首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT

Fast-atom bombardment mass spectrometry (FABMS), and collisionally-induced dissociation and mass-analyzed ion kinetic energy spectrum scanning (CID/MIKES) have been used to examine cation effects on a Phaseolus chloroplast complex phosphodiesterase activity. The kinetic parameters of the activity, and the effects of Li+, Na+, K+, Mg2+, Mn2+ and Fe3+ upon them, were determined with 3′,5′-cyclic AMP, -GMP and -CMP, and 2′,3′-cyclic AMP, -GMP and -CMP as substrates. Irrespective of the presence of cations and of the complex nucleotidase, the preferred substrate is a 3′,5′-cyclic nucleotide, not a 2′,3′-cyclic nucleotide. In the presence of the nucleotidase 3′,5′-cyclic AMP and 3′,5′-cyclic GMP are the best substrates, unless Fe3+ ions are present. Mg2+ and Mn2+ stimulate hydrolysis of 3′,5′-cyclic AMP and 3′,5′-cyclic GMP by the complex. However, Fe3+ inhibits these activities but stimulates the hydrolysis of 3′,5′-cyclic CMP. Kinetic data indicate that each of these six substrates is hydrolyzed at a single, common, catalytic site. Differentiation of the phosphodiesterase isomeric mononucleotide products by FABMS CID/MIKES analysis indicates that in the absence of ions and after removal of the nucleotidase, the 3′-ester linkage of the 3′,5′-cyclic substrates was hydrolyzed exclusively. Addition of monovalent and divalent ions results in hydrolysis of both the 5′- and 3′-ester linkages.  相似文献   

2.
A comparison has been made between the capacity to hydrolyse 2′,3′-cyclic adenosine monophosphate and 3′,5′-cyclic adenosine monophosphate in subcellular fractions of normal and neoplastic (lymphosarcoma) spleen of C57BL mice. The effect of X-irradiation on these activities was tested. Subcellular fractionation of normal and lymphosarcoma spleen points to a different overall localization of the enzymes. The 2′,3′-cyclic nucleotide phosphodiesterase (2′,3′-cAMPase) has its highest specific activity in the particulate fractions of the cell, while the data on 3′,5′-cyclic nucleotide phosphodiesterase (3′,5′-cAMPase) show the highest activity in the soluble fraction. The 2′,3′-cAMPase activity is higher in the tumor as compared to the normal tissue, while the opposite holds for 3′,5′-cAMPase. Total body irradiation of normal mice with a dose of 600 rads of X-rays, results in a clear drop in 2′,3′-cAMPase 48 hours after the exposure. The 3′,5′-cAMPase is hardly affected at this time. Neither imidazol nor Mg++ has any influence on the 2′,3′-cAMPase. The pH optimum for 3′,5′-cAMPase and 2′,3′-cAMPase appears to be 7.7 and 6.2 respectively. This report suggests a no-identity of the two enzymes in mouse spleen, a situation different from that found in certain plants.  相似文献   

3.
Livers from fed male rats were perfused in vitro with O2′-monobutyryl guanosine 3′,5′-cyclic monophosphate. The output of triglyceride was reduced, while output of ketone bodies and glucose was stimulated by 10?4M monobutyryl guanosine 3′,5′-cyclic monophosphate. No effect was observed with 10?5 M nucleotide. Monobutyryl guanosine 3′,5′-cyclic monophosphate did not affect uptake of free fatty acids. In these respects, monobutyryl guanosine 3′,5′-cyclic monophosphate mimics the effects of dibutyryl adenosine 3′,5′-cyclic monophosphate, although the guanylic nucleotide seems to be less potent than the adenosine 3′,5′-cyclic monophosphate derivative.  相似文献   

4.
It was found in isolated rat uterus that 5 × 10?4 N theophylline inhibited spontaneous contractions which were restituted by increasing extracellular calcium 4-fold. Tissue level of cyclic 3′, 5′ AMP was not affected. On the other hand, 10?2 M theophylline elevated cyclic 3′, 5′ AMP by 170 % for at least 60 minutes. The concomitant inhibition of spontaneous uterine motility could neither be restituted by increasing calcium up to 40-fold nor by washing. It was suggested that cyclic 3′, 5′ AMP was involved in theophylline-induced uterine relaxation when the drug was administrated in high amounts able to inhibit phosphodiesterase. Small doses of theophylline (5 × 10?4 M) were supposed to initiate relaxing effects by a calcium-antagonistic intrinsic activity.  相似文献   

5.
Infrared spectra of neutral aqueous solutions of nucleoside 3′,5′-cyclic monophosphates indicate an increase in the antisymmetric phosphoryl stretching frequency to 1236 cm?1 from 1215 cm?1 in trimethylene cyclic phosphates. A further increase to 1242 cm?1 accompanies esterification of the 2′-ribose hydroxyl. The O2′-esterified and 2′-deoxy cyclic nucleotides examined display both reduced kinase binding and altered phosphoryl stretching frequencies, suggesting that modification of the phosphate ring represents a common feature in decreased kinase activation. Reversible inhibition of mitosis in thymidine-synchronized human lymphocytes by 2 mmN6,O2′-dibutyryladenosine 3′,5′-cyclic monophosphate and N6-monobutyryladenosine 3′,5′-cyclic monophosphate was observed. However, adenosine 3′,5′-cyclic monophosphate, O2′-monobutyryladenosine 3′,5′-cyclic monophosphate, butyric acid, and ethyl butyrate had no effect on mitosis when present at 2 mm concentrations during S and G2. These results are consistent with hydrolysis of O2′-monobutyryladenosine 3′,5′-cyclic monophosphate and adenosine 3′,5′-cyclic monophosphate by esterase and phosphodiesterase enzymes and suggest that modification of the N6 amino group is necessary for the antimitotic activity of N6,O2′-dibutyryladenosine 3′, 5′-cyclic monophosphate.  相似文献   

6.
Cyclic nucleotide phosphodiesterase was extracted from intact chloroplasts and partially purified. Peak 1c activity from Sephadex G-200 was resolved by electrophoresis into two major bands (MWs 1.87 × 105 and 3.7 × 105). Both also possessed acid phosphatase, ribonuclease, nucleotidase and ATPase. The chloroplast peak 1c cyclic nueleotide phosphodiesterase was located in the envelope. Peak 1m cyclic nucleotide phosphodiesterase obtained from the microsomal fraction had a MW of 2.63 × 105. Electrophoresis separated 1m into two bands of cyclic nucleotide phosphodiesterase activity (MWs 2.63 × 105 and 1.28 × 105). Both contain ATPase, ribonuclease, nucleotidase, but not acid phosphatase. Peak 1c has high activity towards 3′:5′-cyclic AMP and 3′:5′-cyclic GMP but little towards 2′:3′-cyclic nucleotides. Peak 1m showed most activity towards 2′:3′-cyclic AMP, 2′:3′-cyclic GMP and 2′:3′-cyclic CMP with little activity towards 3′:5′-cyclic nucleotides. With 1c, 3′:5′-cyclic AMP and 3′:5′-cyclic GMP exhibit mixed-type inhibition towards one another. The 2′:3′-cyclic AMP phosphodiesterase 1m was competitively inhibited by 2′:3′-cyclic GMP. p-Chloromercuribenzoate inhibits 1c but not 1m. Electrophoresis after dissociation indicates that 1c and 1m are both enzyme complexes. After dissociation, the 1c complex but not that of 1m could be reassociated. The ribonuclease of the 1m complex hydrolyses RNA to yield 2′:3′-cyclic nucleotides as the main products. These results are compatible with the 1c cyclic nucleotide phosphodiesterase complex being involved in the metabolism of 3′:5′-cyclic AMP, and the 1m complex being concerned with RNA catabolism.  相似文献   

7.
Some characteristics of the cyclic 3′,5′-nucleotide phosphodiesterase (phosphodiesterase) activity associated with the synaptosomal plasma membrane (synaptic membrane) and the synaptic junction fractions of rat brain are reported. Kinetic analysis revealed that only one type of phosphodiesterase activity, with a Km of 2 · 10?4 M for cyclic AMP, is associated with both fractions. The specific activities of the phosphodiesterase in synaptic membranes and synaptic junctions have been estimated at 23.4 nmol/min per mg protein and 22.5 nmol/min per mg protein, respectively. The synaptic junction-associated activity undergoes a 30% stimulation by Ca2+ while no Ca2+ sensitivity of the synaptic membrane-associated activity could be detected. Cytochemical studies performed on the synaptic membrane fraction demonstrated a predominant localization of phosphodiesterase activity over postsynaptic densities, while dense deposits were sometimes observed over the synaptic cleft region.  相似文献   

8.
Abstract

A 3′, 5′-cyclic-AMP phosphodiesterase (PDE) was detected and measured in the lichen Evernia prunastri. The percentage of hydrolysis of tritiated 3′, 5′-cyclic-adenosine monophosphate ([3H]-cAMP) and 3′, 5′-cyclic-guanosine monophosphate ([3H]-cGMP) by the PDE enzyme into tritiated 5′-adenosine-monophospahte ([3H]-AMP) and tritiated 5′-guanosine-monophospahte ([3H]-GMP) was measured by treating the PDE products with a 5′-nucleotidase enzyme present in snake venom. The lysate fraction (L) (plasma membranes and cell walls) and the supernatant (S) (soluble fraction of the cells) were tested. In both fractions, competition of unlabelled cAMP, but not unlabelled cGMP, was revealed. Specific competitive PDE inhibitors such as IBMX inhibited enzymatic activity. Although it is thought that in this species cAMP is regulated by red/far red light through PDE activity, this is the first report that seems to suggest the presence of a PDE activity specific for cAMP in lichenized fungi. However, this work is at a preliminary stage and despite the high levels of enzymatic activity with cAMP found in both fractions, data are still insufficient to state the absolute specificity for this nucleotide.  相似文献   

9.
Adenosine 3′,5′-cyclic monophosphate (cAMP) and guanosine 3′,5′-cyclic monophosphate (cGMP) were detected at concentrations of 8–11 and 10–20 pmol · mg?1 protein, respectively, in zoospores of a brown alga, Undaria pinnatifida (Harvey) Suringer. Cellular levels of these cyclic nucleotides did not substantially change during dark to light transition. cAMP-stimulated protein phosphorylation was found in soluble cell-free extracts of zoospores of Undaria pinnatifida and Laminaria angustata Kjellman.  相似文献   

10.
Partially purified nucleotide fraction of moss containing [14C]-labelled putative adenosine 3′, 5′ -cyclic monophosphate (cAMP) and marker authentic [3H] -cAMP was characterized by chemical deamination and also by the enzymatic hydrolysis with beef heart cyclic nucleotide phosphodiesterase. A significant conversion of marker authentic [3H] -cAMP into [3H] -inosine 3′, 5′ -cyclic monophosphate (cIMP) and [3H] -5′ adenosine monophosphate was observed by respective treatments. In contrast, the [14C] -labelled putative cAMP from control and theophylline-treated moss tissue was insensitive to chemical deamination and enzymatic hydrolysis. Apparently, the [14C] -labelled product which comigrates with authentic [3H] -cAMP does not represent true cAMP. Both the methods employed for characterization of the labelled putative cAMP were sensitive enough to detect picomole quantities of authentic [3H] -cAMP. Lack of detectability of prelabelled [14C] -cAMP in our preparations implies that the tissue may contain authentic cyclic AMP below the picomole levels. Thus, the attributed physiological role to adenosine 3′, 5′ -cyclic monophosphate in moss tissue appears somewhat skeptical.  相似文献   

11.
Chlorophyllase from a diatom alga (Phaeodactylum tricornutum) was obtained and the partially purified extract has been further purified using preparative isoelectric focusing on a Rotofor cell. Three fractions, FI, FII, and FIII, were separated from the Rotofor cell and salt and ampholytes were removed to give fractions FI′, FII′, and FIII′, respectively. Enzyme fractions FI′, FII′, and FIII′, respectively. Enzyme fractions FI′, FII′, and FIII′ showed specific activities of 15.2 × 10?4, 226.7 ×10?4 and 33.8 × 10?4 µmol/mg protein/min, respectively. Most of the enzyme activity (84%) was in fraction FII′. The optimum pH for chlorophyllase activity was 8.0 for FI′ and 8.5 for both FII′ and FIII′. Apparent Km values for enzyme fractions FI′, FII′, and FIII′ were 2.1nM, 2.3nM, and 2.0 nM, respectively. Enzyme fractions FII′ and FIII′ showed higher chlorophyllase activity towards the partially purified chlorophyll when it was compared to that with the crude chlorophyll as well as with both chlorophylls a and b. However, the enzyme fraction FI′ had higher activity towards the crude chlorophyll when it was compared to that with both chlorophylls a and b, but with a preference for chlorophyll a over chlorophyll b. The inhibitory effect of diisopropyl flurophosphate (DIFP) on chlorophyllase activity demonstrates a noncompetitive inhibitor kinetics with Ki values of 1.29mM, 2.14mM, and 0.71mM for FI′. FII′, and FIII′, respectively.  相似文献   

12.
Dictyostelium discoideum cells were allowed to differentiate on agar for 600 min at room temperature. All of the cells were then competent to relay or amplify a cAMP signal, but none to produce a cAMP signal autonomously. The cells were stimulated with cAMP concentrations ranging from 10?9 to 3.5 × 10?7M. Populations of 106 cells could amplify an initial cAMP concentration of 2.5 × 10?9M with a low probability, while an initial cAMP concentration of 5 × 10?8M always induced a response. An initial cAMP concentration of 1.2 × 10?7M induced the maximum cellular release of cAMP observed; this corresponded to 3 × 107 molecules per cell. No cellular release of cAMP was detected for initial cAMP concentrations of 3 × 10?7M or more. The amplification of a 10?7M cAMP stimulus was complete within 8 sec, indicating the pulsatile nature of the cellular release of cAMP. The phosphodiesterase (PDE) activities of D. discoideum cells were measured over a wide range of cell densities. At densities above 7.5 × 104 cells/cm2, both cell-bound and extracellular (ePDE) activities declined, per cell, as cell density increased. These results are compared to ePDE activities derived from critical density measurements. We found that PDE activities were in the range of 10?13–10?14 moles of cAMP converted/cell/min under culture conditions consistent with normal aggregation.  相似文献   

13.
Three fractions of phosphodiesterase activity capable of hydrolysing cyclic 3′,5′-AMP and cyclic 3′,5′-GMP were purified from Portulaca callus. Hydrolysing bis-(p-nitrophenyl)-phosphate, two fractions showed linear Lineweaver-Burk plots. One fraction showed positive cooperativity. This fraction can be activated competitively by blue dextran, indicating a possible allosteric regulation by nucleotides, demonstrated by changing from being positively cooperative, to following Michaelis-Menten kinetics by cGMP and papaverin. cGMP triggers an enzyme highly active against 3′,5′cAMP and 3′5′cGMP, and papaverin triggers high activity against 2′,3′cAMP, demonstrated by two separate enzyme fractions.  相似文献   

14.
A simple electrophoretic assay demonstrated that peptides from enzymic digests of the basic protein of human myelin were effective substrates for adenosine 3′, 5′-cyclic monophosphate-dependent protein kinases from bovine cardiac muscle and brain. From a peptic digest a peptide of 17 amino acid residues was isolated and when used as a substrate a Km of 1.9 × 10?4M was found for the cardiac kinase.  相似文献   

15.
The level of adenosine 3′,5′-monophosphate (cyclic AMP) in the eggs of the sea urchin, Anthocidaris crassispina, was found to change periodically after fertilization. The minimum and maximum levels of cyclic AMP were 1.0·10?7 M and 1.5·10?6 M, respectively. The activity of adenylate cyclase in a 105 000 × g precipitate reached a plateau at 20 min after fertilization and stayed constant for at least 2 h. It was also found that 1.0 mM CaCl2 increased the activity of adenylate cyclase in the same precipitate from unfertilized eggs. In contrast, phosphodiesterase activity changed periodically and correlated with cyclic AMP levels in the eggs. Up to a concentration of 1.5·10?6 M cyclic AMP, phosphodiesterase activity was low, but it became activated when the level of cyclic AMP rose beyond this level. These results indicate that the change in the intracellular level of cyclic AMP is regulated mainly by the change in phosphodiesterase activity.  相似文献   

16.
In cowpea seedlings starch hydrolysing activity increases 35–50 fold on germination for 4 days. This increase in enzyme activity was inhibited by the in vivo addition of 1% glucose but this inhibition was completely overcome by the addition of gibberellic acid (GA3) (10?5 M) and adenosine-3′,5′-cyclic monophosphate (cAMP) (10?5 M). At 5% glucose, GA3 and cAMP were only partially effective. Structural analogues of cAMP failed to relieve the inhibitory effect of glucose. The inhibition by glucose is not direct but RNA and protein synthesis may be involved. Glucose appears to reduce the internal pool of cAMP which causes inhibition of RNA synthesis and decrease in starch hydrolysing activity. Exogenous application of cAMP may replenish the endogenous pool of cyclic nucleotide and thus overcome inhibition of RNA synthesis and enzyme activity.  相似文献   

17.
The adenosine 3′, 5′-cyclic monophosphate phosphodiesterase (PDE) activities were evaluated in X-irradiation induced Holtzman rat small bowell adenocarcinoma and age-matched normal small intestine. Within normal small intestine, PDE activity was optimal at pH 7.4, and highly dependent upon the addition of Mg2+ or Mn2+. Analyses of the rat small bowel adenocarcinoma revealed significantly elevated PDE activities above the normal small bowel which were found to be relatively constant throughout the length of the ileum and jejunum. These findings suggest that the diminished intracellular adenosine 3′, 5′-cyclic monophosphate levels observed in this lesion (1) may be the consequence of elevated PDE activities.  相似文献   

18.
Abstract: The effect of a number of nucleotides and related compounds on glutamine synthetase (GS) induction in retina from 12-day chick embryo was studied with both biochemical and immunohistochemical techniques. A number of these compounds gave rise to GS activity comparable to that induced by treatment with cortisol, which is known to give rise to precocious induction of the enzyme in this system. Of the cyclic nucleotides examined, cAMP (0.5-1.2 × 10?3 M) gave essentially no increase in GS activity. In contrast, dibutyryl cAMP (0.8 × 10?3 M) had a more significant effect on GS activity, as did 8-bromo-cAMP and cGMP at the same concentration. The activity elicited by these nucleotides was generally half that obtained by treatment with 2.8 × 10?7 M-cortisol for the same length of time, 8-Bromo-cGMP (0.8 × 10?3 M) had an effect comparable to the aforementioned concentration of cortisol. Since phosphodiesterase activity is minimal in the chick retina at 12 days of development, addition of isobutylmethylxanthine (1 × 10?5 M) to this system had, as would be expected, little effect on GS activity. Of the noncyclic compounds, 8-bromoguanosine often gave rise to GS activity comparable to that obtained with cortisol. The other compounds (8-bromo-5′-GMP, guanosine, adenosine, and 5′-AMP) generally had less of an effect on GS. In general, the degree of staining in the immunohistochemical localization of GS corresponded well with the biochemical results and showed the enzyme to be present in regions consistent with the distribution of Muller cells and their processes. Thin-layer chromatography and radioimmunoassay of the nucleotides did not show any steroid impurity in any of the compounds used in the study, even when determinations were carried out at five times the concentration of nucleotide used in the experiments.  相似文献   

19.
A difference in the organization of adenylate cyclase and 3′5′-cyclic phosphodiesterase in isolated plasma membranes was observed. Observation of this difference was made possible by the development of a new technique for the lysis of Dictyostelium discoideum using the polyene antibiotic amphotericin B. A particulate fraction prepared from the cell lysate contains adenylate cyclase, 3′5′-cyclic phosphodiesterase and 5′-nucleotidase. The yield of adenylate cyclase is 40% higher than in paniculate fractions prepared from cells lysed by sonication or with Triton X-100. Purification of the particulate fraction on discontinuous sucrose gradient completely separates membranes from mitochondria and other cellular material as shown by electron microscopic analysis of different fractions. Biochemical characterization of the purified membrane fraction shows it contains adenylate cyclase, 3′5′-cyclic phosphodiesterase and 5′-nucleotidase activities while electron microscopic analysis shows a vesicular morphology. Additional studies on the purified membranes used Triton X-100, trypsin and phospholipase C to probe the relationship between membrane structural elements and enzymatic activities. The results of these studies show distinct differences in the organization of each enzyme molecule within the membrane.  相似文献   

20.
Following DEAE-Sephacel and affinity chromatography a highly enriched lipid stimulated kinase activity could be recovered with a purification fold of 1725. The peak kinase activity fraction eluted with 0.1 mM calcium from phosphatidyl serine affinity chromatography showed a major protein of 70 kD and a minor band of 55 kD molecular weight and showed kinase activity that was stimulated by phorbol myristate acetate in the presence of phosphatidylserine and calcium. The optimum requirement was 2.5 × 10?6 M, 1.25 × 10?4 M, 1 × 10?4 M, and 1.7 × 10?6 M for phorbol myristate acetate, phosphatidyl serine, oleyl acetyl glycerol and free calcium respectively. The kinase activity was inhibited by H-7 and staurosporine. The binding of [3H]-phorbol myristate acetate was associated with purified fraction as resolved by get electrophoresis and the kinase activity was also precipitated by animal protein kinase C antibodies. The present data give strong evidence for the presence of phorbol myristate acetate stimulated kinase in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号