首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Numerous species of amphibians declined in Central America during the 1980s and 1990s. These declines mostly affected highland stream amphibians and have been primarily linked to chytridiomycosis, a deadly disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd). Since then, the majority of field studies on Bd in the Tropics have been conducted in midland and highland environments (>800 m) mainly because the environmental conditions of mountain ranges match the range of ideal abiotic conditions for Bd in the laboratory. This unbalanced sampling has led researchers to largely overlook host–pathogen dynamics in lowlands, where other amphibian species declined during the same period. We conducted a survey testing for Bd in 47 species (n = 348) in four lowland sites in Costa Rica to identify local host–pathogen dynamics and to describe the abiotic environment of these sites. We detected Bd in three sampling sites and 70% of the surveyed species. We found evidence that lowland study sites exhibit enzootic dynamics with low infection intensity and moderate to high prevalence (55% overall prevalence). Additionally, we found evidence that every study site represents an independent climatic zone, where local climatic differences may explain variations in Bd disease dynamics. We recommend more detection surveys across lowlands and other sites that have been historically considered unsuitable for Bd occurrence. These data can be used to identify sites for potential disease outbreaks and amphibian rediscoveries.  相似文献   

2.
Global climate change is increasing the frequency of unpredictable weather conditions; however, it remains unclear how species‐level and geographic factors, including body size and latitude, moderate impacts of unusually warm or cool temperatures on disease. Because larger and lower‐latitude hosts generally have slower acclimation times than smaller and higher‐latitude hosts, we hypothesised that their disease susceptibility increases under ‘thermal mismatches’ or differences between baseline climate and the temperature during surveying for disease. Here, we examined how thermal mismatches interact with body size, life stage, habitat, latitude, elevation, phylogeny and International Union for Conservation of Nature (IUCN) conservation status to predict infection prevalence of the chytrid fungus Batrachochytrium dendrobatidis (Bd) in a global analysis of 32 291 amphibian hosts. As hypothesised, we found that the susceptibility of larger hosts and hosts from lower latitudes to Bd was influenced by thermal mismatches. Furthermore, hosts of conservation concern were more susceptible than others following thermal mismatches, suggesting that thermal mismatches might have contributed to recent amphibian declines.  相似文献   

3.
Batrachochytrium dendrobatidis (Bd) is a fungus that can potentially lead to chytridiomycosis, an amphibian disease implicated in die-offs and population declines in many regions of the world. Winter field surveys in the last decade have documented die-offs in populations of the lowland leopard frog Rana yavapaiensis with chytridiomycosis. To test whether the fungus persists in host populations between episodes of observed host mortality, we quantified field-based Bd infection rates during nonwinter months. We used PCR to sample for the presence of Bd in live individuals from nine seemingly healthy populations of the lowland leopard frog as well as four of the American bullfrog R. catesbeiana (a putative vector for Bd) from Arizona. We found Bd in 10 of 13 sampled populations. The overall prevalence of Bd was 43% in lowland leopard frogs and 18% in American bullfrogs. Our results suggest that Bd is widespread in Arizona during nonwinter months and may become virulent only in winter in conjunction with other cofactors, or is now benign in these species. The absence of Bd from two populations associated with thermal springs (water >30°C), despite its presence in nearby ambient waters, suggests that these microhabitats represent refugia from Bd and chytridiomycosis.  相似文献   

4.
As extinctions continue across the globe, conservation biologists are turning to species reintroduction programs as one optimistic tool for addressing the biodiversity crisis. For repatriation to become a viable strategy, fundamental prerequisites include determining the causes of declines and assessing whether the causes persist in the environment. Invasive species—especially pathogens—are an increasingly significant factor contributing to biodiversity loss. We hypothesized that Batrachochytrium dendrobatidis (Bd), the causative agent of the deadly amphibian disease chytridiomycosis, was important in the rapid (<10 years) localized extirpation of a North American frog (Rana boylii) and that Bd remains widespread among extant amphibians in the region of extirpation. We used an interdisciplinary approach, combining interviews with herpetological experts, analysis of archived field notes and museum specimen collections, and field sampling of the extant amphibian assemblage to examine (1) historical relative abundance of R. boylii; (2) potential causes of R. boylii declines; and (3) historical and contemporary prevalence of Bd. We found that R. boylii were relatively abundant prior to their rapid extirpation, and an increase in Bd prevalence coincided with R. boylii declines during a time of rapid change in the region, wherein backcountry recreation, urban development, and the amphibian pet trade were all on the rise. In addition, extreme flooding during the winter of 1969 coincided with localized extirpations in R. boylii populations observed by interview respondents. We conclude that Bd likely played an important role in the rapid extirpation of R. boylii from southern California and that multiple natural and anthropogenic factors may have worked in concert to make this possible in a relatively short period of time. This study emphasizes the importance of recognizing historical ecological contexts in making future management and reintroduction decisions.  相似文献   

5.
The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused the greatest known wildlife pandemic, infecting over 500 amphibian species. It remains unclear why some host species decline from disease‐related mortality whereas others persist. We introduce a conceptual model that predicts that infection risk in ectotherms will decrease as the difference between host and pathogen environmental tolerances (i.e. tolerance mismatch) increases. We test this prediction using both local‐scale data from Costa Rica and global analyses of over 11 000 Bd infection assays. We find that infection prevalence decreases with increasing thermal tolerance mismatch and with increasing host tolerance of habitat modification. The relationship between environmental tolerance mismatches and Bd infection prevalence is generalisable across multiple amphibian families and spatial scales, and the magnitude of the tolerance mismatch effect depends on environmental context. These findings may help explain patterns of amphibian declines driven by a global wildlife pandemic.  相似文献   

6.
Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28°C. Here we investigate how small-scale variations in water temperature correlate with Bd prevalence in the wild. We sampled 221 amphibians, including 201 lowland leopard frogs (Rana [Lithobates] yavapaiensis), from 12 sites in Arizona, USA, and tested them for Bd. Amphibians were encountered in microhabitats that exhibited a wide range of water temperatures (10-50°C), including several geothermal water sources. There was a strong inverse correlation between the water temperature in which lowland leopard frogs were captured and Bd prevalence, even after taking into account the influence of year, season, and host size. In locations where Bd was known to be present, the prevalence of Bd infections dropped from 75-100% in water <15°C, to less than 10% in water >30°C. A strong inverse correlation between Bd infection status and water temperature was also observed within sites. Our findings suggest that microhabitats where water temperatures exceed 30°C provide lowland leopard frogs with significant protection from Bd, which could have important implications for disease dynamics, as well as management applications.There must be quite a few things a hot bath won't cure, but I don't know many of them--Sylvia Plath, "The Bell Jar" (1963).  相似文献   

7.
We model Batrachochytrium dendrobatidis (Bd) infection rates in Jamaican frogs—one of the most threatened amphibian fauna in the world. The majority of species we surveyed were terrestrial direct‐developing frogs or frogs that breed in tank bromeliads, rather than those that use permanent water bodies to breed. Thus, we were able to investigate the climatic correlates of Bd infection in a frog assemblage that does not rely on permanent water bodies. We sampled frogs for Bd across all of the major habitat types on the island, used machine learning algorithms to identify climatic variables that are correlated with infection rates, and extrapolated infection rates across the island. We compared the effectiveness of the machine learning algorithms for species distribution modeling in the context of our study, and found that infection rate rose quickly with precipitation in the driest month. Infection rates also increased with mean temperature in the warmest quarter until 22 °C, and remained relatively level thereafter. Both of these results are in accordance with previous studies of the physiology of Bd. Based on our environmental results, we suggest that frogs occupying high‐precipitation habitats with cool rainy‐season temperatures, though zcurrently experiencing low frequencies of infection, may experience an increase in infection rates as global warming increases temperatures in their habitat.  相似文献   

8.
One of the most devastating emerging pathogens of wildlife is the chytrid fungus, Batrachochytrium dendrobatidis (Bd), which affects hundreds of amphibian species around the world. Genomic data from pure Bd cultures have advanced our understanding of Bd phylogenetics, genomic architecture and mechanisms of virulence. However, pure cultures are laborious to obtain and whole‐genome sequencing is comparatively expensive, so relatively few isolates have been genetically characterized. Thus, we still know little about the genetic diversity of Bd in natural systems. The most common noninvasive method of sampling Bd from natural populations is to swab amphibian skin. Hundreds of thousands of swabs have been collected from amphibians around the world, but Bd DNA collected via swabs is often low in quality and/or quantity. In this study, we developed a custom Bd genotyping assay using the Fluidigm Access Array platform to amplify 192 carefully selected regions of the Bd genome. We obtained robust sequence data for pure Bd cultures and field‐collected skin swabs. This new assay has the power to accurately discriminate among the major Bd clades, recovering the basic tree topology previously revealed using whole‐genome data. Additionally, we established a critical value for initial Bd load for swab samples (150 Bd genomic equivalents) above which our assay performs well. By leveraging advances in microfluidic multiplex PCR technology and the globally distributed resource of amphibian swab samples, noninvasive skin swabs can now be used to address critical spatial and temporal questions about Bd and its effects on declining amphibian populations.  相似文献   

9.
Parasites typically have broader thermal limits than hosts, so large performance gaps between pathogens and their cold‐ and warm‐adapted hosts should occur at relatively warm and cold temperatures, respectively. We tested this thermal mismatch hypothesis by quantifying the temperature‐dependent susceptibility of cold‐ and warm‐adapted amphibian species to the fungal pathogen Batrachochytrium dendrobatidis (Bd) using laboratory experiments and field prevalence estimates from 15 410 individuals in 598 populations. In both the laboratory and field, we found that the greatest susceptibility of cold‐ and warm‐adapted hosts occurred at relatively warm and cool temperatures, respectively, providing support for the thermal mismatch hypothesis. Our results suggest that as climate change shifts hosts away from their optimal temperatures, the probability of increased host susceptibility to infectious disease might increase, but the effect will depend on the host species and the direction of the climate shift. Our findings help explain the tremendous variation in species responses to Bd across climates and spatial, temporal and species‐level variation in disease outbreaks associated with extreme weather events that are becoming more common with climate change.  相似文献   

10.
Pathogens compete with host microbiomes for space and resources. Their shared environment impacts pathogen–microbiome–host interactions, which can lead to variation in disease outcome. The skin microbiome of red‐backed salamanders (Plethodon cinereus) can reduce infection by the pathogen Batrachochytrium dendrobatidis (Bd) at moderate infection loads, with high species richness and high abundance of competitors as putative mechanisms. However, it is unclear if the skin microbiome can reduce epizootic Bd loads across temperatures. We conducted a laboratory experiment to quantify skin microbiome and host responses (P. cinereus: n = 87) to Bd at mimicked epizootic loads across temperatures (13, 17 and 21°C). We quantified skin microbiomes using 16S rRNA gene metabarcoding and identified operational taxonomic units (OTUs) taxonomically similar to culturable bacteria known to kill Bd (anti‐Bd OTUs). Prior to pathogen exposure, temperature changed the microbiome (OTU richness decreased by 12% and the abundance of anti‐Bd OTUs increased by 18% per degree increase in temperature), but these changes were not predictive of disease outcome. After exposure, Bd changed the microbiome (OTU richness decreased by 0.1% and the abundance of anti‐Bd OTUs increased by 0.2% per 1% increase in Bd load) and caused high host mortality across temperatures (35/45: 78%). Temperature indirectly impacted microbiome change and mortality through its direct effect on pathogen load. We did not find support for the microbiome impacting Bd load or host survival. Our research reveals complex host, pathogen, microbiome and environmental interactions to demonstrate that during epizootic events the microbiome will be unlikely to reduce pathogen invasion, even for putatively Bd‐resistant species.  相似文献   

11.
Population declines and extinctions of amphibians have been attributed to the chytrid fungus Batrachochytrium dendrobatidis (Bd), especially one globally emerging recombinant lineage (‘Bd‐GPL’). We used PCR assays that target the ribosomal internal transcribed spacer region (ITS) of Bd to determine the prevalence and genetic diversity of Bd in South Korea, where Bd is widely distributed but is not known to cause morbidity or mortality in wild populations. We isolated Korean Bd strains from native amphibians with low infection loads and compared them to known worldwide Bd strains using 19 polymorphic SNP and microsatellite loci. Bd prevalence ranged between 12.5 and 48.0%, in 11 of 17 native Korean species, and 24.7% in the introduced bullfrog Lithobates catesbeianus. Based on ITS sequence variation, 47 of the 50 identified Korean haplotypes formed a group closely associated with a native Brazilian Bd lineage, separated from the Bd‐GPL lineage. However, multilocus genotyping of three Korean Bd isolates revealed strong divergence from both Bd‐GPL and the native Brazilian Bd lineages. Thus, the ITS region resolves genotypes that diverge from Bd‐GPL but otherwise generates ambiguous phylogenies. Our results point to the presence of highly diversified endemic strains of Bd across Asian amphibian species. The rarity of Bd‐GPL‐associated haplotypes suggests that either this lineage was introduced into Korea only recently or Bd‐GPL has been outcompeted by native Bd strains. Our results highlight the need to consider possible complex interactions among native Bd lineages, Bd‐GPL and their associated amphibian hosts when assessing the spread and impact of Bd‐GPL on worldwide amphibian populations.  相似文献   

12.
Amphibian chytridiomycosis, caused by infection with the non-hyphal, zoosporic chytrid fungus Batrachochytrium dendrobatidis (Bd), is an emerging infectious disease recognised as a cause of recent amphibian population declines and extinctions worldwide. The Do?ana National Park (DNP) is located in southwestern Spain, a country with widespread Bd infection. This protected area has a great diversity of aquatic habitats that constitute important breeding habitats for 11 native amphibian species. We sampled 625 amphibians in December 2007 and February to March 2008, months that correspond to the early and intermediate breeding seasons for amphibians, respectively. We found 7 of 9 sampled species to be infected with Bd and found differences in prevalence between sampling periods. Although some amphibians tested had higher intensities of infection than others, all animals sampled were apparently healthy and, so far, there has been no evidence of either unusually high rates of mortality or amphibian population declines in the DNP.  相似文献   

13.
Understanding the ecology and evolution of parasites is contingent on identifying the selection pressures they face across their infection landscape. Such a task is made challenging by the fact that these pressures will likely vary across time and space, as a result of seasonal and geographical differences in host susceptibility or transmission opportunities. Avian haemosporidian blood parasites are capable of infecting multiple co‐occurring hosts within their ranges, yet whether their distribution across time and space varies similarly in their different host species remains unclear. Here, we applied a new PCR method to detect avian haemosporidia (genera Haemoproteus, Leucocytozoon, and Plasmodium) and to determine parasite prevalence in two closely related and co‐occurring host species, blue tits (Cyanistes caeruleus, N = 529) and great tits (Parus major, N = 443). Our samples were collected between autumn and spring, along an elevational gradient in the French Pyrenees and over a three‐year period. Most parasites were found to infect both host species, and while these generalist parasites displayed similar elevational patterns of prevalence in the two host species, this was not always the case for seasonal prevalence patterns. For example, Leucocytozoon group A parasites showed inverse seasonal prevalence when comparing between the two host species, being highest in winter and spring in blue tits but higher in autumn in great tits. While Plasmodium relictum prevalence was overall lower in spring relative to winter or autumn in both species, spring prevalence was also lower in blue tits than in great tits. Together, these results reveal how generalist parasites can exhibit host‐specific epidemiology, which is likely to complicate predictions of host–parasite co‐evolution.  相似文献   

14.
Knowledge of the latitudinal patterns in biotic interactions, and especially in herbivory, is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. We used sap‐feeding insects as a model group to test the hypotheses that the strength of plant–herbivore interactions in boreal forests decreases with latitude and that this latitudinal pattern is driven primarily by midsummer temperatures. We used a replicated sampling design and quantitatively collected and identified all sap‐feeding insects from four species of forest trees along five latitudinal gradients (750–1300 km in length, ten sites in each gradient) in northern Europe (59 to 70°N and 10 to 60°E) during 2008–2011. Similar decreases in diversity of sap‐feeding insects with latitude were observed in all gradients during all study years. The sap‐feeder load (i.e. insect biomass per unit of foliar biomass) decreased with latitude in typical summers, but increased in an exceptionally hot summer and was independent of latitude during a warm summer. Analysis of combined data from all sites and years revealed dome‐shaped relationships between the loads of sap‐feeders and midsummer temperatures, peaking at 17 °C in Picea abies, at 19.5 °C in Pinus sylvestris and Betula pubescens and at 22 °C in B. pendula. From these relationships, we predict that the losses of forest trees to sap‐feeders will increase by 0–45% of the current level in southern boreal forests and by 65–210% in subarctic forests with a 1 °C increase in summer temperatures. The observed relationships between temperatures and the loads of sap‐feeders differ between the coniferous and deciduous tree species. We conclude that climate warming will not only increase plant losses to sap‐feeding insects, especially in subarctic forests, but can also alter plant‐plant interactions, thereby affecting both the productivity and the structure of future forest ecosystems.  相似文献   

15.
The amphibian chytrid fungus, Batrachochytrium dendrobatidis, Bd, has been implicated in the decimation and extinction of many amphibian populations worldwide, especially at mid and high elevations. Recent studies have demonstrated the presence of the pathogen in the lowlands from Australia and Central America. We extend here its elevational range by demonstrating its presence at the sea level, in the lowland forests of Gorgona Island, off the Pacific coast of Colombia. We conducted two field surveys, separated by four?years, and diagnosed Bd by performing polymerase chain reactions on swab samples from the skin of five amphibian species. All species, including the Critically Endangered Atelopus elegans, tested positive for the pathogen, with prevalences between 3.9?% in A. elegans (in 2010) and 52?% in Pristimantis achatinus. Clinical signs of chytridiomycosis were not detected in any species. To our knowledge, this is the first report of B. dendrobatidis in tropical lowlands at sea level, where temperatures may exceed optimal growth temperatures of this pathogen. This finding highlights the need to understand the mechanisms allowing the interaction between frogs and pathogen in lowland ecosystems.  相似文献   

16.
Batrachochytrium dendrobatidis (Bd), a disease-causing amphibian-specific fungus, is widely distributed in Puerto Rico, but is restricted to elevations above 600 m. The effect of this pathogen in the wild was studied by monitoring Eleutherodactylus coqui and E. portoricensis in 2 upland forests at El Yunque, a site characterized by historic population declines in the presence of chytridiomycosis. We tested a potential synergistic interaction between climate and Bd by measuring prevalence of infection and level of infection per individual sampled (number of zoospores), across the dry and wet seasons for 2 yr (between 2005 and 2007). Infection levels in adult frogs were significantly higher during the dry season in both species studied, suggesting a cyclic pattern of dry/ cool-wet/warm climate-driven synergistic interaction. These results are consistent with ex situ experiments in which E. coqui infected with Bd were more susceptible to chytridiomycosis when subjected to limited water treatments resembling drought. Long-term data on the prevalence of Bd in the populations studied versus intensity of infection in individual frogs provided contradictory information. However, the conflicting nature of these data was essential to understand the status of Bd in the species and geographical area studied. We conclude that in Puerto Rico, Bd is enzootic, and vulnerability of eleutherodactylid frogs to this pathogen is related to seasonal climatic variables. Our data suggest a mechanism by which this disease can persist in tropical frog communities without decimation of its hosts, but that complex interactions during severe droughts may lead to population crashes.  相似文献   

17.
Host behavior can interact with environmental context to influence outcomes of pathogen exposure and the impact of disease on species and populations. Determining whether the thermal behaviors of individual species influence susceptibility to disease can help enhance our ability to explain and predict how and when disease outbreaks are likely to occur. The widespread disease chytridiomycosis (caused by the fungal pathogen Batrachochytrium dendrobatidis, Bd) often has species‐specific impacts on amphibian communities; some host species are asymptomatic, whereas others experience mass mortalities and population extirpation. We determined whether the average natural thermal regimes experienced by sympatric frog species in nature, in and of themselves, can account for differences in vulnerability to disease. We did this by growing Bd under temperatures mimicking those experienced by frogs in the wild. At low and high elevations, the rainforest frogs Litoria nannotis, L. rheocola, and L. serrata maintained mean thermal regimes within the optimal range for pathogen growth (15–25°C). Thermal regimes for L. serrata, which has recovered from Bd‐related declines, resulted in slower pathogen growth than the cooler and less variable thermal regimes for the other two species, which have experienced more long‐lasting declines. For L. rheocola and L. serrata, pathogen growth was faster in thermal regimes corresponding to high elevations than in those corresponding to low elevations, where temperatures were warmer. For L. nannotis, which prefers moist and thermally stable microenvironments, pathogen growth was fastest for low‐elevation thermal regimes. All of the thermal regimes we tested resulted in pathogen growth rates equivalent to, or significantly faster than, rates expected from constant‐temperature experiments. The effects of host body temperature on Bd can explain many of the broad ecological patterns of population declines in our focal species, via direct effects on pathogen fitness. Understanding the functional response of pathogens to conditions experienced by the host is important for determining the ecological drivers of disease outbreaks.  相似文献   

18.
Direct predation upon parasites has the potential to reduce infection in host populations. For example, the fungal parasite of amphibians, Batrachochytrium dendrobatidis (Bd), is commonly transmitted through a free‐swimming zoospore stage that may be vulnerable to predation. Potential predators of Bd include freshwater zooplankton that graze on organisms in the water column. We tested the ability of two species of freshwater crustacean (Daphnia magna and D. dentifera) to consume Bd and to reduce Bd density in water and infection in tadpoles. In a series of laboratory experiments, we allowed Daphnia to graze in water containing Bd while manipulating Daphnia densities, Daphnia species identity, grazing periods and concentrations of suspended algae (Ankistrodesmus falcatus). We then exposed tadpoles to the grazed water. We found that high densities of D. magna reduced the amount of Bd detected in water, leading to a reduction in the proportion of tadpoles that became infected. Daphnia dentifera, a smaller species of Daphnia, also reduced Bd in water samples, but did not have an effect on tadpole infection. We also found that algae affected Bd in complex ways. When Daphnia were absent, less Bd was detected in water and tadpole samples when concentrations of algae were higher, indicating a direct negative effect of algae on Bd. When Daphnia were present, however, the amount of Bd detected in water samples showed the opposite trend, with less Bd when densities of algae were lower. Our results indicate that Daphnia can reduce Bd levels in water and infection in tadpoles, but these effects vary with species, algal concentration, and Daphnia density. Therefore, the ability of predators to consume parasites and reduce infection is likely to vary depending on ecological context.  相似文献   

19.
While disease‐induced extinction is generally considered rare, a number of recently emerging infectious diseases with load‐dependent pathology have led to extinction in wildlife populations. Transmission is a critical factor affecting disease‐induced extinction, but the relative importance of transmission compared to load‐dependent host resistance and tolerance is currently unknown. Using a combination of models and experiments on an amphibian species suffering extirpations from the fungal pathogen Batrachochytrium dendrobatidis (Bd), we show that while transmission from an environmental Bd reservoir increased the ability of Bd to invade an amphibian population and the extinction risk of that population, Bd‐induced extinction dynamics were far more sensitive to host resistance and tolerance than to Bd transmission. We demonstrate that this is a general result for load‐dependent pathogens, where non‐linear resistance and tolerance functions can interact such that small changes in these functions lead to drastic changes in extinction dynamics.  相似文献   

20.
The fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), is one of the main causes of amphibian population declines and extinctions all over the world. In the Neotropics, this fungal disease has caused catastrophic declines in the highlands as it has spread throughout Central America down to Panamá. In this study, we determined the prevalence and intensity of Bd infection in three species of frogs in one highland and four lowland tropical forests, including two lowland regions in eastern Panamá in which the pathogen had not been detected previously. Bd was present in all the sites sampled with a prevalence ranging from 15–34%, similar to other Neotropical lowland sites. The intensity of Bd infection on individual frogs was low, ranging from average values of 0.11–24 zoospore equivalents per site. Our work indicates that Bd is present in anuran communities in lowland Panamá, including the Darién province, and that the intensity of the infection may vary among species from different habitats and with different life histories. The population-level consequences of Bd infection in amphibian communities from the lowlands remain to be determined. Detailed studies of amphibian species from the lowlands will be essential to determine the reason why these species are persisting despite the presence of the pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号