首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elucidating the nature of genetic variation underlying both sexually selected traits and the fitness components of sexual selection is essential to understanding the broader consequences of sexual selection as an evolutionary process. To date, there have been relatively few attempts to connect the genetic variance in sexually selected traits with segregating DNA sequence polymorphisms. We set out to address this in a well‐characterized sexual selection system – the cuticular hydrocarbons (CHCs) of Drosophila serrata – using an indirect association study design that allowed simultaneous estimation of the genetic variance in CHCs, sexual fitness and single nucleotide polymorphism (SNP) effects in an outbred population. We cloned and sequenced an ortholog of the D. melanogaster desaturase 2 gene, previously shown to affect CHC biosynthesis in D. melanogaster, and associated 36 SNPs with minor allele frequencies > 0.02 with variance in CHCs and sexual fitness. Three SNPs had significant multivariate associations with CHC phenotype (q‐value < 0.05). At these loci, minor alleles had multivariate effects on CHCs that were weakly associated with the multivariate direction of sexual selection operating on these traits. Two of these SNPs had pleiotropic associations with male mating success, suggesting these variants may underlie responses to sexual selection due to this locus. There were 15 significant male mating success associations (q‐value < 0.1), and interestingly, we detected a nonrandom pattern in the relationship between allele frequency and direction of effect on male mating success. The minor‐frequency allele usually reduced male mating success, suggesting a positive association between male mating success and total fitness at this locus.  相似文献   

2.
Theoretical explanations of empirically observed standing genetic variation, mutation, and selection suggest that many alleles must jointly affect fitness and metric traits. However, there are few direct demonstrations of the nature and extent of these pleiotropic associations. We implemented a mutation accumulation (MA) divergence experimental design in Drosophila serrata to segregate genetic variants for fitness and metric traits. By exploiting naturally occurring MA line extinctions as a measure of line‐level total fitness, manipulating sexual selection, and measuring productivity we were able to demonstrate genetic covariance between fitness and standard metric traits, wing size, and shape. Larger size was associated with lower total fitness and male sexual fitness, but higher productivity. Multivariate wing shape traits, capturing major axes of wing shape variation among MA lines, evolved only in the absence of sexual selection, and to the greatest extent in lines that went extinct, indicating that mutations contributing wing shape variation also typically had deleterious effects on both total fitness and male sexual fitness. This pleiotropic covariance of metric traits with fitness will drive their evolution, and generate the appearance of selection on the metric traits even in the absence of a direct contribution to fitness.  相似文献   

3.
Mate preferences are abundant throughout the animal kingdom with female preferences receiving the most empirical and theoretical attention. Although recent work has acknowledged the existence of male mate preferences, whether they have evolved and are maintained as a direct result of selection on males or indirectly as a genetically correlated response to selection for female choice remains an open question. Using the native Australian species Drosophila serrata in which mutual mate choice occurs for a suite of contact pheromones (cuticular hydrocarbons or CHCs), we empirically test key predictions of the correlated response hypothesis. First, within the context of a quantitative genetic breeding design, we estimated the degree to which the trait values favoured by male and female choice are similar both phenotypically and genetically. The direction of sexual selection on male and female CHCs differed statistically, and the trait combinations that maximized male and female mating success were not genetically correlated, suggesting that male and female preferences target genetically different signals. Second, despite detecting significant genetic variance in female preferences, we found no evidence for genetic variance in male preferences and, as a consequence, no detectable correlation between male and female mating preferences. Combined, these findings are inconsistent with the idea that male mate choice in D. serrata is simply a correlated response to female choice. Our results suggest that male and female preferences are genetically distinct traits in this species and may therefore have arisen via different evolutionary processes.  相似文献   

4.
Single male sexually selected traits have been found to exhibit substantial genetic variance, even though natural and sexual selection are predicted to deplete genetic variance in these traits. We tested whether genetic variance in multiple male display traits of Drosophila serrata was maintained under field conditions. A breeding design involving 300 field-reared males and their laboratory-reared offspring allowed the estimation of the genetic variance-covariance matrix for six male cuticular hydrocarbons (CHCs) under field conditions. Despite individual CHCs displaying substantial genetic variance under field conditions, the vast majority of genetic variance in CHCs was not closely associated with the direction of sexual selection measured on field phenotypes. Relative concentrations of three CHCs correlated positively with body size in the field, but not under laboratory conditions, suggesting condition-dependent expression of CHCs under field conditions. Therefore condition dependence may not maintain genetic variance in preferred combinations of male CHCs under field conditions, suggesting that the large mutational target supplied by the evolution of condition dependence may not provide a solution to the lek paradox in this species. Sustained sexual selection may be adequate to deplete genetic variance in the direction of selection, perhaps as a consequence of the low rate of favorable mutations expected in multiple trait systems.  相似文献   

5.
Sexual selection on males is predicted to have widespread effects on genetic variation as a consequence of the pleiotropic allelic effects on sexual and nonsexual traits. We manipulated the opportunity for sexual selection on males during 27 generations of mutation accumulation in inbred lines of Drosophila serrata, and used a microarray platform to investigate the effect of sexual selection on the expression of 2689 genes. While gene expression signal was, on average, higher in the absence of sexual selection, this difference was small (0.1%). In contrast, sexual selection impacted substantially on the mutational variance in gene expression. Over all genes, mutational variance in gene expression was, on average, 42% higher when sexual selection operated than when it was absent. Our results indicate that sexual selection on males can generate widespread effects across the genome. An increase in mutational variance without a corresponding change in mean suggested that most expression traits were unlikely to be under direct sexual selection. Instead, the mutational variance in gene expression traits is consistent with divergence generated by widespread pleiotropic associations with traits affecting male mating success.  相似文献   

6.
A trait must genetically correlate with fitness in order to evolve in response to natural selection, but theory suggests that strong directional selection should erode additive genetic variance in fitness and limit future evolutionary potential. Balancing selection has been proposed as a mechanism that could maintain genetic variance if fitness components trade off with one another and has been invoked to account for empirical observations of higher levels of additive genetic variance in fitness components than would be expected from mutation–selection balance. Here, we used a long‐term study of an individually marked population of North American red squirrels (Tamiasciurus hudsonicus) to look for evidence of (1) additive genetic variance in lifetime reproductive success and (2) fitness trade‐offs between fitness components, such as male and female fitness or fitness in high‐ and low‐resource environments. “Animal model” analyses of a multigenerational pedigree revealed modest maternal effects on fitness, but very low levels of additive genetic variance in lifetime reproductive success overall as well as fitness measures within each sex and environment. It therefore appears that there are very low levels of direct genetic variance in fitness and fitness components in red squirrels to facilitate contemporary adaptation in this population.  相似文献   

7.
Natural and sexual selection arise when individual fitness varies according to focal traits. Extra‐pair paternities (EPPs) can affect the intensity of selection by influencing variance in fitness among individuals. Studies of selection require that individual fitness is estimated using proxies of lifetime reproductive success (LRS). However, estimating LRS is difficult in large, open populations where EPPs cause reallocation of biological paternity. Here, we used extensive field sampling to estimate LRS in a population of barn swallows (Hirundo rustica) to estimate selection on lifespan and ornamental traits of males. We found selection on lifespan mediated both by within‐ and extra‐pair fertilization success and selection on tail length mediated by within‐ but not extra‐pair fertilization success. In addition, we found selection on tail white spots via extra‐pair fertilization success after controlling for selection on other traits. These results were not confounded by factors that hamper studies of LRS, including nonexhaustive sampling of offspring and biased sampling of males. Hence, natural and sexual selection mediated by LRS operates on lifespan, tail length, and size of the tail white spots in barn swallows.  相似文献   

8.
Åsa Lankinen  Sofia Hydbom 《Oikos》2017,126(5):692-702
While environmental factors strongly influence plant growth and reproduction, less is known about environmental effects on sexual selection and sexual conflict. In this study on mixed‐mating Collinsia heterophylla we investigated whether soil resource environment affected traits associated with sexual conflict. In C. heterophylla a sexual conflict over timing of stigma receptivity occurs. Early stigma receptivity benefits pollen parents by securing paternity while late stigma receptivity benefits female fitness in terms of increased seed production. We performed hand‐pollinations combining recipients and donors grown either in high or low resource environments and asked whether these treatments influenced sexual conflict traits – recipient‐ and donor‐based influence on timing of stigma receptivity – and conflict costs related to reduced early seed production. We also asked whether resource environment affected eight traits related to general fitness and mating system. Sexual conflict‐associated traits – timing of stigma receptivity and seed production – were generally unaffected by resource environment. While no universal effect of resources was detected, we did observe donor‐specific responses to environment, suggesting that environment can nonetheless contribute to variation in timing of stigma receptivity. Recipients grown under low resources showed pronounced differences among donors for number of seeds per capsule, indicating that recipients favour some donors over others under resource‐low conditions. Moreover, high resources increased number of flowers but reduced pollen germination rate, while other traits were unaffected, indicating variation in the response to resource environment for fitness‐ and mating system‐traits. Our results suggest that even though soil resource environment had a low impact on the sexual conflict traits and related costs in C. heterophylla, it generated variability in pollen donor‐influence on this trait and in recipient sorting among donors. Thus, it is possible that both sexual conflict and sexual selection is affected by environmental factors not only in animals but also in plants.  相似文献   

9.
The heritability (h2) of fitness traits is often low. Although this has been attributed to directional selection having eroded genetic variation in direct proportion to the strength of selection, heritability does not necessarily reflect a trait's additive genetic variance and evolutionary potential (“evolvability”). Recent studies suggest that the low h2 of fitness traits in wild populations is caused not by a paucity of additive genetic variance (VA) but by greater environmental or nonadditive genetic variance (VR). We examined the relationship between h2 and variance‐standardized selection intensities (i or βσ), and between evolvability (IA:VA divided by squared phenotypic trait mean) and mean‐standardized selection gradients (βμ). Using 24 years of data from an island population of Savannah sparrows, we show that, across diverse traits, h2 declines with the strength of selection, whereas IA and IR (VR divided by squared trait mean) are independent of the strength of selection. Within trait types (morphological, reproductive, life‐history), h2, IA, and IR are all independent of the strength of selection. This indicates that certain traits have low heritability because of increased residual variance due to the age at which they are expressed or the multiple factors influencing their expression, rather than their association with fitness.  相似文献   

10.
Sexually selected traits display substantial genetic variance [1, 2], in conflict with the expectation that sexual selection will deplete it [3-5]. Condition dependence is thought to resolve this paradox [5-7], but experimental tests that relate the direction of sexual selection to the availability of genetic variance are lacking. Here, we show that condition-dependent expression is not sufficient to maintain genetic variance available to sexual selection in multiple male sexually selected traits. We employed an experimental design that simultaneously determined the quantitative genetic basis of nine male cuticular hydrocarbons (CHCs) of Drosophila bunnanda, the extent of condition dependence of these traits, and the strength and direction of sexual selection acting upon them. The CHCs of D. bunnanda are condition dependent, with 18% of the genetic variance in male body size explained by genetic variance in CHCs. Despite the presence of genetic variance in individual male traits, 98% of the genetic variance in CHCs was found to be orientated more than 88 degrees away from the direction of sexual selection and therefore unavailable to selection. A lack of genetic variance in male traits in the direction of sexual selection may represent a general feature of sexually selected systems, even in the presence of condition-dependent trait expression.  相似文献   

11.
Fundamental to many theories of sexual selection is the expectation that sexual traits, which males use in an attempt to increase mating success, confer costs as well as benefits to individual males. Although evolution of exaggerated male traits is predicted to be halted, by costs applied by natural selection, there is a lack of empirical work devoted to quantitatively establishing whether natural selection opposes sexual selection generated by the preferences of females. In this study, we quantified natural and sexual selection gradients on breeding values for cuticular hydrocarbon (CHC) components of male contact pheromones in Drosophila serrata. As male sexual traits may often be environmentally condition dependent, breeding values were used in the selection analysis to remove the possibility of environmental correlations between the measured trait and fitness biasing estimates of selection. The direction of natural selection was found to oppose sexual selection on a subset of CHCs examined. Opposing natural and sexual selection suggests that further evolution of the male pheromone may in part be limited by costs associated with attractive male CHC blends.  相似文献   

12.
Genetic covariation among multiple traits will bias the direction of evolution. Although a trait's phenotypic context is crucial for understanding evolutionary constraints, the evolutionary potential of one (focal) trait, rather than the whole phenotype, is often of interest. The extent to which a focal trait can evolve independently depends on how much of the genetic variance in that trait is unique. Here, we present a hypothesis‐testing framework for estimating the genetic variance in a focal trait that is independent of variance in other traits. We illustrate our analytical approach using two Drosophila bunnanda trait sets: a contact pheromone system comprised of cuticular hydrocarbons (CHCs), and wing shape, characterized by relative warps of vein position coordinates. Only 9% of the additive genetic variation in CHCs was trait specific, suggesting individual traits are unlikely to evolve independently. In contrast, most (72%) of the additive genetic variance in wing shape was trait specific, suggesting relative warp representations of wing shape could evolve independently. The identification of genetic variance in focal traits that is independent of other traits provides a way of studying the evolvability of individual traits within the broader context of the multivariate phenotype.  相似文献   

13.
Theory predicts that costly sexual displays should evolve condition dependence if the marginal fitness gain from trait exaggeration is greater for high- than for low-condition individuals and that the strength of condition dependence should increase with the strength of directional selection. While there is substantial support for the first prediction, evidence for the latter is much weaker. We undertook a quantitative test of this prediction for a multivariate sexual display consisting of a suite of contact pheromones termed "cuticular hydrocarbons" (CHCs) in Drosophila serrata. We performed a dietary manipulation of condition (i.e., the pool of metabolic resources available for allocation to fitness-enhancing traits) within a half-sibling breeding design, thereby also providing insight into the genetic basis of condition dependence. As predicted, the linear combination of CHCs under the strongest sexual selection from female mate preferences was unusually condition dependent relative to other CHC combinations within the population ([Formula: see text]). A significant positive correlation also existed between the strengths of condition dependence and sexual selection among different CHC blends ([Formula: see text], [Formula: see text]). Finally, sires varied in their response to the dietary manipulation, demonstrating significant genetic variance in condition dependence. Our results are consistent with the evolution of heightened condition dependence of sexual displays in response to persistent sexual selection.  相似文献   

14.
Sexual selection arises from both intrasexual competition and mate choice. With respect to the evolution of male traits, there is a vast literature documenting the existence of female choice and male–male competition, and both have been shown to co‐occur in many species. Despite numerous studies of these two components of male reproductive success in isolation, few have investigated whether and how they interact to determine total sexual selection. To address this, we investigate male territoriality in Drosophila serrata, a species in which female preference for male sexual pheromones (cuticular hydrocarbons or CHCs) have been extensively studied. We demonstrate that territoriality occurs, that it involves direct male–male aggressive interactions, and that it contributes to variation in male mating success. Results from a phenotypic manipulation also indicate that territorial success is condition‐dependent, although a genetic manipulation of condition, involving three generations of full‐sib inbreeding, failed to find a significant effect. Finally, selection assays also suggest that territorial success depends on male body size but not on CHCs, whereas the opposite is true for mating success.  相似文献   

15.
Sexually dimorphic traits are likely to have evolved through sexually antagonistic selection. However, recent empirical data suggest that intralocus sexual conflict often persists, even when traits have diverged between males and females. This implies that evolved dimorphism is often incomplete in resolving intralocus conflict, providing a mechanism for the maintenance of genetic variance in fitness-related traits. We used experimental evolution in Drosophila melanogaster to directly test for ongoing conflict over a suite of sexually dimorphic cuticular hydrocarbons (CHCs) that are likely targets of sex-specific selection. Using a set of experimental populations in which the transmission of genetic material had been restricted to males for 82 generations, we show that CHCs did not evolve, providing experimental evidence for the absence of current intralocus sexual conflict over these traits. The absence of ongoing conflict could indicate that CHCs have never been the target of sexually antagonistic selection, although this would require the existing dimorphism to have evolved via completely sexlinked mutations or as a result of former, but now absent, pleiotropic effects of the underlying loci on another trait under sexually antagonistic selection. An alternative interpretation, and which we believe to be more likely, is that the extensive CHC sexual dimorphism is the result of past intralocus sexual conflict that has been fully resolved, implying that these traits have evolved genetic independence between the sexes and that genetic variation in them is therefore maintained by alternative mechanisms. This latter interpretation is consistent with the known roles of CHCs in sexual communication in this species and with previous studies suggesting the genetic independence of CHCs between males and females. Nevertheless, direct estimates of sexually antagonistic selection will be important to fully resolve these alternatives.  相似文献   

16.
Male fitness is dependent on sexual traits that influence mate acquisition (precopulatory sexual selection) and paternity (post‐copulatory sexual selection), and although many studies have documented the form of selection in one or the other of these arenas, fewer have done it for both. Nonetheless, it appears that the dominant form of sexual selection is directional, although theoretically, populations should converge on peaks in the fitness surface, where selection is stabilizing. Many factors, however, can prevent populations from reaching adaptive peaks. Genetic constraints can be important if they prevent the development of highest fitness phenotypes, as can the direction of selection if it reverses across episodes of selection. In this study, we examine the evidence that these processes influence the evolution of the multivariate sex comb morphology of male Drosophila simulans. To do this, we conduct a quantitative genetic study together with a multivariate selection analysis to infer how the genetic architecture and selection interact. We find abundant genetic variance and covariance in elements of the sex comb. However, there was little evidence for directional selection in either arena. Significant nonlinear selection was detected prior to copulation when males were mated to nonvirgin females, and post‐copulation during sperm offence (again with males mated to nonvirgins). Thus, contrary to our predictions, the evolution of the D. simulans sex comb is limited neither by genetic constraints nor by antagonistic selection between pre‐ and post‐copulatory arenas, but nonlinear selection on the multivariate phenotype may prevent sex combs from evolving to reach some fitness maximizing optima.  相似文献   

17.
The evolution of sexual display traits or preferences for them in response to divergent natural selection will alter sexual selection within populations, yet the role of sexual selection in ecological speciation has received little empirical attention. We evolved 12 populations of Drosophila serrata in a two‐way factorial design to investigate the roles of natural and sexual selection in the evolution of female mate preferences for male cuticular hydrocarbons (CHCs). Mate preferences weakened in populations evolving under natural selection alone, implying a cost in the absence of their expression. Comparison of the vectors of linear sexual selection revealed that the populations diverged in the combination of male CHCs that females found most attractive, although this was not significant using a mixed modelling approach. Changes in preference direction tended to evolve when natural and sexual selection were unconstrained, suggesting that both processes may be the key to initial stages of ecological speciation. Determining the generality of this result will require data from various species across a range of novel environments.  相似文献   

18.
Males and females share much of their genome, and as a result, intralocus sexual conflict is generated when selection on a shared trait differs between the sexes. This conflict can be partially or entirely resolved via the evolution of sex‐specific genetic variation that allows each sex to approach, or possibly achieve, its optimum phenotype, thereby generating sexual dimorphism. However, shared genetic variation between the sexes can impose constraints on the independent expression of a shared trait in males and females, hindering the evolution of sexual dimorphism. Here, we examine genetic constraints on the evolution of sexual dimorphism in Drosophila melanogaster cuticular hydrocarbon (CHC) expression. We use the extended G matrix, which includes the between‐sex genetic covariances that constitute the B matrix, to compare genetic constraints on two sets of CHC traits that differ in the extent of their sexual dimorphism. We find significant genetic constraints on the evolution of further dimorphism in the least dimorphic traits, but no such constraints for the most dimorphic traits. We also show that the genetic constraints on the least dimorphic CHCs are asymmetrical between the sexes. Our results suggest that there is evidence both for resolved and ongoing sexual conflict in D. melanogaster CHC profiles.  相似文献   

19.
The well-known phenotypic diversity of male sexual displays, and the high levels of genetic variation reported for individual display traits have generated the expectation that male display traits, and consequently male mating success, are highly evolvable. It has not been shown however that selection for male mating success, exerted by female preferences in an unmanipulated population, results in evolutionary change. Here, we tested the expectation that male mating success is highly evolvable in Drosophila bunnanda using an experimental evolution approach. Female D. bunnanda exhibit a strong, consistent preference for a specific combination of male cuticular hydrocarbons (CHCs). We used female preference to select for male mating success by propagating replicate populations from either attractive or unattractive males over 10 generations. Neither the combination of CHCs under sexual selection (the sexual signal) nor male mating success itself evolved. The lack of a response to selection was consistent with previous quantitative genetic experiments in D. bunnanda that demonstrated the virtual absence of genetic variance in the combination of CHCs under sexual selection. Persistent directional selection, such as applied by female mate choice, may erode genetic variance, resulting in multitrait evolutionary limits.  相似文献   

20.
Sexual selection is responsible for the evolution of many elaborate traits, but sexual trait evolution could be influenced by opposing natural selection as well as genetic constraints. As such, the evolution of sexual traits could depend heavily on the environment if trait expression and attractiveness vary between environments. Here, male Drosophila simulans were reared across a range of diets and temperatures, and we examined differences between these environments in terms of (i) the expression of male cuticular hydrocarbons (CHCs) and (ii) which male CHC profiles were most attractive to females. Temperature had a strong effect on male CHC expression, whereas the effect of diet was weaker. Male CHCs were subject to complex patterns of directional, quadratic and correlational sexual selection, and we found differences between environments in the combination of male CHCs that were most attractive to females, with clearer differences between diets than between temperatures. We also show that genetic covariance between environments is likely to cause a constraint on independent CHC evolution between environments. Our results demonstrate that even across the narrow range of environmental variation studied here, predicting the outcome of sexual selection can be extremely complicated, suggesting that studies ignoring multiple traits or environments may provide an over‐simplified view of the evolution of sexual traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号