首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All of the membrane-embedded cofactors of the purple bacterial reaction centre have well-defined functional or structural roles, with the exception of the bacteriopheophytin (HB) located approximately half-way across the membrane on the so-called inactive- or B-branch of cofactors. Sequence alignments indicate that this bacteriochlorin cofactor is a conserved feature of purple bacterial reaction centres, and a pheophytin is also found at this position in the Photosystem-II reaction centre. Possible structural or functional consequences of replacing the HB bacteriopheophytin by bacteriochlorophyll were investigated in the Rhodobacter sphaeroides reaction centre through mutagenesis of residue Leu L185 to His (LL185H). Results from absorbance spectroscopy indicated that the LL185H mutant assembled with a bacteriochlorophyll at the HB position, but this did not affect the capacity of the reaction centre to support photosynthetic growth, or change the kinetics of charge separation along the A-branch of cofactors. It was also found that mutation of residue Ala M149 to Trp (AM149W) caused the reaction centre to assemble without an HB bacteriochlorin, demonstrating that this cofactor is not required for correct assembly of the reaction centre. The absence of a cofactor at this position did not affect the capacity of the reaction centre to support photosynthetic growth, or the kinetics of A-branch electron transfer. A combination of X-ray crystallography and FTIR difference spectroscopy confirmed that the HB cofactor was absent in the AM149W mutant, and that this had not produced any significant disturbance of the adjacent ubiquinol reductase (QB) site. The data are discussed with respect to possible functional roles of the HB bacteriopheophytin, and we conclude that the reason(s) for conservation of a bacteriopheophytin cofactor at this position in purple bacterial reaction centres are likely to be different from those underlying conservation of a pheophytin at the analogous position in Photosystem-II.  相似文献   

2.
A photochemical reaction-center preparation has been made from a second bacteriochlorophyll b-containing organism, Thiocapsa pfennigii. The reaction-center unit is thought to be composed of one P-960, four bacteriochlorophyll, two bacteriopheophytin, one carotenoid molecules and polypeptides of Mr 40000, 37000, 34000, 27000 and 26000 probably plus quinones and metal atoms. The preparation also contains a low-potential cytochrome c-555 and a high-potential cytochrome c-557 bound to the reaction center in a 3–4:2–3:1 molar ratio with respect to P-960. The 40 kDa subunit is associated with the cytochromes, while the 37, 34 and 27 + 26 kDa subunits are proposed to be equivalent to the H, M and L polypeptides of bacteriochlorophyll a-containing reaction centers. The cytochromes are oxidized by P-960+. The three near-infrared absorption bands at 788, 840 and 968 nm are assigned to bacteriopheophytin, bacteriochlorophyll and the primary donor (P-960), respectively. The 778 nm peak resolves into two at 77 K; no further resolution of the other two peaks occurs. Illumination of the sodium dithionite-reduced reaction centers at 77 K by 960 nm-light results in P-960, transferring one electron from cytochrome c-555 mainly to a bacteriopheophytin molecule, absorbing at 781 nm. A similar treatment at room temperatures reduces most of the two bacteriopheophytin molecules. It is argued that both bacteriopheophytin molecules, possibly with some contribution from bacteriochlorophyll, form an intermediary electron-carrier complex between P-960 and a quinone in T. pfennigii. We could not substantiate that a bacteriochlorophyll molecule precedes the bacteriopheophytins in the electron transfer sequence. Although the biochemical characteristics of the reaction center are very similar to those of the other known bacterioclorophyll b-containing reaction center, that from Rhodopseudomonas viridis, their spectral characteristics are not. This has helped elucidate more about the function of each spectral form and led us to conclude that the 850 nm form in Rps. viridis is not the higher energy transition of the special pair of bacteriochlorophyll molecules forming P-960. Laser-flash-in-duced absorbance changes in T. pfennigii reaction-center preparation should now lead to a more complete understanding of the mechanism of the primary photochemical event.  相似文献   

3.
H.J.M. Kramer  H. Kingma  T. Swarthoff  J. Amesz 《BBA》1982,681(3):359-364
Excitation spectra were measured at 4 K of bacteriochlorophyll a fluorescence in reaction center containing pigment-protein complexes obtained from the green photosynthetic bacterium Prosthecochloris aestuarii. Excitation spectra for the longest-wave emission (838 nm) showed bands of bacteriochlorophyll a, carotenoid, and of a pigment with absorption bands at 670, 438 and possibly near 420 nm, which is probably identical to an unidentified porphyrin described in the preceding paper (Swarthoff, T., Kramer, H.J.M. and Amesz, J. (1982) Biochim. Biophys. Acta 681, 354–358). At room temperature the longest-wave emission is stimulated by a magnetic field, which indicates that at least part of the emission is delayed fluorescence brought about by a reversal of the primary charge separation. Below about 150 K no stimulation was observed. The excitation spectra for short-wave emission (828 nm) were very similar to the absorption spectrum of the isolated antenna bacteriochlorophyll a-protein complex, and showed bands of bacteriochlorophyll a only. This indicates that two forms of the antenna protein exist that are spectroscopically similar: a soluble form that is released by treatment with guanidine hydrochloride and a bound form that remains attached to the reaction center complex. The bands of the antenna complexes were weak in the excitation spectra of the 838 nm fluorescence, which indicates that the efficiency of energy transfer to the reaction center complex is low.  相似文献   

4.
The magnetic field effects on bacteriochlorophyll fluorescence in six strains of Rhodopseudomonas capsulata were investigated. All strains exhibit an increase in fluorescence upon application of a magnetic field. Large magnetic field effects are shown to arise in mutants which contain the B800–850 complex as the only bacteriochlorophyll-containing protein. These fluorescence increases are observed only with carotenoid excitation and are best described by a carotenoid singlet heterofission mechanism. Variations in the magnitudes of the magnetic field effects for the Rps. capsulata strain arise from energy differences in the excited states of the molecules involved in the process. In order to determine the contribution from reaction centers to the magnetic field effects observed in the mutants which contain all three pigment-protein complexes, reaction centers were isolated from these strains. The reaction center contribution to the magnetic field effect on fluorescence in whole cells was determined to be smaller than the antenna contribution when carotenoid excitation was employed.  相似文献   

5.
Photosynthetic reaction centers isolated from Rhodopseudomonas sphaeroides strain R-26 were excited with non-saturating 7-ps, 600-nm flashes under various conditions, and the resulting absorbance changes were measured. If the quinone electron acceptor (Q) is in the oxidized state, flash excitation generates a transient state (PF), in which an electron has moved from the primary electron donor (P, a dimer of bacteriochlorophylls) to an acceptor complex involving a special bacteriopheophytin (H) and another bacteriochlorophyll (B). PF decays in 200 ps as an electron moves from H to Q. If Q and the acceptor complex are reduced photochemically before the excitation, the flash generates a different transient state of P with a high quantum yield. This state decays with a lifetime of 340 ps. There is no indication of electron transfer from P to B under these conditions, but this does not rule out the possibility that B is an intermediate electron carrier between P and H. Measurements of the yield of fluorescence from P under various conditions show that the 340 ps state is not the fluorescent excited singlet state of P. The transient state could be a triplet state, a charge-transfer state of P, or another excited singlet state that is not fluorescent.  相似文献   

6.
Using the pulse picosecond fluorometric technique the fluorescence properties of intact cells, isolated chromatophores and photosynthetic reaction centres were studied in bacteria Rhodopseudomonas sphaeroides, strain 1760-1.The fluorescent emission from reduced reaction centres excited by 694.3 nm light has a biphasic character, the lifetimes of the components being τ1 = 15±8 ps and τ2 = 250 ps. The faster component, τ1, contributes to the integral fluorescence in the long wavelength region. It disappears with oxidation of the reaction centres and is attributed to photoactive bacteriochlorophyll P870. The slow component, τ, is apparently due to both bacteriochlorophyll P800 and bacteriopheophytin. The fluorescence from intact cells exhibits a monophasic pattern and decays with τ = 200 ps.The fluorescence emitted by chromatophores comprises two components with τ3 = 200 ps and τ4 = 4200 ps. The duration of fluorescence τ3 increases to its maximum of 500–550 ps, as P870 is oxidized chemically or photochemically, while τ4 remains unchanged. The fluorescence with a lifetime of 200 ps was ascribed to the photosystem and the 4200-ps fluorescence to bacteriochlorophyll which had lost its functional links with the photosystem.The rise time of the fluorescence emitted by chromatophores varies from 60 or 70 ps to 350 ps depending on the wavelength of the exciting light and the recorded spectral region. On the basis of our findings the rate for energy migration was estimated to be 109 s?1.  相似文献   

7.
Low-temperature absorption, circular dichroism and resonance Raman spectra of the LM units isolated with sodium dodecyl sulfate from wild-type Rhodopseudomonas sphaeroides reaction centers (Agalidis, I. and Reiss-Husson, F. (1983) Biochim. Biophys. Acta 724, 340–351) are described in comparison with those of intact reaction centers. In LM unit, the Qy absorption band of P-870 at 77 K shifted from 890 nm (in reaction center) to 870 nm and was broadened by about 30%. In contrast, the 800 nm bacteriochlorophyll absorption band including the 810 species remained unmodified. It was concluded that the 810 nm transition is not the higher excitonic component of P-870. The Qx band of P-870 shifted from 602 nm (in reaction center) to 598 nm in LM, whereas the Qx band of the other bacteriochlorophylls was the same in reaction center and LM and had two components at about 605 and 598 nm. The QxII band of bacteriopheophytin was upshifted to 538 nm and a slight blue shift of the Qy band of bacteriopheophytin was observed. Resonance Raman spectra of spheroidene in LM showed that its native cis-conformation was preserved. Resonance Raman spectroscopy also demonstrated that in LM the molecular interactions assumed by the conjugated carbonyls of bacteriochlorophyll molecules were altered, but not those assumed by the bacteriopheophytins carbonyls. In particular at least one Keto group of bacteriochlorophyll free in reaction center, becomes intermolecularly bounded in LM (possibly with extraneous water). This group may belong to the primary donor molecules.  相似文献   

8.
9.
Chromatophores from photosynthetic bacteria were excited with flashes lasting approx. 15 ns. Transient optical absorbance changes not associated with the photochemical electron-transfer reactions were interpreted as reflecting the conversion of bacteriochlorophyll or carotenoids into triplet states. Triplet states of various carotenoids were detected in five strains of bacteria; triplet states of bacteriochlorophyll, in two strains that lack carotenoids. Triplet states of antenna pigments could be distinguished from those of pigments specifically associated with the photochemical reaction centers. Antenna pigments were converted into their triplet states if the photochemical apparatus was oversaturated with light, if the primary photochemical reaction was blocked by prior chemical oxidation of P-870 or reduction of the primary electron acceptor, or if the bacteria were genetically devoid of reaction centers. Only the reduction of the electron acceptor appeared to lead to the formation of triplet states in the reaction centers.In the antenna bacteriochlorophyll, triplet states probably arise from excited singlet states by intersystem crossing. The antenna carotenoid triplets probably are formed by energy transfer from triplet antenna bacteriochlorophyll. The energy transfer process has a half time of approx. 20 ns, and is about 1 × 103 times more rapid than the reaction of the bacteriochlorophyll triplet states with O2. This is consistent with a role of carotenoids in preventing the formation of singlet O2 in vivo. In the absence of carotenoids and O2, the decay half times of the triplet states are 70 μs for the antenna bacteriochlorophyll and 6–10 μs for the reaction center bacteriochlorophyll. The carotenoid triplets decay with half times of 2–8 μs.With weak flashes, the quantum yields of the antenna triplet states are in the order of 0.02. The quantum yields decline severely after approximately one triplet state is formed per photosynthetic unit, so that even extremely strong flashes convert only a very small fraction of the antenna pigments into triplet states. The yield of fluorescence from the antenna bacteriochlorophyll declines similarly. These observations can be explained by the proposal that singlet-triplet fusion causes rapid quenching of excited singlet states in the antenna bacteriochlorophyll.  相似文献   

10.
V.I. Godik  A.Y. Borisov 《BBA》1980,590(2):182-193
The ratio between the intensities of delayed and prompt fluorescence was studied for different photosynthetic objects under different conditions by a modulation method. The method is based on excitation of luminescing objects by light, modulated harmonically, and on a combined study of phase shifts and demodulation coefficients of the luminescence as related to excitation light. The presence of intense delayed emissions was revealed in purple bacteria, Ectothiorhodospira shaposhinokovii, Rhodospirillum rubrum and Rhodopseudomonas sphaeroides, in the micro- and nanosecond range. Under conditions of saturating light, their proportion was several percent of the total emission.The most striking phenomenon was observed under reducing conditions (addition of 1 · 10?2 M Na2S2O4 to whole-cell suspensions of purple bacteria) where the intensity of the delayed emissions grew dramatically and became comparable to that of prompt fluorescence.The data obtained indicate that, at room temperature, reversal of some early stages of charge separation in bacterial reaction centres may proceed largely via the channel that includes generation of the reaction-centre bacteriochlorophyll in the excited singlet state, followed by excitation-energy migration to antenna bacteriochlorophyll.The relation of these phenomena to the efficiency of solar energy utilization in photosynthetic apparatus is discussed.  相似文献   

11.
C.F. Fowler  B.H. Gray  N.A. Nugent  R.C. Fuller   《BBA》1973,292(3):692-699
Absorbance, emission and excitation spectra were measured at both room and liquid-nitrogen temperatures for a photochemically active bacteriochlorophyll a reaction center complex and a bacteriochlorophyll a protein isolated from Chlorobium limicola and Chlorobium thiosulfatophilum. The low-temperature absorbance spectrum for the complex has a band centered at 833 nm, which is not seen in the spectrum of the bacteriochlorophyll a protein. We attribute this difference to a modification of the bacteriochlorophyll a protein in the active complex. The room-temperature fluorescence spectra for the bacteriochlorophyll a protein and the complex are similar, as are those measured at low temperatures. The 833-nm component of the low-temperature absorbance spectrum of the complex is relatively nonfluorescent.  相似文献   

12.
A pigment system containing carotenoids and oxidised reaction centre pigments is present in chromatophores of Rhodospirillum rubrum and this pigment system may cause fluorescence quenching when a still unidentified chromatophore component is in its oxidised state. Besides by its action spectrum, this pigment system is characterised by the time course and level of light saturation of the effect. The quenching of bacteriochlorophyll fluorescence is abolished when the permeability of the chromatophore membranes is affected. The quenching effect is correlated with a reversible absorption decrease of B 880. A possible function for this pigment system is discussed.  相似文献   

13.
Chromatophores from Rhodopseudomonas sphaeroides were oriented by allowing aqueous suspensions to dry on glass plates. Orientation of reaction center pigments was investigated by studying the linear dichroism of chromatophores in which the absorption by antenna bacteriochlorophyll had been attenuated through selective oxidation. Alternatively the light-induced absorbance changes, in the ranges 550-650 and 700-950nm, were studied in untreated chromatophores. The long wave transition moment of reaction center bacteriochlorophyll (P-870) was found to be nearly parallel to the plane of the membrane, whereas the long wave transition moments of bacteriopheophytin are polarized out of this plane. For light-induced changes the linear dichroic ratios, defined as deltaav/deltaah, are nearly the same for untreated and for oxidized chromatophores. Typical values are 1.60 at 870 nm, 0.80 at 810nm, 1.20 at 790 nm, 0.70 at 765 nm, 0.30 at 745 nm , and 0.50 at 600 nm. The different values for the absorbance decrease at 810 nm (0.80) and the increase at 790 nm (1.20) are incompatible with the hypothesis that these changes are due to the blue-shift of a single band. We propose that the decreases at 870 and 810 nm reflect bleaching of the two components of a bacteriochlorophyll dimer, the "special pair" that shares in the photochemical donation of a single electron. The increase at 790 nm then represents the appearance of a monomer band in place of the dimer spectrum, as a result of electron donation. This hypothesis is consistent with available data on circular dichroism. It is confirmed by the presence of a shoulder at 810 nm in the absorption spectrum of reaction centers at low temperature; this band disappears upon photooxidation of the reaction centers. For the changes near 760 nm, associated with bacteriopheophytin, the polarization and the shape of the "light-dark" difference spectrum (identical to the first derivative of the absorption spectrum) show that the 760 nm band undergoes a light-induced shift to greater wavelengths.  相似文献   

14.
The mechanism of primary photochemistry has been investigated in purified cytoplasmic membranes and isolated reaction centers of Chloroflexus aurantiacus. Redox titrations on the cytoplasmic membranes indicate that the midpoint redox potential of P870, the primary electron donor bacteriochlorophyll, is +362 mV. An early electron acceptor, presumably menaquinone has Em 8.1 = -50 mV, and a tightly bound photooxidizable cytochrome c554 has Em 8.1 = +245 mV. The isolated reaction center has a bacteriochlorophyll to bacteriopheophytin ratio of 0.94:1. A two-quinone acceptor system is present, and is inhibited by o-phenanthroline. Picosecond transient absorption and kinetic measurements indicate the bacteriopheophytin and bacteriochlorophyll form an earlier electron acceptor complex.  相似文献   

15.
Fluorescence Detected Magnetic Resonance (FDMR) spectra have been measured for whole cells and isolated chlorosomal fractions for the green photosyntheic bacteria Chlorobium phaeobacteroides (containing bacteriochlorophyll e, and isorenieratene as major carotenoid) and Chlorobium limicola (containing bacteriochlorophyll c, and chlorobactene as major carotenoid). The observed transition at 237 MHz (identical in both bacteria) and > 1100 MHz can be assigned, by analogy with published data on other carotenoids, to the 2E and D + E transitions, respectively, of Chlorobium carotenoids. Their zero field splitting (ZFS) parameters are estimated to be: |D|=0.0332 cm–1 and |E|=0.0039 cm–1 (chlorobactene), and |D|=0.0355 cm–1 and |E|=0.0039 cm–1 (isorenieratene). In the intermediate frequency range 300–1000 MHz the observed transitions can be assigned to chlorosomal bacteriochlorophylls c and e, and to bacteriochlorophyll a located in the chlorosome envelope and water-soluble protein. The bacteriochlorophyll e triplet state measured in 750 nm fluorescence (aggregated chlorosomal BChl e) is characterised by the ZFS parameters: |D|=0.0251 cm–1 and |E|=0.0050 cm–1.Abbreviations BChl - bacteriochlorophyll - BPh - bacteriopheophytin - Chl. - Chlorobium - F(A)(O)DMR - fluorescence (absorption) (optical) detected magnetic resonance - FF - fluorescence fading - ISC - intramolecular intersystem crossing - RC - reaction center - ZFS - zero field splitting  相似文献   

16.
It is shown that illumination of chromatophores of sulfur bacterium Chromatium minutissimum at Eh of the medium --200 mV divided by --620 mV (when the photooxidation of pigment P890 is completely inhibited) induces a decrease in bacteriochlorophyll fluorescence yield, reversible in the dark. Under these conditions a reversible photoreduction of bacteriopheophytin is detected (bleaching of absorption bands at 543 and 760 nm and development of a band at 650 nm), which is accompanied by a blue shift of the absorption band at 8 nm. As a possible interpretation of these effects the suggestion is made on the function of bacteriopheophytin as a primary electron acceptor in reaction centers of bacteria. The bacteriopheophytin photoreduction, followed by a decrease in fluorescence yield, is also observed in other sulfur bacteria, Thiocapsa roseopersicina and Ectothiorodospira shaposhnikovii, but it is not detected in nonsulfur bacteria, Rhodospirillum rubrum and Rhodopseudomonas spheroides. This is considered as an evidence for the difference in the functional organization of the reaction centers of these two groups of bacteria,  相似文献   

17.
Bacon Ke  Thomas H. Chaney 《BBA》1971,226(2):341-353
Triton treatment of chromatophores of carotenoid-deficient Chromatium followed by density-gradient centrifugation led to a separation into three subchromatophore fractions. Unlike the case with chromatophores of regular Chromatium, Triton releases about 1/3 of the total bulk bacteriochlorophyll into one fraction (designated G, for green) whose major absorption-band maximum is at 780 nm. One fraction (H, for heavy) absorbs at 805 and 885 nm, with an absorbance ratio A885 nm/A805 nm between 1.5 and 2; another fraction (L, for light) absorbs at 805 nm and has a shoulder at 825 nm. The absorption and fluorescence emission spectra of the three fractions at room temperature and 77°K indicate that the different bacteriochlorophyll forms are efficiently separated by Triton treatment.

The reaction center P890 is concentrated exclusively in the H-fraction, at a level of 5–7% of the bulk bacteriochlorophyll. The solubilized bacteriochlorophyll absorbing at 780 nm can be totally and irreversibly bleached by 5 mM ferricyanide. The other bacteriochlorophyll forms in the H- and L-fractions are also irreversibly bleached by ferricyanide to variable extents. P890 is the only component that can be re-reduced by ascorbate after ferricyanide oxidation. The P890 content estimated by reversible chemical bleaching agrees well with that obtained by reversible light bleaching. The different bacteriochlorophyll forms, with the exception of the 780-nm absorbing form, are relatively stable toward light bleaching. Again, only P890 is reversibly bleached by light.

Cytochromes-555 and -553 are distributed in both the H-and L-fractions, but not in the solubilized-bacteriochlorophyll G-fraction. However, only cytochromes in the H-fraction which contains all of the P890 can undergo coupled oxidation. Excitation with 20-nsec ruby-laser pulses shows that cytochrome-555 can be oxidized in 2–3 μsec by photooxidized P890, indicating that necessary conformation for rapid electron transport is retained in the subchromatophore particles.

The data on fractionation and redox reactions obtained here, together with direct kinetic measurements recently reported in the literature lend further support to the view that oxidation of these two cytochromes is mediated by the same reaction center, P890.  相似文献   


18.
The membrane-bound pigment system of green sulfur bacteria consists of light-harvesting bacteriochlorophyll a-protein and a ‘core complex’ that is associated with the reaction center (Kramer, H.J.M., Kingma, H., Swarthoff, T. and Amesz, J. (1982) Biochim. Biophys. Acta 681, 359–364). The isolation and properties of the core complex from Prosthecochloris aestuarii are described. The complex has a molecular mass of 200 ± 50 kDa and contains bacteriochlorophyll a, carotenoid and pigments absorbing near 670 nm (probably bacteriopheophytin c and an unidentified pigment). Fluorescence emission spectra and sodium dodecyl sulfate polyacrylamide gel electrophoresis showed the absence of light-harvesting bacteriochlorophyll a-protein. The preparation showed no reaction center activity. Circular and linear dichroism spectra indicated that the structure of the core complex was basically not altered by the isolation procedure. Comparison with the CD spectrum of the intrinsic membrane-bound pigment-protein complex indicates that the latter contains 14 bacteriochlorophyll a molecules (two subunits) belonging to the light-harvesting protein and about 20 bacteriochlorophyll a molecules belonging to the core complex.  相似文献   

19.
From a combined study of (1) bacteriochlorophyll fluorescence lifetimes, (2) relative yields and (3) differential absorption changes corresponding to the reaction centres photooxidation, the absolute values of fluorescence lifetimes and quantum yields for two bacteriochlorophyll fractions have been calculated. The main bacteriochlorophyll fraction (80–90%) serving as a light-gathering antenna for reaction centresP 890 is characterized by dark values of fluorescence lifetimes of the order of 10–11 sec and fluorescence yields of 10–3. The remaining part of the bulk pigment, not associated withP 890 as far as excitation energy transfer is concerned, has an approximately constant fluorescence yield of about 5–8% and lifetime of about 10–9 sec. Basing on these results, excitation jump times and intermolecular coupling energies were estimated to be 10–13 sec and 10–2 ev respectively. The conclusion is made that excitation energy transfer in the main part of bacteriochlorophyll occurs by the exciton mechanism at moderate intermolecular energies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号