首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Symptoms similar to Jujube witches' broom disease were observed on jujube (Zizyphus jujuba) plants in an orchard in Xuchang City, Henan Province, China. Phytoplasmas were detected in one sample from symptomatic plants by nested PCR assay employing 16S rRNA gene primers P1/P7 followed by R16F2n/R16R2. Virtual RFLP analysis of the resulting products (F2nR2 region) shown that total of two different groups (16SrI and 16SrV) phytoplasmas associated with the infected jujube. This is the first report of phytoplasmas mixed infection of jujube in China.  相似文献   

2.
The molecular identification and characterization of phytoplasmas from infected grapevines in four locations in Serbia are reported. Phytoplasmas were detected and identified by restriction fragment length polymorphism (RFLP) analysis of polymerase chain reaction (PCR) amplified 16S rDNA. Grapevine yellows were associated with three molecularly distinguishable phytoplasmas: Flavescence dorée phytoplasmas (elm yellows group: 16SrV‐C subgroup) were present only in the Župa Aleksandrovac region; Bois noir phytoplasmas (stolbur group: 16SrXII‐A subgroup) were detected in the other surveyed regions; a mixed infection of European stone fruit yellows (apple proliferation group: 16SrX‐B subgroup) and Bois noir phytoplasmas was identified in one sample. A finer molecular characterization by RFLP analysis of rpS3 and SecY genes of Flavescence dorée phytoplasmas from Župa Aleksandrovac confirmed that the Serbian genotype is indistinguishable from a strain from the Veneto region, Italy. Characterization of the tuf gene of Bois noir phytoplasmas showed lack of amplification of samples from Erdevik. HpaII profiles of tuf gene PCR products of samples from Pali and Radmilovac were identical, and were indistinguishable from one of the two profiles produced by samples from Italian grapevines used as reference strains.  相似文献   

3.
Phytoplasmas were detected in Sophora japonica cv. golden and Robinia pseudoacacia with diseased branches of witches'‐broom collected in Haidian district, Beijing, China. Phytoplasma cells were observed in phloem sieve elements of symptomatic S. japonica cv. golden by transmission electron microscopy. The presence of phytoplasmas was further confirmed by sequence determination of partial gene sequences of 16S rDNA, rp (ribosomal protein) and secY. Phylogenetic trees and virtual restriction fragment length polymorphism (RFLP) analyses indicated that the phytoplasmas causing S. japonica cv. golden witches'‐broom (SJGWB) and R. pseudoacacia witches'‐broom (RPWB) belong to the 16SrV (elm yellows) group, and they are most closely related to subgroup 16SrV‐B, rpV‐C and secYV‐C jujube witches'‐broom (JWB) phytoplasma. Comparative analyses indicated that the phytoplasma of RPWB was closer to the JWB and that R. pseudoacacia might serve as an alternative host plant of JWB phytoplasma.  相似文献   

4.
In July 2017, a survey was conducted in a fig collection plot at Locorotondo (south of Italy) to investigate the possible presence of phytoplasmas in plants showing yellowing, deformed leaves, short internodes, mottling and mosaic. Samples were collected from symptomatic plants and tested by nested PCR assays using universal and specific primers to amplify the 16S rDNA of these prokaryotes. PCR results detected the presence of phytoplasma sequences in twenty plant samples that resulted clustering two phylogenetically distinct phytoplasmas, i.e., “Candidatus Phytoplasma asteris” and “Candidatus Phytoplasma solani” affiliated to 16SrI and 16SrXII ribosomal groups, respectively. The presence of phytoplasmas belonging to both ribosomal groups was confirmed with group specific quantitative PCR and RFLP assays on 16S ribosomal amplicons. Results of this study indicate for the first time the occurrence of phytoplasmas in fig; however, more work should be carried out to verify their association with the symptoms observed on diseased fig plants.  相似文献   

5.
Symptoms resembling those associated with phytoplasma presence were observed in pomegranate (Punica granatum L.) trees in June 2012 in the Aegean Region of Turkey (Ayd?n province). The trees exhibiting yellowing, reduced vigour, deformations and reddening of the leaves and die‐back symptoms were analysed to verify phytoplasma presence. Total nucleic acids were extracted from fresh leaf midribs and phloem tissue from young branches of ten symptomatic and five asymptomatic plants. Nested polymerase chain reaction assays using universal phytoplasma‐specific 16S rRNA and tuf gene primers were performed. Amplicons were digested with Tru1I, Tsp509I and HhaI restriction enzymes, according to the primer pair employed. The phytoplasma profiles were identical to each other and to aster yellows (16SrI‐B) strain when digestion was carried out on 16Sr(I)F1/R1 amplicons. However, one of the samples showed mixed profiles indicating that 16SrI‐B and 16SrXII‐A phytoplasmas were present when M1/M2 amplicons were digested, the reamplification of this sample with tuf cocktail primers allowed to verify the presence of a 16SrXII‐A profile. One pomegranate aster yellows strain AY‐PG from 16S rRNA gene and the 16SrXII‐A amplicon from tuf gene designed strain STOL‐PG were directly sequenced and deposited in GenBank under the Accession Numbers KJ818293 and KP161063, respectively. To our knowledge, this is the first report of 16SrI‐B and 16SrXII‐A phytoplasmas in pomegranate trees.  相似文献   

6.
In 2012, yellowing of camellias was observed in Tai'an in Shandong province, China. Transmission electron microscopy (TEM) revealed phytoplasma in the phloem sieve tube elements of symptomatic plants. A specific fragment of phytoplasma 16S rRNA gene was amplified by polymerase chain reaction (PCR) using the universal phytoplasma primers P1/P7 followed by R16F2n/R16R2. Sequence and restriction fragment length polymorphism (RFLP) analyses allowed us to classify the detected phytoplasma into the elm yellows (EY) group (16SrV), subgroup 16SrV‐B. Sequence analyses of the ribosomal protein (rp) gene confirmed a close relationship with phytoplasmas belonging to the rpV‐C subgroup. Thus, the phytoplasma associated with yellows disease in camellia, designated as ‘CY’, is a member of the 16SrV‐B subgroup. This is the first report of phytoplasma associated with camellia.  相似文献   

7.
Since 2007, a new disease in broccoli (Brassica oleracea var. italica Plenck) has been observed in the São Paulo state, Brazil. The characteristic symptoms of the disease are plant stunting, inflorescence malformation, reddening of the leaves and phloem necrosis. Nested polymerase chain reaction with P1/Tint and F2n/R2 primer pairs revealed the presence of phytoplasmas in diseased broccoli plants. Restriction fragment length polymorphism and phylogenetic analysis of the 16S rDNA gene showed that phytoplasmas belonging to 16SrI, III and XIII groups were associated with the plants. To the best of our knowledge, this is the first report of phytoplasmas in this Brassica species in Brazil, as well the first time phytoplasmas of 16SrIII and XIII groups have been associated with broccoli plants.  相似文献   

8.
Reddening disease has recently been threatening Salvia miltiorrhiza in China, ranging from 30 to 50%. The main symptoms observed, such as plant stunting, inflorescence malformation, leaf reddening, fibrous roots browning, skin blackening and eventually root rot, are typically associated with phytoplasma infection. The presence of phytoplasmas was demonstrated through phytoplasma‐specific PCR, with the expected amplification (1.8 kb) from symptomatic S. miltiorrhiza plants from Shangluo, Shangzhou and Luonan fields in Shaanxi Province of China. The sequences of 16S rRNA, tuf, secY and vmp1 genes amplified from LN‐1 phytoplasma shared the closest homologies of 99%, 100%, 99% and 98% with those of the reference strain Candidatus Phytoplasma solani (subgroup 16SrXII‐A), respectively. The phylogenetic trees showed that LN‐1 phytoplasma clustered with the members of 16SrXII‐A group, including CaP. solani. Computer‐simulated restriction fragment length polymorphism analysis further supported this classification. Diversity analysis showed that all ‘Ca. P. solani’ strains identified from the three different regions examined shared 100% identical 16S rRNA, tuf, secY and vmp1 nucleotide sequences. To the best of our knowledge, this is the first report of phytoplasma infecting the medicinal plant of S. miltiorrhiza. The results demonstrate that ‘CaP. solani’ is the presumptive aetiological agent of S. miltiorrhiza reddening disease in China.  相似文献   

9.
G. Babaie    B. Khatabi    H. Bayat    M. Rastgou    A. Hosseini    G. H. Salekdeh 《Journal of Phytopathology》2007,155(6):368-372
During field surveys in 2004, ornamental and weed plants showing symptoms resembling those caused by phytoplasmas were observed in Mahallat (central Iran). These plants were examined for phytoplasma infections by polymerase chain reaction (PCR) assays using universal phytoplasma primers directed to ribosomal DNA (rDNA). All affected plants gave positive results. The detected phytoplasmas were characterized and differentiated through restriction fragment length polymorphism (RFLP) and sequence analysis of PCR‐amplified rDNA. The phytoplasmas detected in diseased Asclepias curassavica and Celosia argentea were identified as members of clover proliferation phytoplasma group (16SrVI group) whereas those from the remaining plants examined proved to be members of aster yellow phytoplasma group (16SrI group) (‘Candidatus Phytoplasma asteris’). In particular, following digestion with AluI, HaeIII and HhaI endonucleases, the phytoplasma detected in Limonium sinuatum showed restriction profiles identical to subgroup 16SrI‐C; phytoplasmas from Gomphocarpus physocarpus, Tanatacetum partenium, Lactuca serriola, Tagetes patula and Coreopsis lanceolata had the same restriction profiles as subgroup 16SrI‐B whereas Catharanthus roseus‐ and Rudbeckia hirta‐infecting phytoplasmas showed restriction patterns of subgroup 16SrI‐A. This is the first report on the occurrence of phytoplasma diseases of ornamental plants in Iran.  相似文献   

10.
Amaranth (Amaranthus retroflexus L.) is a common weed that grows vigorously in orchards, roadside verges, fields, woods and scrubland in China. In 2009, phytoplasma disease surveys were made in orchards in Beijing, China, and stem/leaf tissues were collected from asymptomatic amaranths. Direct PCR using universal phytoplasma primers P1/P7 detected 16S rRNA gene sequences in every DNA sample extracted from the symptomless amaranths. Sequence alignment and phylogenetic analyses of the 16S rRNA gene determined that the amaranth phytoplasma strain was related to ‘Candidatus Phytoplasma ziziphi’. Furthermore, virtual RFLP pattern analysis showed that the amaranth phytoplasma belonged to the 16SrV‐B subgroup. This is the first report of symptomless plants containing a ‘Candidatus Phytoplasma ziziphi’‐related strain.  相似文献   

11.
The leafhopper Scaphoideus titanus is able to transmit 16SrV phytoplasmas agents of grapevine's flavescence dorée (FD) within 30–45 days, following an acquisition access period (AAP) of a few days feeding on infected plants as a nymph, a latency period (LP) of 3–5 weeks becoming meanwhile an adult, and an inoculation access period (IAP) of a few days on healthy plants. However, several aspects of FD epidemiology suggest how the whole transmission process may take less time, and may start directly with adults of the insect vector. Transmission experiments have been set up under lab condition. Phytoplasma‐free S. titanus adults were placed on broad bean (BB) plants (Vicia faba) infected by FD‐C (16SrV‐C) phytoplasmas for an AAP = 7 days. Afterwards, they were immediately moved onto healthy BB for IAP, which were changed every 7 days, obtaining three timings of inoculation: IAP 1, IAP 2 and IAP 3, lasting 7, 14 and 21 days from the end of AAP, respectively. DNA was extracted from plants and insects, and PCR tests were performed to identify FD phytoplasmas. Insects were dissected and fluorescence in situ hybridisation was made to detect the presence of phytoplasmas in midguts and salivary glands. The rate of infection in insects ranged 46–68% without significant differences among IAPs. Inoculation in plants succeeded in all IAPs, at a rate of 16–23% (no significant differences). Phytoplasma load was significantly higher in IAP 3 than IAP 1–2 for both plants and insects. Phytoplasmas were identified both in midgut and salivary glands of S. titanus at all IAP times. The possible implications of these results in the epidemiology of flavescence dorée are discussed.  相似文献   

12.
Phytoplasma strain was detected in leaves of sugarcane in India exhibiting symptoms of yellowing of midribs. A phytoplasma characteristic 1.2 kb rDNA PCR product was amplified from DNAs of all diseased samples but not in healthy sugarcane plants tested using phytoplasma universal primer pairs P1/P7 and f5U/r3U. Restriction fragment length polymorphism (RFLP) analysis of amplified 16S rDNA indicated that diseased sugarcane was infected by phytoplasma. The 16S rDNA sequence of the Indian sugarcane yellow leaf phytoplasma (SCYLP) showed the closest identity (99%) to that of SCYLP in Cuba identified as Macroptilium lathyroides (AY725233), which belongs to 16SrXII (Stolbur group). This is the first record of the detection of SCYLP, and identification of the 16SrXII group of phytoplasma associated with yellow leaf syndrome (YLS) in India.  相似文献   

13.
In October 2013, a new disease affecting purple woodnettle, Oreocnide pedunculata, plants was found in Miaoli County, Taiwan. Diseased plants exhibited leaf yellowing and witches'‐broom symptoms. Molecular diagnostic tools and electron microscopic cell observation were used to investigate the possible cause of the disease with a specific focus on phytoplasmas. The result of polymerase chain reaction with universal primer pairs indicated that phytoplasmas were strongly associated with the symptomatic purple woodnettles. The virtual restriction fragment length polymorphism (RFLP) patterns and phylogenetic analysis based on 16S rDNA and ribosomal protein, rplV‐rpsC region revealed that purple woodnettle witches'‐broom phytoplasma (PWWB) belongs to a new subgroup of 16SrI and rpI group and was designated as 16SrI‐AH and rpI‐Q, respectively, herein. RFLP analysis based on tuf gene region revealed that the PWWB belongs to tufI‐B, but phylogenetic analysis suggested that PWWB should be delineated to a new subgroup under the tufI group. Taken together, our analyses based on 16S rRNA and rplV‐rpsC region gave a finer differentiation while classifying the subgroup of aster yellows group phytoplasmas. To our knowledge, this is the first report of a Candidatus Phytoplasma asteris‐related strain in 16SrI‐AH, rpI‐Q and tufI‐B subgroup affecting purple woodnettle, and of an official documentation of purple woodnettle as being a new host of phytoplasmas.  相似文献   

14.
Asparagus officinalis plants with severe fasciation of some spears were observed in southern Bohemia between 1998 and 2007. Nucleic acids extracted from these and asymptomatic plants were assayed with nested polymerase chain reaction (PCR) using the phytoplasma‐specific universal ribosomal primers P1/P7 and R16F2n/R2. The restriction profiles obtained from digestion of the PCR products with five endonucleases (AluI, HhaI, KpnI, MseI and RsaI) were identical in all phytoplasmas infecting asparagus in the Czech Republic and indistinguishable from those of phytoplasmas in the aster yellows group (subgroup 16SrI‐B). Sequence analysis of 1754 bp of the ribosomal operon indicated that the closest related phytoplasmas were those associated with epilobium phyllody and onion yellows. This is the first report of the natural occurrence of ‘Candidatus Phytoplasma asteris’ in A. officinalis.  相似文献   

15.
Within the past 10 years, the yellows disease ‘bois noir’ (BN) has become one of the commercially most important diseases of grapevine [Vitis vinifera L. (Vitaceae)] in Europe. Infection pressure is caused by phytoplasmas of the stolbur 16SrXII‐A group that are transmitted by a planthopper vector, Hyalesthes obsoletus Signoret (Homoptera: Auchenorrhyncha). Infestation happens as an accidental side‐effect of the feeding behaviour of the vector, as vector and pathogen proliferation is dependent on other plants. In Germany, the increase of BN is correlated with the use of a new host plant by the vector, increase in abundance of the vector on the new host plant, and dissemination of host plant‐specific pathogen strains. In this article, we investigate geographic and host‐associated range expansion of the vector. We test whether host‐plant utilization in Germany, hence the increase in BN, is related to genetic host races of the vector and, if so, whether these have evolved locally or have immigrated from southern populations that traditionally use the new host plant. The genetic population analysis demonstrates a recent expansion and circum‐alpine invasion of H. obsoletus into German and northern French wine‐growing regions, which coincides with the emergence of BN. No H. obsoletus mitochondrial DNA haplotype host‐plant affiliation was found, implying that the ability to use alternative host plants is genetically intrinsic to H. obsoletus. However, subtle yet significant random amplified polymorphic DNA (RAPD) genetic differentiation was found among host plant populations. When combined, these results suggest that a geographic range expansion of H. obsoletus only partly explains the increase of BN, and that interactions with host plants also occur. Further possible beneficial factors to H. obsoletus, such as temperature increase and phytoplasma interactions, are discussed.  相似文献   

16.
Plants of alfalfa (Medicago sativa) exhibiting general stunting, proliferation and phyllody associated with leaf yellowing and reddening were observed in three localities of Central Serbia. Phytoplasma strains belonging to 16SrIII‐B and 16SrXII‐A groups were detected and identified by RFLP and sequence analysis of 16S rDNA. Stolbur phytoplasma tuf gene RFLP analysis showed the presence of the TufAY‐b‐type phytoplasma subgroup in 80% of symptomatic samples. This is the first report of 16SrIII‐B and 16SrXII‐A phytoplasma groups affecting alfalfa in Serbia.  相似文献   

17.
Plum plants (Prunus cerasifera Ehrh) with small and rolled leaves resembling symptoms of phytoplasma infection were observed during 2008 and 2009 in the ornamental garden of Northwest A&F University (Republic of China). Nested polymerase chain reaction (PCR) using a combination of phytoplasma‐specific universal primer pairs (R16F2m/R16R1m‐R16F2n/R16R2) amplified 16S rDNA with the expected size (1.2 kb) from all samples of symptomatic plum plants. Sequencing results and restriction fragment length polymorphism (RFLP) analysis of the 1248 bp R16F2n/R16R2 products showed that the phytoplasma belongs to group 16SrV. Phylogenetic analysis showed that the phytoplasma had a close relation to JWB phytoplasma. This is, we believe, the first report of elm yellows phytoplasma infecting plum plants in China.  相似文献   

18.
19.
Yellowing symptoms similar to coconut yellow decline phytoplasma disease were observed on lipstick palms (Cyrtostachys renda) in Selangor state, Malaysia. Typical symptoms were yellowing, light green fronds, gradual collapse of older fronds and decline in growth. Polymerase chain reaction assay was employed to detect phytoplasma in symptomatic lipstick palms. Extracted DNA was amplified from symptomatic lipstick palms by PCR using phytoplasma‐universal primer pair P1/P7 followed by R16F2n/R16R2. Phytoplasma presence was confirmed, and the 1250 bp products were cloned and sequenced. Sequence analysis indicated that the phytoplasmas associated with lipstick yellow frond disease were isolates of ‘Candidatus Phytoplasma asteris’ belonging to the 16SrI group. Virtual RFLP analysis of the resulting profiles revealed that these palm‐infecting phytoplasmas belong to subgroup 16SrI‐B and a possibly new 16SrI‐subgroup. This is the first report of lipstick palm as a new host of aster yellows phytoplasma (16SrI) in Malaysia and worldwide.  相似文献   

20.
Ornamental plants of Celosia argentea L. and Celosia spicata L. displaying typical phytoplasma‐induced symptoms were observed in Piracicaba, State of São Paulo, south‐eastern Brazil. Our aim was to identify the possible phytoplasma involved. PCR revealed the association of phytoplasma with diseased plants of both species. Based on actual and virtual RFLP analysis and phylogenetic analysis, the phytoplasma was characterized as a member of the 16SrIII‐J subgroup. Transmission of the pathogen by dodder supported the evidence that the symptoms observed in naturally diseased plants were induced by a phytoplasma. Our results show that C. spicata is a new host for phytoplasma and that this is the first report of a 16SrXIII‐J phytoplasma infecting plants of C. argentea and C. spicata in Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号