin label TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) between the aqueous phase and fluid lipids in isolated membranes, temperatures, corresponding to the onset and completion of a lateral phase separation of the membrane phospholipids were determined. By freeze-fracture electron microscopy a change in the distribution of particle in the membrane was observed around the temperature of the onset of the lateral phase separation. When cells were frozen from above that temperature a netlike distribution of particles in the plasma membrane was observed for unfixed preparations. When frozen after fixing with glutaraldehyde the particle distribution was random. In membranes of cells frozen with or without fixing from a temperature below the onset of the phase separation, the particles were aggregated and large areas void of particles were present. This behavior can be understood in terms of the freezing rate with the aid of phase diagrams.  相似文献   

9.
The effects on membrane structure of including various fatty acids and cholesterol in the growth medium of Acholeplasma laidlawii were investigated by the use of spin-labeled fatty acids. Although the order-mobility parameters varied significantly at some temperatures with the nature of the fatty acid incorporated, the value measured at the growth temperature was only slightly affected by changes in the fatty acid composition of the membranes. The data confirm previous assertions that despite a high level of incorporation of fatty acids of various chain lengths or degree of unsaturation, A. laidlawii regulates its overall membrane fluidity within close limits at the growth temperature. Incorporation of cholesterol increased the degree of order at all temperatures. The coexistence of two lipid phases, one protein-dependent, could be observed in membranes. The order-mobility parameter of spin probes proved less satisfactory for the observation of a gel to liquid crystal transition of the membrane lipid than the partition parameter of a fatty acid spin probe. Order parameters measured by fatty acid spin probes were somewhat higher than those measured by the analogous 2H nmr probes.  相似文献   

10.
Acholeplasma laidlawii strain A-EF22 was grown in a medium supplemented with 75 μm α-deuterated palmitic acid (16:0-d 2) and 75 μm α-deuterated oleic acid (18:1c-d 2), or with 150 μm 18:1c-d 2. The fatty acids were incorporated into the membrane lipids and 2H NMR spectra were recorded from intact membranes, total lipid extracts, and the combined glucolipid and neutral lipid fractions of a total lipid extract. The lipids in intact membranes form a bilayer structure up to at least 70 °C. The same result was obtained with membranes digested with pronase, which removes a large fraction of the membrane proteins. A reversed hexagonal liquid crystalline (HII) phase was formed below 70 °C by the total lipid extracts hydrated with 20 and 30% (w/w) water; in the presence of 40% (w/w) water only one of the extracts formed an HII phase below 70 °C. The HII phase was formed at higher temperatures with an increasing water content. However, only a lamellar liquid crystalline (L α ) phase was formed up to 70 °C by the total lipid extracts when the water concentrations were 50% (w/w) or higher. The temperature (T LH) for the L α to HII phase transition in the combined glucolipid and neutral lipid fractions was only 2–3 °C lower than for the total lipids, and the phospholipids thus have a very modest influence on the T LH value. Physiologically relevant concentrations of Ca2+ and Mg2+ ions did not affect the phase equilibria of total lipid extracts significantly. It is concluded from comparison with published data that the membrane lipids of the cell wall-less bacterium A. laidlawii have a smaller tendency to form reversed nonlamellar phases than the membrane lipids of three bacterial species surrounded by a cell wall. Received: 10 March 1997 / Accepted: 4 July 1997  相似文献   

11.
Ono TA  Murata N 《Plant physiology》1982,69(1):125-129
The lipid phase of cytoplasmic membrane was studied by freeze-fracture electron microscopy in the chilling-susceptible blue-green alga, Anacystis nidulans. At growth temperatures, intramembrane particles were distributed at random in the fracture faces of cytoplasmic membrane, whereas, at chilling temperatures, the fracture faces were composed of particle-free and particle-containing regions. These findings indicate that lipids of the cytoplasmic membrane were in the liquid-crystalline state at the growth temperatures and in the phase-separation state at the chilling temperatures. Temperatures for the onset of phase separation were 5 and 16°C in cells grown at 28 and 38°C, respectively.  相似文献   

12.
We have studied the influence of changes in lipid organization on the planar distribution of two classes of membrane proteins: integral proteins which have amino groups exposed to labelling at the membrane surface by the biotin-avidin-ferritin procedure, and those proteins which penetrate the lipid bilayer sufficiently to be seen as intramembranous particles by freeze-fracture electron-microscopy.When the membranes are examined at temperatures below the lipid phase transition, the first class is dispersed and the second patched. At temperatures in the middle of the transition range, both classes are patched. At temperatures just above the phase transition the first class is dispersed and the second patched, and at temperatures well above the transition both classes are dispersed. Freeze-etch studies of avidin-ferritin-labeled membranes confirmed that the distribution seen by the labeling and the freeze-fracture techniques coexist in single membranes. Thus, there exist two distinct classes of membrane proteins with differential organizational responses to the lipid state.  相似文献   

13.
Freeze-etch electron microscopy demonstrated that filipin induces the formation of aggregates 150–250Åin diameter, in the membranes of rat erythrocytes, in cholesterol-containing membranes ofAcholeplasma laidlawii cells and in egg lecithin-cholesterol liposomes. No change in fracture faces was observed when cholesterol was absent in the membranes ofA. laidlawii, and lecithin liposomes.Amphotericin B does not visibly affect the freeze-etch morphology of erythrocytes, cholesterol-containingA. laidlawii cells and lecithin-cholesterol liposomes.  相似文献   

14.
The peripheral membrane protein fraction released by washing Acholeplasma laidlawii membranes with low-ionic strength buffers contained about 50 % of the total membrane-bound ribonuclease and deoxyribonuclease activities. The ATPase, NADH oxidase and p-nitrophenylphosphatase activities remained bound to the membrane even when EDTA was added to the wash fluids, and thus appear to belong to the integral membrane protein group.Serving as a marker for peripheral membrane proteins, the membrane-bound ribonuclease activity was solubilized by bile salts much more effectively than the integral membrane-bound enzymes. On the other hand, the solubilized ribonuclease showed a much lower capacity to reaggregate with other solubilized membrane components to membranous structures. Yet, most of the ribonuclease molecules which were bound to the reaggregated membranes could not be released by low-ionic strength buffer. The reaggregated membranes differed from the native membranes in the absence of particles on their fracture faces obtained by freeze cleaving, and by their much higher labeling by the [125I]lactoperoxidase iodination system. These results suggest that most of the proteins are exposed on the reaggregated membrane surfaces, with very little, if any, protein embedded in its lipid bilayer core.Enzyme disposition in the A. laidlawii membrane was studied by comparing the activity of isolated membranes with that of membranes of intact cells after treatment with pronase or with an antiserum to membranes. The data indicate the asymmetrical disposition of these activities, the ATPase and NADH oxidase being localized on the inner membrane surface, while the nucleases are exposed on the external membrane surface.  相似文献   

15.
2H nuclear magnetic resonance (NMR) of Acholesplasma laidlawii membranes grown on a medium supplemented with perdeuterated palmitic acid shows that at 42°C or above, the membrane lipids are entirely in a fluid state, exhibiting the characteristic ‘plateau’ in the variation of deuterium quadrupolar splitting with chain position. Between 42 and 34°C there is a well-defined gel-to-fluid phase transition encompassing the growth temperature of 37°C, and at lower temperatures the membranes are in a highly ordered gel state. The 2H-NMR spectra of the gel phase membranes are similar to those of multilamellar dispersions of chain perdeuterated dipalmitoyl phosphatidylcholine (Davis, J.H. (1979) Biophys. J. 27, 339) as are the temperature dependences of the spectra and their moments. The incorporation of large amounts of cholesterol into the membrane removes the gel to fluid phase transition. Between 20 and 42°C, the position dependence of the orientational order of the hydrocarbon chains of the membranes is similar to that of the fluid phase of the membranes without cholesterol, i.e., they exhibit the plateau in the deuterium quadrupolar splittings. However, the cholesterol-containing membranes have a higher average order, with the increases in order being greater for positions near the carbonyl group of the acyl chains. Below 20°C the 2H spectra of the membranes containing cholesterol change dramatically in a fashion suggestive of complex motional and/or phase behaviour.  相似文献   

16.
The high resolution, two-dimensional electrophoresis system for the separation of proteins described by O'Farrell, (O'Farrell, P.H. (1975) J. Biol. Chem. 250, 4007–4021) has been modified for the separation of Acholeplasma laidlawii proteins.Reproducible protein patterns have been obtained from A. laidlawii cell, membrane and soluble protein preparations. The isoelectric focusing of membrane proteins was greatly improved by removing the bulk of the membrane lipid before solubilizing the protein.A. laidlawii peripheral membrane proteins were removed from the membrane by low ionic strength washing and by treatment with EDTA. The effect of an exhaustive EDTA treatment and a rapid, warm EDTA treatment were compared. By comparing the protein patterns obtained in these ways it was possible to distinguish two separate groups of peripheral membrane proteins and one integral membrane protein group. The peripheral membrane proteins which were removed from the membrane at low ionic strength (group I) were also insoluble in Triton X-100, whereas additional peripheral membrane proteins extractable by subsequent EDTA treatment (group II) were soluble in Triton X-100.Exterior-facing membrane proteins were distinguished from the interiorfacing ones by lactoperoxidase-catalyzed iodination of intact cells and membranes. Group I peripheral membrane proteins faced the cell interior whereas group II proteins faced the cell exterior. We counted approximately 320 individual whole cell proteins. Of these, about 140 were membrane associated and a maximum of 40 proteins were iodinated after iodinationg intact cells.A. laidlawii was also grown in the presence of NaH232PO4 and whole cell proteins were separated by two-dimensional gel electrophoresis. One membrane protein and two soluble proteins were labelled.  相似文献   

17.
Growing cells of sterol-requiring Mycoplasma hominis and sterol non-requiring Acholeplasma laidlawii were used to test the ability of cholesterol-dipalmitoyl phosphatidylcholine dispersions to serve as cholesterol donors to these organisms. Dispersions with high cholesterol to phosphatidylcholine ratios were more effective than dispersions with low cholesterol to phosphatidylcholine ratios in donating cholesterol to the membranes of both mycoplasmas and in promoting growth of the sterol-requiring species. M. hominis took up almost three times as much cholesterol as did A. laidlawii. In addition, significant quantities of the phosphatidylcholine component of the dispersions were found to be associated with M. hominis membranes as against none in the A. laidlawii membrane preparations. In all cases, the percentage of cholesterol taken up by M. hominis from the dispersions exceeded that of phosphatidylcholine by a factor of 3–5. These results were interpreted to suggest that all the cholesterol taken up by A. laidlawii is transferred from the dispersion to the membranes by a process which involves only a transient contact between the organisms and the lipid dispersions, whereas a certain amount of the cholesterol taken up by M. hominis may also be derived from lipid dispersions adhering to or fusing with the cell membranes.  相似文献   

18.
An isolated light-harvesting pigment-protein complex contains polypeptides which bind chlorophyll a and b. The individual complexes can be purified from detergent-solubilized membranes. The isolated light-harvesting complex, when dialyzed to remove detergents, was examined by freeze-fracture electron microscopy. The material consisted of planar sheets of 80-Å subunits which interacted via an edge-to-edge contact. Addition of cations caused the planar light-harvesting complex sheets to become tightly appressed in multilamellar stacks, with distinct subunits still visible within each lamellar sheet. A transition of particle organization from random to crystalline occurred in parallel with the cation-induced lamellar association. Treatment of the dialyzed light-harvesting complex subunits with low levels of the proteolytic enzyme trypsin removed a 2000 molecular weight segment of the major polypeptide of the light-harvesting complex and blocked all subsequent cation-induced changes in structural organization of the isolated light-harvesting complex lamellar sheets.To gain further evidence for mechanisms of cation effects upon the organization of the light-harvesting complex in native membranes, the light-harvesting complex was incorporated into uncharged (phosphatidylcholine) lipid vesicles. The protein complexes spanned the lipid bilayer and were arranged in either a random pattern or in hexagonal crystalline lattices. Addition of either monovalent or divalent cations to ‘low-salt’ (20 mM monovalent cation) vesicles containing light-harvesting complex caused extensive regions of membrane appression to appear. It is concluded that this cation-induced membrane appression is mediated by surface-exposed segments of the light-harvesting complex since (a) phosphatidylcholine vesicles themselves did not undergo cation-induced aggregation, and (b) mild trypsin digestion of the surface-exposed regions of the light-harvesting complex blocked cation-induced lamellar appression. The particles in the appressed vesicle membranes tended to form long, linear arrays of particles, with occasional mixed quasi-crystalline arrays with an angular displacement near 72°. Surface-mediated interactions among light-harvesting complex subunits of different membranes are, therefore, related to changes in structural organization and interaction of the particles within the lipid phase of the membrane.Numerous previous studies have implicated the involvement of the light-harvesting complex in mediating grana stocking in intact chloroplast membranes. The data presented herein provide a simulation of the membrane appression phenomena using a single class of chloroplast-derived membrane subunits. The data demonstrate that specific surface-localized regions of the light-harvesting complex are involved in membrane-membrane interactions.  相似文献   

19.
A definite and characteristic relationship exists between growth temperature, fatty acid composition and the fluidity and physical state of the membrane lipids in wild type Bacillus stearothermophilus. As the environmental temperature is increased, the proportion of saturated fatty acids found in the membrane lipids is also markedly increased with a concomitant decrease in the proportion of unsaturated and branched chain fatty acids. The temperature range over which the gel to liquid-crystalline membrane lipid phase transition occurs is thereby shifted such that the upper boundary of this transition always lies near (and usually below) the temperature of growth. This organism thus possesses an effective and sensitive homeoviscous adaptation mechanism which maintains a relatively constant degree of membrane lipid fluidity over a wide range of environmental temperatures. A mutant of B. stearothermophilus which has lost the ability to increase the proportion of relatively high melting fatty acids in the membrane lipids, and thereby increase the phase transition temperature in response to increases in environmental temperature, is also unable to grow at higher temperatures. An effective homeoviscous regulatory mechanism thus appears to extend the growth temperature range of the wild type organism and may be an essential feature of adaptation to temperature extremes.Over most of their growth temperature ranges the membrane lipids of wild type and temperature-sensitive B. stearothermophilus cells exist entirely or nearly entirely in the liquid-crystalline state. Also, the temperature-sensitive mutant is capable of growth at temperatures well above those at which the membrane lipid gel to liquid-crystalline phase transition is completed. Therefore, although other evidence suggests the existence of an upper limit on the degree of membrane fluidity compatible with cell growth, the phase transition upper boundary itself does not directly determine the maximum growth temperature of this organism. Similarly, the lower boundary does not determine the minimum growth temperature, since cell growth ceases at a temperature at which most of the membrane lipid still exists in a fluid state. These observations do not support the suggestion made in an earlier study, which utilized electron spin resonance spectroscopy to monitor membrane lipid lateral phase separations, that the minimum and maximum growth temperatures of this organism might be directly determined by the solid-fluid membrane lipid phase transition boundaries. Evidence is presented here that the electron spin resonance techniques used previously did not in fact detect the gel to liquid-crystalline phase transition of the bulk membrane lipids, which, however, can be reliably measured by differential thermal analysis.  相似文献   

20.
The transfer of elaidate-enriched Acholeplasma laidlawii cells in culture from 37°C to 4°C virtually arrested exogenous cholesterol incorporation into the cell membrane. Cholesterol uptake continued, though at a slower rate, in oleate-enriched A. laidlawii cells undergoing similar temperature shift-down. It is concluded that the incorporation of exogenous cholesterol into the cell membrane of living mycoplasmas is rapid when the membrane lipid bilayer is in the liquid-crystalline state and very slow when the lipid bilayer is in the gel state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号