共查询到20条相似文献,搜索用时 15 毫秒
1.
Drought stress in tropical dry forests is thought to result in greater asexual regeneration via vegetative sprouting ( e.g ., basal, root, and branch layering) than occurs in moister tropical forests. We tested this hypothesis by examining the prevalence of tree sprouting and seeding in tropical forests located along a rainfall gradient on the island of Hawai'i. Additionally, we examined the potential for novel disturbance, feral pig Sus scrofa rooting and trampling, to alter patterns in tree regeneration mode. We found greater sprouting (in terms of relative density and basal area) in dry forests than in mesic and wet forests, supporting the hypothesis. We also found that feral pig disturbance is negatively correlated with the relative density and basal area of seedlings in wet forests, but is positively correlated with the relative importance of sprouting, and the richness and diversity of sprouting species. Our results suggest rainfall regimes may be an important factor controlling broad-scale patterns in tree regeneration mode, and that exotic ungulates can significantly modify such patterns with potential consequences for the structure and dynamics of tree populations and communities. 相似文献
2.
Timothy J. Smyser Michael A. Tabak Chris Slootmaker Michael S. Robeson Ryan S. Miller Mirte Bosse Hendrik‐Jan Megens Martien A. M. Groenen Samuel Rezende Paiva Danielle Assis de Faria Harvey D. Blackburn Brandon S. Schmit Antoinette J. Piaggio 《Molecular ecology》2020,29(6):1103-1119
Invasive alien species are a significant threat to both economic and ecological systems. Identifying the processes that give rise to invasive populations is essential for implementing effective control strategies. We conducted an ancestry analysis of invasive feral swine (Sus scrofa, Linnaeus, 1758), a highly destructive ungulate that is widely distributed throughout the contiguous United States, to describe introduction pathways, sources of newly emergent populations and processes contributing to an ongoing invasion. Comparisons of high‐density single nucleotide polymorphism genotypes for 6,566 invasive feral swine to a comprehensive reference set of S. scrofa revealed that the vast majority of feral swine were of mixed ancestry, with dominant genetic associations to Western heritage breeds of domestic pig and European populations of wild boar. Further, the rapid expansion of invasive feral swine over the past 30 years was attributable to secondary introductions from established populations of admixed ancestry as opposed to direct introductions of domestic breeds or wild boar. Spatially widespread genetic associations of invasive feral swine to European wild boar deviated strongly from historical S. scrofa introduction pressure, which was largely restricted to domestic pigs with infrequent, localized wild boar releases. The deviation between historical introduction pressure and contemporary genetic ancestry suggests wild boar‐hybridization may contribute to differential fitness in the environment and heightened invasive potential for individuals of admixed domestic pig–wild boar ancestry. 相似文献
3.
Kelly E. Williams Kathryn P. Huyvaert Kurt C. Vercauteren Amy J. Davis Antoinette J. Piaggio 《Ecology and evolution》2018,8(1):688-695
Invasive Sus scrofa, a species commonly referred to as wild pig or feral swine, is a destructive invasive species with a rapidly expanding distribution across the United States. We used artificial wallows and small waterers to determine the minimum amount of time needed for pig eDNA to accumulate in the water source to a detectable level. We removed water from the artificial wallows and tested eDNA detection over the course of 2 weeks to understand eDNA persistence. We show that our method is sensitive enough to detect very low quantities of eDNA shed by a terrestrial mammal that has limited interaction with water. Our experiments suggest that the number of individuals shedding into a water system can affect persistence of eDNA. Use of an eDNA detection technique can benefit management efforts by providing a sensitive method for finding even small numbers of individuals that may be elusive using other methods. 相似文献
4.
Matthew R. Ivey Michael Colvin Bronson K. Strickland Marcus A. Lashley 《Ecology and evolution》2019,9(13):7761-7767
Biological invasions often have contrasting consequences with reports of invasions decreasing diversity at small scales and facilitating diversity at large scales. Thus, previous literature has concluded that invasions have a fundamental spatial scale‐dependent relationship with diversity. Whether the scale‐dependent effects apply to vertebrate invaders is questionable because studies consistently report that vertebrate invasions produce different outcomes than plant or invertebrate invasions. Namely, vertebrate invasions generally have a larger effect size on species richness and vertebrate invaders commonly cause extinction, whereas extinctions are rare following invertebrate or plant invasions. In an agroecosystem invaded by a non‐native ungulate (i.e., feral swine, Sus scrofa), we monitored species richness of native vertebrates in forest fragments ranging across four orders of magnitude in area. We tested three predictions of the scale‐dependence hypothesis: (a) Vertebrate species richness would positively increase with area, (b) the species richness y‐intercept would be lower when invaded, and (c) the rate of native species accumulation with area would be steeper when invaded. Indeed, native vertebrate richness increased with area and the species richness was 26% lower than should be expected when the invasive ungulate was present. However, there was no evidence that the relationship was scale dependent. Our data indicate the scale‐dependent effect of biological invasions may not apply to vertebrate invasions. 相似文献
5.
- Natural resource management agencies in many countries take advantage of recreational hunting to manage the impacts or abundance of mammal populations that damage biodiversity or environmental, economic, or social values. In Australia, public lands are increasingly being made available for recreational hunters to pursue introduced mammals that can cause substantial damage to important resources. There is fervent debate over the role that recreational hunting might play in controlling introduced mammals in Australia, and scant evidence to build management strategies upon.
- In this review, we combine information from Australia and elsewhere in a systematic examination of the potential for recreational hunting to contribute to the control of introduced mammals on public lands in Australia. We examine the traits of introduced mammal species and populations, geographical settings, hunters, and management agencies to propose situations where hunting might be most useful, and suggest how current practice could be improved.
- We find there is insufficient evidence to support or disprove arguments that contemporary recreational hunting programs are effective at controlling introduced mammal populations on public lands. Moreover, current hunting management programs offer little potential for clarifying the situation or optimizing the value of recreational hunting as a pest animal control tool.
- To resolve this problem, we outline a framework of competing models and diagnostic criteria for assessing the effects of recreational hunting on introduced mammal populations. We contend that hunting will continue to be an under‐utilized and over‐politicized resource until management strategy is informed by transparent monitoring based on rational strategic objectives that provide mutual benefits to hunters and public resource managers.
6.
7.
Saber Khederzadeh Szilvia Kusza Cui‐Ping Huang Nickolay Markov Massimo Scandura Elmar Babaev Nikica prem Ivan V. Seryodkin Ladislav Paule Ali Esmailizadeh Hai‐Bing Xie Ya‐Ping Zhang 《Ecology and evolution》2019,9(17):9467-9478
The phylogeography of the European wild boar was mainly determined by postglacial recolonization patterns from Mediterranean refugia after the last ice age. Here we present the first analysis of SNP polymorphism within the complete mtDNA genome of West Russian (n = 8), European (n = 64), and North African (n = 5) wild boar. Our analyses provided evidence of unique lineages in the East‐Caucasian (Dagestan) region and in Central Italy. A phylogenetic analysis revealed that these lineages are basal to the other European mtDNA sequences. We also show close connection between the Western Siberian and Eastern European populations. Also, the North African samples were clustered with the Iberian population. Phylogenetic trees and migration modeling revealed a high proximity of Dagestan sequences to those of Central Italy and suggested possible gene flow between Western Asia and Southern Europe which was not directly related to Northern and Central European lineages. Our results support the presence of old maternal lineages in two Southern glacial refugia (i.e., Caucasus and the Italian peninsula), as a legacy of an ancient wave of colonization of Southern Europe from an Eastern origin. 相似文献
8.
A. Ribani V. J. Utzeri C. Geraci S. Tinarelli M. Djan N. Veli
kovi R. Doneva S. Dall'Olio L. Nanni Costa G. Schiavo S. Bovo G. Usai M. Gallo . Radovi R. Savi D. Karolyi K. Salajpal K. Gvozdanovi I. Djurkin‐Kuec M. krlep M. andek‐Potokar C. Ovilo L. Fontanesi 《Animal genetics》2019,50(2):166-171
Autochthonous pig breeds are usually reared in extensive or semi‐extensive production systems that might facilitate contact with wild boars and, thus, reciprocal genetic exchanges. In this study, we analysed variants in the melanocortin 1 receptor (MC1R) gene (which cause different coat colour phenotypes) and in the nuclear receptor subfamily 6 group A member 1 (NR6A1) gene (associated with increased vertebral number) in 712 pigs of 12 local pig breeds raised in Italy (Apulo‐Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano and Sarda) and south‐eastern European countries (Kr?kopolje from Slovenia, Black Slavonian and Turopolje from Croatia, Mangalitsa and Moravka from Serbia and East Balkan Swine from Bulgaria) and compared the data with the genetic variability at these loci investigated in 229 wild boars from populations spread in the same macro‐geographic areas. None of the autochthonous pig breeds or wild boar populations were fixed for one allele at both loci. Domestic and wild‐type alleles at these two genes were present in both domestic and wild populations. Findings of the distribution of MC1R alleles might be useful for tracing back the complex genetic history of autochthonous breeds. Altogether, these results indirectly demonstrate that bidirectional introgression of wild and domestic alleles is derived and affected by the human and naturally driven evolutionary forces that are shaping the Sus scrofa genome: autochthonous breeds are experiencing a sort of ‘de‐domestication’ process, and wild resources are challenged by a ‘domestication’ drift. Both need to be further investigated and managed. 相似文献
9.
Steven M. Gray Gary J. Roloff Daniel B. Kramer Dwayne R. Etter Kurt C. Vercauteren Robert A. Montgomery 《The Journal of wildlife management》2020,84(4):739-748
In North America, wild pigs (Sus scrofa; feral pigs, feral swine, wild boars) are a widespread exotic species capable of creating large-scale biotic and abiotic landscape perturbations. Quantification of wild pig environmental effects has been particularly problematic in northern climates, where they occur only recently as localized populations at low densities. Between 2016 and 2017, we assessed short-term (within ~2 yrs of disturbance) effects of a low-density wild pig population on forest features in the central Lower Peninsula of Michigan, USA. We identified 16 8-ha sites using global positioning system locations from 7 radio-collared wild pigs for sampling. Within each site, we conducted fine-scale assessments at 81 plots and quantified potential disturbance by wild pigs. We defined disturbance as exposure of overturned soil, often resulting from rooting behavior by wild pigs. We quantified ground cover of plants within paired 1-m2 frames at each plot, determined effects to tree regeneration using point-centered quarter sampling, and collected soil cores from each plot. We observed less percent ground cover of native herbaceous plants and lower species diversity, particularly for plants with a coefficient of conservatism ≥5, in plots disturbed by wild pigs. We did not observe an increase in colonization of exotic plants following disturbance, though the observed prevalence of exotic plants was low. Wild pigs did not select for tree species when rooting, and we did not detect any differences in regeneration of light- and heavy-seeded tree species between disturbed or undisturbed plots. Magnesium and ammonium content in soils were lower in disturbed plots, suggesting soil disturbance accelerated leaching of macronutrients, potentially altering nitrogen transformation. Our study suggested that disturbances by wild pigs, even at low densities, alters short-term native herbaceous plant diversity and soil chemistry. Thus, small-scale exclusion of wild pigs from vulnerable and rare plant communities may be warranted. © 2020 The Wildlife Society. 相似文献
10.
Daniel J. D. Natusch Martin Mayer Jessica A. Lyons Richard Shine 《Austral ecology》2017,42(4):479-485
In tropical Australian rainforests, predators and scavengers aggregate beneath emergent trees that house large colonies of metallic starlings (Aplonis metallica), feeding in the nutrient‐rich open areas below. Analysis of camera‐trap records shows that the presence of feral pigs (Sus scrofa) is associated with an absence of birds (cockatoos and brush turkeys), presumably reflecting behavioural avoidance (pigs pose a direct danger to birds). However, bird numbers increase as soon as pigs depart, then fall if pigs are absent for long periods. Feral pigs thus displace native birds from these resource hotspots; but by turning over the soil and enhancing the birds' access to food, the pigs also have a positive impact on food availability for the avifauna. Thus, although invasive species have caused irreparable environmental damages worldwide, they may also provide positive benefits for certain species. The net benefit of such interspecific interactions will depend on the outcome of both positive and negative effects. 相似文献
11.
Estimating population density as precise as possible is a key premise for managing wild animal species. This can be a challenging task if the species in question is elusive or, due to high quantities, hard to count. We present a new, mathematically derived estimator for population size, where the estimation is based solely on the frequency of genetically assigned parent–offspring pairs within a subsample of an ungulate population. By use of molecular markers like microsatellites, the number of these parent–offspring pairs can be determined. The study's aim was to clarify whether a classical capture–mark–recapture (CMR) method can be adapted or extended by this genetic element to a genetic‐based capture–mark–recapture (g‐CMR). We numerically validate the presented estimator (and corresponding variance estimates) and provide the R‐code for the computation of estimates of population size including confidence intervals. The presented method provides a new framework to precisely estimate population size based on the genetic analysis of a one‐time subsample. This is especially of value where traditional CMR methods or other DNA‐based (fecal or hair) capture–recapture methods fail or are too difficult to apply. The DNA source used is basically irrelevant, but in the present case the sampling of an annual hunting bag is to serve as data basis. In addition to the high quality of muscle tissue samples, hunting bags provide additional and essential information for wildlife management practices, such as age, weight, or sex. In cases where a g‐CMR method is ecologically and hunting‐wise appropriate, it enables a wide applicability, also through its species‐independent use. 相似文献
12.
Invasive species interacting with fires pose a relatively unknown, but potentially serious, threat to the tropical forests of Hawaii. Fires may create conditions that facilitate species invasions, but the degree to which this occurs in different tropical plant communities has not been quantified. We documented the survival and establishment of plant species for 2 yr following 2003 wildfires in tropical moist and wet forest life zones in Hawaii Volcanoes National Park, Hawaii. Fires were ignited by lava flows and burned across a steep environmental gradient encompassing two previously burned shrub-dominated communities and three Metrosideros polymorpha forest communities. Fires in all community types were stand replacing, where >95 percent of overstory trees were top killed. Over half (>57%) of the trees survived via basal sprouting, but sprout growth differed among forest communities. Sprout growth (>250,000 cm3) was greatest in the forest community where postfire understory cover was lowest presumably due to thick native Dicranopteris linearis fern litter that remained postfire. In contrast, M. polymorpha sprout growth was much slower (<100,000 cm3) in the two forest communities where there was rapid understory recovery of nonnative ferns Nephrolepis multiflora and invasive grasses Paspalum conjugatum. These results suggest that the rapid establishment of an invasive-dominated understory limited recovery of the overstory dominant M. polymorpha. In contrast to the three forest communities, there were few changes in vegetation composition in the shrubland communities. Nonnative species invasions coupled with repeated fires selectively eliminated fire-sensitive species thereby maintaining these communities in dominance of primarily nonnative, fire-resilient, species. 相似文献
13.
Ecological traps are habitat sinks that are preferred by dispersing animals but have higher mortality or reduced fecundity compared to source habitats. Theory suggests that if mortality rates are sufficiently high, then ecological traps can result in extinction. An ecological trap may be created when pest animals are controlled in one area, but not in another area of equal habitat quality, and when there is density‐dependent immigration from the high‐density uncontrolled area to the low‐density controlled area. We used a logistic population model to explore how varying the proportion of habitat controlled, control mortality rate, and strength of density‐dependent immigration for feral pigs could affect the long‐term population abundance and time to extinction. Increasing control mortality, the proportion of habitat controlled and the strength of density‐dependent immigration decreased abundance both within and outside the area controlled. At higher levels of these parameters, extinction was achieved for feral pigs. We extended the analysis with a more complex stochastic, interactive model of feral pig dynamics in the Australian rangelands to examine how the same variables as the logistic model affected long‐term abundance in the controlled and uncontrolled area and time to extinction. Compared to the logistic model of feral pig dynamics, the stochastic interactive model predicted lower abundances and extinction at lower control mortalities and proportions of habitat controlled. To improve the realism of the stochastic interactive model, we substituted fixed mortality rates with a density‐dependent control mortality function, empirically derived from helicopter shooting exercises in Australia. Compared to the stochastic interactive model with fixed mortality rates, the model with the density‐dependent control mortality function did not predict as substantial decline in abundance in controlled or uncontrolled areas or extinction for any combination of variables. These models demonstrate that pest eradication is theoretically possible without the pest being controlled throughout its range because of density‐dependent immigration into the area controlled. The stronger the density‐dependent immigration, the better the overall control in controlled and uncontrolled habitat combined. However, the stronger the density‐dependent immigration, the poorer the control in the area controlled. For feral pigs, incorporating environmental stochasticity improves the prospects for eradication, but adding a realistic density‐dependent control function eliminates these prospects. 相似文献
14.
Questions
Can drainage ditches in agricultural marsh grassland provide a suitable habitat for the persistence of fen meadow species? How does the ditch margin vegetation develop as a function of regular dredging? Is ornithologically oriented management also beneficial for plant biodiversity?Location
Riparian marshes, Eider‐Treene‐Sorge lowland, Schleswig‐Holstein, Germany.Methods
We performed vegetation surveys of drainage ditches along with their water body, slope and margin structures annually for 3 years. The data were analysed with respect to date and means of ditch dredging. In addition, we recorded vegetation of the surrounding agricultural grassland, measured nutrient status of the soil and the water body and sampled seed bank of the ditch slopes. We used ANOVA and multivariate methods to describe the development of the ditch vegetation and the persistence of target meadow species.Results
Vegetation re‐development of ditch margins proceeds quite rapidly after disturbance from dredging. Dominance of mudbank species was observed only in the first year, followed by an increase of reed species and reduction of phytodiversity. Target species of wet meadow communities reach highest abundance in the second and third year and build a significant seed bank before being suppressed by reeds.Conclusions
In heavily eutrophicated, intensively used marsh grassland, regularly disturbed ditch margins are important secondary habitats for pioneer and subdominant wetland species, which have nearly disappeared in a larger area. Current management cycles of ditch dredging every 3–4 years comply with the successional development, allowing the mudbank and wet meadow species to persist in the vegetation and seed bank. In contrast to the frequency, the form of dredging (ditch profile), which is crucial for bird protection, plays a minor role for plants. We recommend moderate disturbance (mowing of ditch margins) to suppress strong competitors in the years between dredging for additional support to target plant species. 相似文献15.
尖峰岭自然保护区扩大区域植物多样性研究 总被引:2,自引:0,他引:2
尖峰岭自然保护区2002年由省级上升为国家级自然保护区, 面积由原来的7,762 hm2增加至20,170 hm2。为建立一个比较完善的国家级自然保护区管理体系, 海南大学于2003年10月通过路线调查与标准样方相结合的方法对保护区扩大区域展开了植被资源调查工作。本次调查共记录到43种尖峰岭地区新记录种, 其中黄毛马兜铃(Aristolochia fulvicoma)、海南地不容(Stephania hainanensis)、卵叶石笔木(Tutcheria ovalifolia)、蜜茱萸(Melicope patulinervia)和南烛(Lyonia ovalifolia)等5种为海南特有种。在本次调查的9,600 m2天然林标准样方中共记录到高1.5 m以上的立木3,466株398种, 隶属于69科161属。在扩大区域内共有国家级珍稀濒危和保护植物41种, 其中国家I级保护植物4种, 新记录到的尖峰岭地区国家级濒危植物2种, 即毛茶(Antirhea chinensis)和琼棕(Chuniophoenix hainanensis), 并基本确定了这些植物的垂直分布状况。扩大区域热带低地雨林、热带山地雨林、热带山顶矮林3种群落类型的物种多样性指数均较高, 且Simpson指数(D)及Shannon-Wiener指数(H')均是热带山地雨林>热带低地雨林>热带山顶矮林; 均匀度则是热带山地雨林>热带山顶矮林>热带低地雨林。表明经过多年封山育林及实施天然林保护工程, 扩大区域内曾经受过强烈干扰的热带低地雨林和山地雨林已经得到了很好的恢复。 相似文献
16.
王指山热带山地雨林的物种种类十分丰富,在1hm^2样地中共出现54个科,100个属的乔木树种177种,1337个个体。区系地理分析表明属的分布区类型以热带分布型成分占优,为89.0%,充分体现了五指山山地雨林的热带性质。多样性指数分析结果为:样地1Margalef指数17.822,Shannon-Wiener指数5.621,均匀度0.823,Simpson指数0.050,均匀度6.775,表明五指 相似文献
17.
Pig umbilical hernia (UH) affects pig welfare and brings considerable economic loss to the pig industry. To date, the molecular mechanisms underlying pig UH are still poorly understood. To identify potential loci for susceptibility to this disease, we performed a genome‐wide association study in an Erhualian × Shaziling F2 intercross population. A total of 45 animals were genotyped using Illumina Porcine SNP60 BeadChips. We observed a SNP (rs80993347) located in the calpain‐9 (CAPN9) gene on Sus scrofa chromosome 14 that was significantly associated with UH (P = 1.97 × 10?10). Then, we identified a synonymous mutation rs321865883 (g.20164T>C) in exon 10 of the CAPN9 gene that distinguished two affected individuals (CC) from their normal full‐sibs (TC). Finally, quantitative polymerase chain reaction was explored to investigate the mRNA expression profile of the CAPN9 gene in 12 tissues in Yorkshire pigs at different developmental stages (3, 90 and 180 days). CAPN9 showed high expression levels in the gastrointestinal tract at these three growth stages. The results of this study indicate that the CAPN9 gene might be implicated in UH. Further studies are required to establish a role of CAPN9 in pig UH. 相似文献
18.
Andrew T. Nottingham Jeanette Whitaker Nick J. Ostle Richard D. Bardgett Niall P. McNamara Noah Fierer Norma Salinas Adan J. Q. Ccahuana Benjamin L. Turner Patrick Meir 《Ecology letters》2019,22(11):1889-1899
Tropical soils contain huge carbon stocks, which climate warming is projected to reduce by stimulating organic matter decomposition, creating a positive feedback that will promote further warming. Models predict that the loss of carbon from warming soils will be mediated by microbial physiology, but no empirical data are available on the response of soil carbon and microbial physiology to warming in tropical forests, which dominate the terrestrial carbon cycle. Here we show that warming caused a considerable loss of soil carbon that was enhanced by associated changes in microbial physiology. By translocating soils across a 3000 m elevation gradient in tropical forest, equivalent to a temperature change of ± 15 °C, we found that soil carbon declined over 5 years by 4% in response to each 1 °C increase in temperature. The total loss of carbon was related to its original quantity and lability, and was enhanced by changes in microbial physiology including increased microbial carbon‐use‐efficiency, shifts in community composition towards microbial taxa associated with warmer temperatures, and increased activity of hydrolytic enzymes. These findings suggest that microbial feedbacks will cause considerable loss of carbon from tropical forest soils in response to predicted climatic warming this century. 相似文献
19.
20.
Tessa Camenzind Stefan Hempel Jürgen Homeier Sebastian Horn Andre Velescu Wolfgang Wilcke Matthias C. Rillig 《Global Change Biology》2014,20(12):3646-3659
Increased nitrogen (N) depositions expected in the future endanger the diversity and stability of ecosystems primarily limited by N, but also often co‐limited by other nutrients like phosphorus (P). In this context a nutrient manipulation experiment (NUMEX) was set up in a tropical montane rainforest in southern Ecuador, an area identified as biodiversity hotspot. We examined impacts of elevated N and P availability on arbuscular mycorrhizal fungi (AMF), a group of obligate biotrophic plant symbionts with an important role in soil nutrient cycles. We tested the hypothesis that increased nutrient availability will reduce AMF abundance, reduce species richness and shift the AMF community toward lineages previously shown to be favored by fertilized conditions. NUMEX was designed as a full factorial randomized block design. Soil cores were taken after 2 years of nutrient additions in plots located at 2000 m above sea level. Roots were extracted and intraradical AMF abundance determined microscopically; the AMF community was analyzed by 454‐pyrosequencing targeting the large subunit rDNA. We identified 74 operational taxonomic units (OTUs) with a large proportion of Diversisporales. N additions provoked a significant decrease in intraradical abundance, whereas AMF richness was reduced significantly by N and P additions, with the strongest effect in the combined treatment (39% fewer OTUs), mainly influencing rare species. We identified a differential effect on phylogenetic groups, with Diversisporales richness mainly reduced by N additions in contrast to Glomerales highly significantly affected solely by P. Regarding AMF community structure, we observed a compositional shift when analyzing presence/absence data following P additions. In conclusion, N and P additions in this ecosystem affect AMF abundance, but especially AMF species richness; these changes might influence plant community composition and productivity and by that various ecosystem processes. 相似文献