首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Life span and aging are substantially modified by natural selection. Across species, higher extrinsic (environmentally related) mortality (and hence shorter life expectancy) selects for the evolution of more rapid aging. However, among populations within species, high extrinsic mortality can lead to extended life span and slower aging as a consequence of condition‐dependent survival. Using within‐species contrasts of eight natural populations of Nothobranchius fishes in common garden experiments, we demonstrate that populations originating from dry regions (with short life expectancy) had shorter intrinsic life spans and a greater increase in mortality with age, more pronounced cellular and physiological deterioration (oxidative damage, tumor load), and a faster decline in fertility than populations from wetter regions. This parallel intraspecific divergence in life span and aging was not associated with divergence in early life history (rapid growth, maturation) or pace‐of‐life syndrome (high metabolic rates, active behavior). Variability across four study species suggests that a combination of different aging and life‐history traits conformed with or contradicted the predictions for each species. These findings demonstrate that variation in life span and functional decline among natural populations are linked, genetically underpinned, and can evolve relatively rapidly.  相似文献   

2.
Understanding how wild immune variation covaries with other traits can reveal how costs and trade‐offs shape immune evolution in the wild. Divergent life history strategies may increase or alleviate immune costs, helping shape immune variation in a consistent, testable way. Contrasting hypotheses suggest that shorter life histories may alleviate costs by offsetting them against increased mortality, or increase the effect of costs if immune responses are traded off against development or reproduction. We investigated the evolutionary relationship between life history and immune responses within an island radiation of three‐spined stickleback, with discrete populations of varying life histories and parasitism. We sampled two short‐lived, two long‐lived and an anadromous population using qPCR to quantify current immune profile and RAD‐seq data to study the distribution of immune variants within our assay genes and across the genome. Short‐lived populations exhibited significantly increased expression of all assay genes, which was accompanied by a strong association with population‐level variation in local alleles and divergence in a gene that may be involved in complement pathways. In addition, divergence around the eda gene in anadromous fish is likely associated with increased inflammation. A wider analysis of 15 populations across the island revealed that immune genes across the genome show evidence of having diverged alongside life history strategies. Parasitism and reproductive investment were also important sources of variation for expression, highlighting the caution required when assaying immune responses in the wild. These results provide strong, gene‐based support for current hypotheses linking life history and immune variation across multiple populations of a vertebrate model.  相似文献   

3.
One of the main questions in evolutionary and conservation biology is how geographical and environmental features of the landscape shape neutral and adaptive genetic variation in natural populations. The identification of genomic polymorphisms that account for adaptive variation can aid in finding candidate loci for local adaptation. Consequently, a comparison of spatial patterns in neutral markers and loci under selection may help disentangle the effects of gene flow, genetic drift and selection at the landscape scale. Many amphibians breed in wetlands, which differ in environmental conditions and in the degree of isolation, enhancing the potential for local adaptation. We used microsatellite markers to measure genetic differentiation among 17 local populations of Rana arvalis breeding in a network of wetlands. We found that locus RC08604 deviated from neutral expectations, suggesting that it is a good candidate for directional selection. We used a genetic network analysis to show that the allele distribution in this locus is correlated with habitat characteristics, whereas this was not the case at neutral markers that displayed a different allele distribution and population network in the study area. The graph approach illustrated the genomic heterogeneity (neutral loci vs. the candidate locus for directional selection) of gene exchange and genetic divergence among populations under directional selection. Limited gene flow between wetlands was only observed at the candidate genomic region under directional selection. RC08604 is partially located inside an up‐regulated thyroid‐hormone receptor (TRβ) gene coordinating the expression of other genes during metamorphosis and appears to be linked with variation in larval life‐history traits found among R. arvalis populations. We suggest that directional selection on genes coding larval life‐history traits is strong enough to maintain the divergence in these genomic regions, reducing the effective recombination of locally adapted alleles but not in other regions of the genome. Integrating this knowledge into conservation plans at the landscape scale will improve the design of management strategies to preserve adaptive genetic diversity in wetland networks.  相似文献   

4.
Finding the specific nucleotides that underlie adaptive variation is a major goal in evolutionary biology, but polygenic traits pose a challenge because the complex genotype–phenotype relationship can obscure the effects of individual alleles. However, natural selection working in large wild populations can shift allele frequencies and indicate functional regions of the genome. Previously, we showed that the two most common alleles of a complex amino acid insertion–deletion polymorphism in the Drosophila insulin receptor show independent, parallel clines in frequency across the North American and Australian continents. Here, we report that the cline is stable over at least a five‐year period and that the polymorphism also demonstrates temporal shifts in allele frequency concurrent with seasonal change. We tested the alleles for effects on levels of insulin signaling, fecundity, development time, body size, stress tolerance, and life span. We find that the alleles are associated with predictable differences in these traits, consistent with patterns of Drosophila life‐history variation across geography that likely reflect adaptation to the heterogeneous climatic environment. These results implicate insulin signaling as a major mediator of life‐history adaptation in Drosophila, and suggest that life‐history trade‐offs can be explained by extensive pleiotropy at a single locus.  相似文献   

5.
6.
Many laboratory models used in aging research are inappropriate for understanding senescence in mammals, including humans, because of fundamental differences in life history, maintenance in artificial environments, and selection for early aging and high reproductive rate. Comparative studies of senescence in birds and mammals reveal a broad range in rates of aging among a variety of taxa with similar physiology and patterns of development. These comparisons suggest that senescence is a shared property of all vertebrates with determinate growth, that the rate of senescence has been modified by evolution in response to the potential life span allowed by extrinsic mortality factors, and that most variation among species in the rate of senescence is independent of commonly ascribed causes of aging, such as oxidative damage. Individuals of potentially long‐lived species, particularly birds, appear to maintain high condition to near the end of life. Because most individuals in natural populations of such species die of aging‐related causes, these populations likely harbor little genetic variation for mechanisms that could extend life further, or these mechanisms are very costly. This, and the apparent evolutionary conservatism in the rate of increase in mortality with age, suggests that variation in the rate of senescence reflects fundamental changes in organism structure, likely associated with the rate of development, rather than physiological or biochemical processes influenced by a few genes. Understanding these evolved differences between long‐lived and short‐lived organisms would seem to be an essential foundation for designing therapeutic interventions with respect to human aging and longevity.  相似文献   

7.
Knowledge of genes responsible for aging and death is a prerequisite for determining the relative contributions of the different evolutionary factors responsible for the limited duration of life. Polymorphism of these genes probably accounts for the variation in lifespan. Previously, quantitative trait loci (QTLs) controlling this variation were mapped with the use of 98 recombinant inbred (RI) lines originating from two parental isogenicDrosophila melanogaster stocks. In each RI line, lifespan was measured for 25 males and 25 females, and alleles were established for 93 marker genes segregating between the parental lines. Significant correlation between marker segregation and lifespan was revealed for several chromosome regions. The lifespan genes had sex-specific effects and late age onset. In the present work, the effects of the QTLs were compared for homozygous and heterozygous flies. In Six out of the eight detected QTLs alleles that decreased lifespan were recessive. Heterosis was observed for a of QTL at 33E–38A. Thus, heterosis might contribute to maintaining variation in lifespan in natural populations.  相似文献   

8.
Nuzhdin SV  Reĭvich SG 《Genetika》2002,38(7):916-921
Knowledge of genes responsible for aging and death is a prerequisite for determining the relative contributions of the different evolutionary factors responsible for the limited duration of life. Polymorphism of these genes probably accounts for the variation in lifespan. Previously, quantitative trait loci (QTLs) controlling this variation were mapped with the use of 98 recombinant inbred (RI) lines originating from two parental isogenic Drosophila melanogaster stocks. In each RI line, lifespan was measured for 25 males and 25 females, and alleles were established for 93 marker genes segregating between the parental lines. Significant correlation between marker segregation and lifespan was revealed for several chromosome regions. The lifespan genes had sex-specific effects and late age onset. In the present work, the effects of the QTLs were compared for homozygous and heterozygous flies. In Six out of the eight detected QTLs alleles that decreased lifespan were recessive. Heterosis was observed for a of QTL at 33E-38A. Thus, heterosis might contribute to maintaining variation in lifespan in natural populations.  相似文献   

9.
Reproductive output and cognitive performance decline in parallel during aging, but it is unknown whether this reflects a shared genetic architecture or merely the declining force of natural selection acting independently on both traits. We used experimental evolution in Drosophila melanogaster to test for the presence of genetic variation for slowed cognitive aging, and assess its independence from that responsible for other traits’ decline with age. Replicate experimental populations experienced either joint selection on learning and reproduction at old age (Old + Learning), selection on late‐life reproduction alone (Old), or a standard two‐week culture regime (Young). Within 20 generations, the Old + Learning populations evolved a slower decline in learning with age than both the Old and Young populations, revealing genetic variation for cognitive aging. We found little evidence for a genetic correlation between cognitive and demographic aging: although the Old + Learning populations tended to show higher late‐life fecundity than Old populations, they did not live longer. Likewise, selection for late reproduction alone did not result in improved late‐life learning. Our results demonstrate that Drosophila harbor genetic variation for cognitive aging that is largely independent from genetic variation for demographic aging and suggest that these two aspects of aging may not necessarily follow the same trajectories.  相似文献   

10.
Understanding the genetic underpinnings of adaptive change is a fundamental but largely unresolved problem in evolutionary biology. Drosophila melanogaster, an ancestrally tropical insect that has spread to temperate regions and become cosmopolitan, offers a powerful opportunity for identifying the molecular polymorphisms underlying clinal adaptation. Here, we use genome‐wide next‐generation sequencing of DNA pools (‘pool‐seq’) from three populations collected along the North American east coast to examine patterns of latitudinal differentiation. Comparing the genomes of these populations is particularly interesting since they exhibit clinal variation in a number of important life history traits. We find extensive latitudinal differentiation, with many of the most strongly differentiated genes involved in major functional pathways such as the insulin/TOR, ecdysone, torso, EGFR, TGFβ/BMP, JAK/STAT, immunity and circadian rhythm pathways. We observe particularly strong differentiation on chromosome 3R, especially within the cosmopolitan inversion In(3R)Payne, which contains a large number of clinally varying genes. While much of the differentiation might be driven by clinal differences in the frequency of In(3R)P, we also identify genes that are likely independent of this inversion. Our results provide genome‐wide evidence consistent with pervasive spatially variable selection acting on numerous loci and pathways along the well‐known North American cline, with many candidates implicated in life history regulation and exhibiting parallel differentiation along the previously investigated Australian cline.  相似文献   

11.
We have used chromosome mapping with polymorphic markers to define genetic components governing life span in the nematode Caenorhabditis elegans. A complex recombinant-inbred population was derived from an interstrain cross, yielding >1000 genotypes, each a composite of homozygous segments from the two parental strains. Genotypes were analyzed for the last-surviving 1-5% of worms in aging cohorts, and for young controls, by multiplex polymerase chain reaction using polymorphic markers to distinguish the parental alleles. We identified five regions of the genome at which one parental allele was significantly enriched in long-lived subpopulations. At four of five loci, the same alleles were selected in aging cohorts maintained under two different conditions, implying that these genes determine life span in differing environments.  相似文献   

12.
One of the two main hypotheses to account for ageing is antagonistic pleiotropy (AP). This model requires alleles that increase vital rates (reproduction or survival) at early age at the expense of vital rates at late age. An important focus of evolutionary studies has been to assess the relative abundance of AP‐type aging alleles that arise through mutation. Here, we develop theory that predicts that senescence per se reduces the probability that these alleles arise by mutation. A direct result is that these mutations should arise with extremely low frequencies in already senescing populations. This has profound implications for the evolution of life histories because it implies that the adaptive evolution of aging via AP will experience negative feedback. This theory also clarifies the previously inexplicable epistatic patterns of genetic covariance across age‐specific vital rates that are observed in mutation accumulation experiments. We show that this epistasis is an emergent property of aging.  相似文献   

13.
In outbred sexually reproducing populations, age‐specific mortality rates reach a plateau in late life following the exponential increase in mortality rates that marks aging. Little is known about what happens to physiology when cohorts transition from aging to late life. We measured age‐specific values for starvation resistance, desiccation resistance, time‐in‐motion, and geotaxis in ten Drosophila melanogaster populations: five populations selected for rapid development and five control populations. Adulthood was divided into two stages, the aging phase and the late‐life phase according to demographic data. Consistent with previous studies, we found that populations selected for rapid development entered the late‐life phase at an earlier age than the controls. Age‐specific rates of change for all physiological phenotypes showed differences between the aging phase and the late‐life phase. This result suggests that late life is physiologically distinct from aging. The ages of transitions in physiological characteristics from aging to late life statistically match the age at which the demographic transition from aging to late life occurs, in all cases but one. These experimental results support evolutionary theories of late life that depend on patterns of decline and stabilization in the forces of natural selection.  相似文献   

14.
Loss of fitness due to inbreeding depression in small captive populations of endangered species is widely appreciated. Populations of all sizes may also experience loss in fitness when environmental conditions are ameliorated because deleterious alleles may be rendered neutral and accumulate rapidly. Few data exist, however, to demonstrate loss in fitness due to relaxed selection. Loss of fitness in life‐history traits were compared between LARGE (Ne ≥ 500) and SMALL (Ne = 50) populations of the housefly Musca domestica L that were subjected to curtailed life span at 21 days to remove selection on late‐acting deleterious alleles. During the early part of the life history (≤21 days), the rate of decline in fecundity and progeny production over 24 generations was greater in the small (1.5%) than in the large populations <0.2%), but rate of loss in late‐life fecundity and progeny production (>21 days) was equivalent across populations, consistent with neutral theory, and amounted to 1.7% per generation. This rate of loss due to relaxed selection was equivalent to the rate of loss due to inbreeding in populations with an effective size of 50 individuals. Even if captive populations are kept large to avoid inbreeding, breeding them in benign environments where the forces of natural selection are curtailed may jeopardize the capability of these populations to exist in natural environments within few generations. Zoo Biol 20:145–156, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

15.
Allocation decisions depend on an organism's condition which can change with age. Two opposite changes in life‐history traits are predicted in the presence of senescence: either an increase in breeding performance in late age associated with terminal investment or a decrease due to either life‐history trade‐offs between current breeding and future survival or decreased efficiency at old age. Age variation in several life‐history traits has been detected in a number of species, and demographic performances of individuals in a given year are influenced by their reproductive state the previous year. Few studies have, however, examined state‐dependent variation in life‐history traits with aging, and they focused mainly on a dichotomy of successful versus failed breeding and non‐breeding birds. Using a 50‐year dataset on the long‐lived quasi‐biennial breeding wandering albatross, we investigated variations in life‐history traits with aging according to a gradient of states corresponding to potential costs of reproduction the previous year (in ascending order): non‐breeding birds staying at sea or present at breeding grounds, breeding birds that failed early, late or were successful. We used multistate models to study survival and decompose reproduction into four components (probabilities of return, breeding, hatching, and fledging), while accounting for imperfect detection. Our results suggest the possible existence of two strategies in the population: strict biennial breeders that exhibited almost no reproductive senescence and quasi‐biennial breeders that showed an increased breeding frequency with a strong and moderate senescence on hatching and fledging probabilities, respectively. The patterns observed on survival were contrary to our predictions, suggesting an influence of individual quality rather than trade‐offs between reproduction and survival at late ages. This work represents a step further into understanding the evolutionary ecology of senescence and its relationship with costs of reproduction at the population level. It paves the way for individual‐based studies that could show the importance of intra‐population heterogeneity in those processes.  相似文献   

16.
17.
Clutch size and egg mass are life history traits that have been extensively studied in wild bird populations, as life history theory predicts a negative trade‐off between them, either at the phenotypic or at the genetic level. Here, we analyse the genomic architecture of these heritable traits in a wild great tit (Parus major) population, using three marker‐based approaches – chromosome partitioning, quantitative trait locus (QTL) mapping and a genome‐wide association study (GWAS). The variance explained by each great tit chromosome scales with predicted chromosome size, no location in the genome contains genome‐wide significant QTL, and no individual SNPs are associated with a large proportion of phenotypic variation, all of which may suggest that variation in both traits is due to many loci of small effect, located across the genome. There is no evidence that any regions of the genome contribute significantly to both traits, which combined with a small, nonsignificant negative genetic covariance between the traits, suggests the absence of genetic constraints on the independent evolution of these traits. Our findings support the hypothesis that variation in life history traits in natural populations is likely to be determined by many loci of small effect spread throughout the genome, which are subject to continued input of variation by mutation and migration, although we cannot exclude the possibility of an additional input of major effect genes influencing either trait.  相似文献   

18.
Delaying sexual maturation can lead to larger body size and higher reproductive success, but carries an increased risk of death before reproducing. Classical life history theory predicts that trade‐offs between reproductive success and survival should lead to the evolution of an optimal strategy in a given population. However, variation in mating strategies generally persists, and in general, there remains a poor understanding of genetic and physiological mechanisms underlying this variation. One extreme case of this is in the Atlantic salmon (Salmo salar), which can show variation in the age at which they return from their marine migration to spawn (i.e. their ‘sea age’). This results in large size differences between strategies, with direct implications for individual fitness. Here, we used an Illumina Infinium SNP array to identify regions of the genome associated with variation in sea age in a large population of Atlantic salmon in Northern Europe, implementing individual‐based genome‐wide association studies (GWAS) and population‐based FST outlier analyses. We identified several regions of the genome which vary in association with phenotype and/or selection between sea ages, with nearby genes having functions related to muscle development, metabolism, immune response and mate choice. In addition, we found that individuals of different sea ages belong to different, yet sympatric populations in this system, indicating that reproductive isolation may be driven by divergence between stable strategies. Overall, this study demonstrates how genome‐wide methodologies can be integrated with samples collected from wild, structured populations to understand their ecology and evolution in a natural context.  相似文献   

19.
Diapause is a life history strategy allowing individuals to arrest development until favourable conditions return, and it is commonly induced by shortened day length that is latitude specific for local populations. Although understanding the evolutionary dynamics of a threshold trait like diapause induction provides insights into the adaptive process and adaptive potential of populations, the genetic mechanism of variation in photoperiodic induction of diapause is not well understood. Here, we investigate genetic variation underlying latitudinal variation in diapause induction and the selection dynamics acting upon it. Using a genomewide scan for divergent regions between two populations of the butterfly Pararge aegeria that differ strongly in their induction thresholds, we identified and investigated the patterns of variation in those regions. We then tested the association of these regions with diapause induction using between‐population crosses, finding significant SNP associations in four genes present in two chromosomal regions, one with the gene period, and the other with the genes kinesin, carnitine O‐acetyltransferase and timeless. Patterns of allele frequencies in these two regions in population samples along a latitudinal cline suggest strong selection against heterozygotes at two genes within these loci (period, timeless). Evidence for additional loci modifying the diapause decision was found in patterns of allelic change in relation to induction thresholds over the cline, as well as in backcross analyses. Taken together, population‐specific adaptations of diapause induction appear to be due to a combination of alleles of larger and smaller effect size, consistent with an exponential distribution of effect sizes involved in local adaption.  相似文献   

20.
Parallel adaptation is common and may often occur from shared genetic variation, but the genomic consequences of this process remain poorly understood. We first use individual‐based simulations to demonstrate that comparisons between populations adapted in parallel to similar environments from shared variation reveal a characteristic genomic signature around a selected locus: a low‐divergence valley centred at the locus and flanked by twin peaks of high divergence. This signature is initiated by the hitchhiking of haplotype tracts differing between derived populations in the broader neighbourhood of the selected locus (driving the high‐divergence twin peaks) and shared haplotype tracts in the tight neighbourhood of the locus (driving the low‐divergence valley). This initial hitchhiking signature is reinforced over time because the selected locus acts as a barrier to gene flow from the source to the derived populations, thus promoting divergence by drift in its close neighbourhood. We next empirically confirm the peak‐valley‐peak signature by combining targeted and RAD sequence data at three candidate adaptation genes in multiple marine (source) and freshwater (derived) populations of threespine stickleback. Finally, we use a genome‐wide screen for the peak‐valley‐peak signature to discover additional genome regions involved in parallel marine‐freshwater divergence. Our findings offer a new explanation for heterogeneous genomic divergence and thus challenge the standard view that peaks in population divergence harbour divergently selected loci and that low‐divergence regions result from balancing selection or localized introgression. We anticipate that genome scans for peak‐valley‐peak divergence signatures will promote the discovery of adaptation genes in other organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号