首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

In order to obtain a high degree of rigidity within the sugar moiety of nucleosides, some bicyclic pyrimidine nucleoside analogues where synthesized starting from cyclopentanone. The C-4′-substituent is fused to the C-3′-position via a propylene to give a [3.3.0]-bicyclic ring system.  相似文献   

2.
Abstract

In view of biological activities of tiazofurin and azido or aminosugar nucleosides, novel azido- and amino-substituted tiazofurin derivatives (1 and 2) were efficiently synthesized starting from 1,2;5,6-di-O-isopropylidene-D-glucose.  相似文献   

3.
Abstract

The title compound was prepared by reduction of the oxime of the 3′-ketouridine. Condensation with aldehydes gave a series of nitrones whose reduction afforded “second generation” hydroxylamines, some of which showing antiviral activity. The nitroxide free radicals formed upon oxidation of hydroxylamines gave good e.s.r. spectra useful for configurational and conformational assignments.  相似文献   

4.
Abstract

A simple procedure is described for the preparation of the title compounds 1, 8 and 9. 3′-3′ or 3′-5′ or 5′-5′ TpT was reacted with a twofold molar excess of TPS in anhydrous DMF, at room temperature, for 5 min, followed by a 1 min in situ treatment of the reaction mixture with excess 7.0 N NH4OH, at 0°C. The alkaline hydrolysis of 1, 8 and 9 proceeds without the assistance of 3′- and 5′-hydroxyl groups resulting in equimolar mixtures of thymidine (4) and thymidine 3′-phosphoramidate (6) (for the 3′-3′ isomer) or thymidine 5′-phosphoramidate (7) (for the 5′-5′ isomer) or 6 and 7 in equal quantities (for the 3′-5′ isomer).  相似文献   

5.
The C-nucleoside analogs 6-chloro-3-β-d-erythrofuranosyl-l-phenylpyrazolo-[3,4-b]quinoxaline (5) and 3-β-d-erythrofuranosy]-l-p-tolylpyrazolo[3,4-b]quinoxaline (10) were prepared by dehydration of the polyhydroxyalkyl chain of 6(7)-chlorolo-phenyl-3-(d-arabino-tetritol-l-yl)-pyrazolo(3,4-b]quinoxaline and 3-(d-arbino-tetritol-l-yl)-l-p-tolylpyrazolo[3,4-b]quinoxaline, respectively. The structure and anomeric configuration of 5 and 10 were determined by high-resolution, n.m.r. spectroscopy. The mass spectra and biological activities of some of these compounds are discussed.  相似文献   

6.
Abstract

The 2′-β-fluoro analogue of 2′,3′-dideoxyguanosine has been prepared by two synthetic routes. This compound and two analogues have anti-HIV activity in at least two of three host cell systems used (ATH8, CEM, PBL). These compounds, as well as their ddGuo parents, have been characterized with regard to their acid-stabilities, octanol-water partition coefficients, and enzyme substrate properties for adenosine deaminase and purine nucleoside phosphorylase. F-ddGuo analogues are less potent but more stable than their non-fluorinated parent compounds.  相似文献   

7.
Abstract

The 5′-O-(4,4′-dimethoxytrityl) and 5′-O-(tert-butyldimethylsilyl) derivatives of 2′-,3′-O-thiocarbonyl-6-azauridine and 2′,3′-O-thiocarbonyl-5-chlorouridine were synthesized from the parent nucleosides by reaction with 4, 4′-dimethoxytrityl chloride and tert-butyldimethylsilyl chloride, respectively, followed by treatment with 1,1′-thiocarbonyldiimidazole. Introduction of a 2′-,3′-double bond into the sugar ring by reaction of the 5′-protected 2′-,3′-O-thionocarbonates with 1, 3-dimethyl-2-phenyl-1, 3, 2-diazaphospholidiine was unsuccessful, but could be accomplished satisfactorily with trimethyl phosphite. Reactions were generally more successful with the 5′-silylated than with the 5′-tritylated nucleosides. Formation of 2′-,3′-O-thiocarbonyl derivatives proceeded in higher yield with 5′-protected 6-azauridines than with the corresponding 5-chlorouridines because of the propensity of the latter to form 2,2′-anhydro derivatives. In the reaction of 5′-O-(tert-butyldimethylsilyl)-2′-,3′-O-thiocarbonyl-6-azauridine with trimethyl phosphite, introduction of the double bond was accompanied by N3-methylation. However this side reaction was not a problem with 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-O-thioarbonyl-5-chlorouridine. Treatment of 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-didehydro-2′-,3′-dideoxy-6-azauridine with tetrabutylammonium fluoride followed by hydrogenation afforded 2′-,3′-dideoxy-6-azauridine. Deprotection of 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-didehydro-2′-,3′-dideoxy-5-chlorouridine yielded 2′-,3′-didehydro-2′-,3′-dide-oxy-5-chlorouridine.  相似文献   

8.
Abstract

2,2′ -Anhydro-1- (3′ -deoxy-3′ -iodo-5′ -O-trityl-B-D-arabinofuranosyl)-thymine (2) was synthesized from 2′,3′ -didehydro-3′-deoxythymidine (DHT) (1). Compound 2 was readily converted into 2′,3′-anhydro-lyxofuranosyl derivatives 4-6. Reaction of 4a with some nucleophiles (N3 -, OMe-, Cl-) gave the corresponding 3′-substituted arabinonucleosides (7b,d,f) together with the minor xylosyl isomers (8a,c). Compounds 7b,d,f and 8a were deprotected to 7c,e,g and 8b, respectively.  相似文献   

9.
The novel pyrimidine nucleoside, (3 ′S)-3 ′-deoxy-3 ′-fluoro-3 ′-C-ethynylcytidine (1) was synthesized from cytidine in seven steps. The key step in the synthesis was the introduction of the tertiary fluorine at the 3 ′-position. Compound 1 was evaluated in vitro against several RNA viruses.  相似文献   

10.
1-(2-Fluoro-2-deoxy-β-D-arabinofuranosyl)uracil (5) and 1-(2-fluoro-2-deoxy-β-D-arabinofuranosyl)cytosine (6) were synthesized as reported earlier. Both of these compounds were converted into 2′-fluoro-2′-deoxy-3′-C-ethynyl and 3′-C-vinyl-β-D-lyxofuranosyl nucleosides (16–19) by a multistep sequence. All these new nucleosides were evaluated against seven human tumor cell lines in vitro.  相似文献   

11.
Summary A comparison of different systems for the -glycosidase-atalyzed synthesis of 3,4-dihydroxypropiophenone 3-O--D-glucoside is reported including various enzymatic sources and different reaction conditions. The best yield was obtained using thermophilic -glycosidase from Sulfolobus solfataricus.  相似文献   

12.
Dialkyl 4,4′-bipyridinium compounds, known as ‘paraquats’ (PQs), have a long history of use as herbicides, as redox indicators, and more recently as potent antibacterial agents. However, due to their ability to form reactive oxygen species (ROS) in vivo, PQs are also known to be toxic. We proposed that altering the electrochemical properties of PQ, specifically by preparing isomeric bipyridinium structures with 3,3′- and 3,4′-substitution of the nitrogen heteroatoms on the biaryl core, would maintain antibacterial activity, yet decrease toxicity. We have thus prepared a series of 17 amphiphiles, dubbed ‘metaquat’ (MQ) and ‘parametaquat’ (PMQ), respectively, and investigated their antibacterial and electrochemical properties. Optimal inhibition of bacterial growth was observed in symmetric, biscationic structures; minimum inhibitory concentration (MIC) values measured as low as 0.5 μM against both Gram-positive and Gram-negative bacteria for the compound PMQ-11,11. Electrochemical analysis demonstrated the redox properties of the dialkyl 3,3′- and 3,4′-bipyridinium amphiphiles to be distinct from those of the 4,4′-bipyridinium isomer. Thus MQ and PMQ amphiphiles maintain the strong antibacterial activity of the PQ isomers, but show promise for reduced ROS toxicity.  相似文献   

13.
14.
Abstract

During the course of preparation of 3′-azido-3′-deoxythymidine (AZT), we observed consistent formation of an isomer of AZT (2-4%) which was isolated and the structure established as 3-(3-azido-2,3-dideoxy-β-D-ezythro pentofuranosyl)thymine. In a more detailed study, this rearrangement was found to occur during the treatment of 2,3′-anhydro-5′-O-tritylthymidine (1) with LiN3 in aqueous DMF.  相似文献   

15.
A high RNA binding affinity and nuclease resistance of 2′-O-modified (2′-O-methyl, 2′-O-tetrahydropyranyl) oligoribonucleotides containing the “inverted” T at the 3′-end have been shown. The synthesis and properties of new photoactivatable perfluoroarylazide derivatives of these oligoribonucleotides are discussed.  相似文献   

16.
Abstract

New solid supports, functionalized with suitably protected 1,2,3-propanetriol and cis,cis-1,3,5-cyclohexanetriol, were efficiently prepared and used in the standard automated synthesis of 3′-3′ linked ODNs for triplex formation experiments.  相似文献   

17.
Dehydration of the hydroxyalkyl chain of 1-phenyl-3-(d-arabino-tetritol-1-yl)pyrazolo[3,4-b]quinoxaline gave the C-nucleoside 3-β-d-erythrofuranosyl-1-phenyl-pyrazolo[3,4-b]quinoxaline (2) in 82% yield. The structure, and the configuration at the anomeric carbon atom, of 2 were elucidated by periodate oxidation, c.d. and n.m.r. spectroscopy, and mass spectrometry. N.m.r.-spectral and c.d. studies revealed that, due to the large size of the heterocyclic base, compound 2 is formed by inversion in the configuration or C-1 of the side chain. The mechanism of the dehydrative cyclization with inversion is discussed.  相似文献   

18.
A synthetic method was established for 3′-α-fluoro-2′,3′-dideoxyguanosine 1 from guanosine 2 in 27% overall yield and 6 steps. A byproduct 6a of fluorination was identified by NMR studies, its presence strongly supporting our supposition that the fluorination itself proceeded via a bromonium cation.  相似文献   

19.
Abstract

A strategy was developed for the synthesis of 3′-O-β-D-ribofuranosyl 2′-deoxythymidine derivatives using three different protecting groups, which allows the synthesis of a phosphoramidite building block for oligonucleotide synthesis. Likewise the 5′-O- and 5″-O-phosphorylated analogues were synthesized and their conformation was determined using NMR spectroscopy.  相似文献   

20.
Abstract

The solid-phase preparation of oligodeoxyribonucleotides covalently linked via nucleic bases with normal (3′-5′) or inverted (5′-5′) polarities is reported. The key-step of these syntheses is the preparation of the tethered dimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号