首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inferring species' responses to climate change in the absence of long‐term time series data is a challenge, but can be achieved by substituting space for time. For example, thermal elevational gradients represent suitable proxies to study phenological responses to warming. We used butterfly data from two Mediterranean mountain areas to test whether mean dates of appearance of communities and individual species show a delay with increasing altitude, and an accompanying shortening in the duration of flight periods. We found a 14‐day delay in the mean date of appearance per kilometer increase in altitude for butterfly communities overall, and an average 23‐day shift for 26 selected species, alongside average summer temperature lapse rates of 3°C per km. At higher elevations, there was a shortening of the flight period for the community of 3 days/km, with an 8.8‐day average decline per km for individual species. Rates of phenological delay differed significantly between the two mountain ranges, although this did not seem to result from the respective temperature lapse rates. These results suggest that climate warming could lead to advanced and lengthened flight periods for Mediterranean mountain butterfly communities. However, although multivoltine species showed the expected response of delayed and shortened flight periods at higher elevations, univoltine species showed more pronounced delays in terms of species appearance. Hence, while projections of overall community responses to climate change may benefit from space‐for‐time substitutions, understanding species‐specific responses to local features of habitat and climate may be needed to accurately predict the effects of climate change on phenology.  相似文献   

2.
In alpine habitats, predicted warmer and longer growing seasons will influence plant phenology, with important implications for species adaptation and vegetation dynamics. However, little is known on the temperature sensitivity of different phenophases and on the characteristics allowing phenological variation among and within species. By integrating interannual micro‐climatic variability with experimental warming, we explored how the phenology of three alpine species is influenced by temperature and what mechanisms underlie intra‐ and inter‐specific phenological differences. The present study demonstrated that alpine plants have different temperature responses during their reproductive cycle, do not have constant thermal thresholds and heat‐use efficiencies to achieve the seed dispersal stage and can change their temperature sensitivity to flower along snowmelt gradients. In addition, the length of the reproductive cycle, which proved to be species‐specific under experimental warming, does not seem to be the only life‐history trait under selective pressure due to the short‐length of the snow‐free period. In a warming climate scenario, the phenology of sexual reproduction will be considerably altered, and alpine plants may be subjected to changes in population dynamics driven by altered perception of environmental cues appropriate for coordinating the timing of key life‐history events.  相似文献   

3.
As the earth is getting warmer, many animals and plants have shifted their timing of breeding towards earlier dates. However, there is substantial variation between populations in phenological shifts that typically goes unexplained. Identification of the different location and species characteristics that drive such variable responses to global warming is crucial if we are to make predictions for how projected climate change scenarios will play out on local and global scales. Here we conducted a phylogenetically controlled meta‐analysis of breeding phenology across frogs, toads and salamanders to examine the extent of variation in amphibian breeding phenology in response to global climate change. We show that there is strong geographic variation in response to global climate change, with species at higher latitudes exhibiting a more pronounced shift to earlier breeding than those at lower latitudes. Our analyses suggest that this latitude effect is a result of both the increased temperature (but not precipitation) at higher latitudes as well as a greater responsiveness by northern populations of amphibians to this change in temperature. We suggest that these effects should reinforce any direct effect of increasing warming at higher latitudes on breeding phenology. In contrast, we found very little contribution from other location factors or species traits. There was no evidence for a phylogenetic signal on advancing breeding phenology or responsiveness to temperature, suggesting that the amphibians that have been studied to date respond similarly to global warming.  相似文献   

4.
Shifts in phenology are a well‐documented ecological response to changes in climate, which may or may not be adaptive for a species depending on the climate sensitivity of other ecosystem processes. Furthermore, phenology may be affected by factors in addition to climate, which may accentuate or dampen climate‐driven phenological responses. In this study, we investigate how climate and population demographic structure jointly affect spawning phenology of a fish species of major commercial importance: walleye pollock (Gadus chalcogrammus). We use 32 years of data from ichthyoplankton surveys to reconstruct timing of pollock reproduction in the Gulf of Alaska and find that the mean date of spawning has varied by over 3 weeks throughout the last >3 decades. Climate clearly drives variation in spawn timing, with warmer temperatures leading to an earlier and more protracted spawning period, consistent with expectations of advanced spring phenology under warming. However, the effects of temperature were nonlinear, such that additional warming above a threshold value had no additional effect on phenology. Population demographics were equally as important as temperature: An older and more age‐diverse spawning stock tended to spawn earlier and over a longer duration than a younger stock. Our models suggest that demographic shifts associated with sustainable harvest rates could shift the mean spawning date 7 days later and shorten the spawning season by 9 days relative to an unfished population, independent of thermal conditions. Projections under climate change suggest that spawn timing will become more stable for walleye pollock in the future, but it is unknown what the consequences of this stabilization will be for the synchrony of first‐feeding larvae with production of zooplankton prey in spring. With ongoing warming in the world’s oceans, knowledge of the mechanisms underlying reproductive phenology can improve our ability to monitor and manage species under changing climate conditions.  相似文献   

5.
Body‐size reduction is a ubiquitous response to global warming alongside changes in species phenology and distributions. However, ecological consequences of temperature‐size (TS) responses for community persistence under environmental change remain largely unexplored. Here, we investigated the interactive effects of warming, enrichment, community size structure and TS responses on a three‐species food chain using a temperature‐dependent model with empirical parameterisation. We found that TS responses often increase community persistence, mainly by modifying consumer‐resource size ratios and thereby altering interaction strengths and energetic efficiencies. However, the sign and magnitude of these effects vary with warming and enrichment levels, TS responses of constituent species, and community size structure. We predict that the consequences of TS responses are stronger in aquatic than in terrestrial ecosystems, especially when species show different TS responses. We conclude that considering the links between phenotypic plasticity, environmental drivers and species interactions is crucial to better predict global change impacts on ecosystem diversity and stability.  相似文献   

6.
Temperature during a particular period prior to spring leaf‐out, the temperature‐relevant period (TRP), is a strong determinant of the leaf‐out date in temperate‐zone trees. Climatic warming has substantially advanced leaf‐out dates in temperate biomes worldwide, but its effect on the beginning and length of the TRP has not yet been explored, despite its direct relevance for phenology modeling. Using 1,551 species–site combinations of long‐term (1951–2016) in situ observations on six tree species (namely, Aesculus hippocastanum, Alnus glutinosa, Betula pendula, Fagus sylvatica, Fraxinus excelsior, and Quercus robur) in central Europe, we found that the advancing leaf‐out was accompanied by a shortening of the TRP. On average across all species and sites, the length of the TRP significantly decreased by 23% (p < .05), from 60 ± 4 days during 1951–1965 to 47 ± 4 days during 2002–2016. Importantly, the average start date of the TRP did not vary significantly over the study period (March 2–5, DOY = 61–64), which could be explained by sufficient chilling over the study period in the regions considered. The advanced leaf‐out date with unchanged beginning of the TRP can be explained by the faster accumulation of the required heat due to climatic warming, which overcompensated for the retarding effect of shortening daylength on bud development. This study shows that climate warming has not yet affected the mean TRP starting date in the study region, implying that phenology modules in global land surface models might be reliable assuming a fixed TRP starting date at least for the temperate central Europe. Field warming experiments do, however, remain necessary to test to what extent the length of TRP will continue to shorten and whether the starting date will remain stable under future climate conditions.  相似文献   

7.
Jian-Guo Huang  Yaling Zhang  Minhuang Wang  Xiaohan Yu  Annie Deslauriers  Patrick Fonti  Eryuan Liang  Harri Mäkinen  Walter Oberhuber  Cyrille B. K. Rathgeber  Roberto Tognetti  Václav Treml  Bao Yang  Lihong Zhai  Jiao-Lin Zhang  Serena Antonucci  Yves Bergeron  Jesus Julio Camarero  Filipe Campelo  Katarina Čufar  Henri E. Cuny  Martin De Luis  Marek Fajstavr  Alessio Giovannelli  Jožica Gričar  Andreas Gruber  Vladimír Gryc  Aylin Güney  Tuula Jyske  Jakub Kašpar  Gregory King  Cornelia Krause  Audrey Lemay  Feng Liu  Fabio Lombardi  Edurne Martinez del Castillo  Hubert Morin  Cristina Nabais  Pekka Nöjd  Richard L. Peters  Peter Prislan  Antonio Saracino  Vladimir V. Shishov  Irene Swidrak  Hanuš Vavrčík  Joana Vieira  Qiao Zeng  Yu Liu  Sergio Rossi 《Global Change Biology》2023,29(6):1606-1617
Despite growing interest in predicting plant phenological shifts, advanced spring phenology by global climate change remains debated. Evidence documenting either small or large advancement of spring phenology to rising temperature over the spatio-temporal scales implies a potential existence of a thermal threshold in the responses of forests to global warming. We collected a unique data set of xylem cell-wall-thickening onset dates in 20 coniferous species covering a broad mean annual temperature (MAT) gradient (−3.05 to 22.9°C) across the Northern Hemisphere (latitudes 23°–66° N). Along the MAT gradient, we identified a threshold temperature (using segmented regression) of 4.9 ± 1.1°C, above which the response of xylem phenology to rising temperatures significantly decline. This threshold separates the Northern Hemisphere conifers into cold and warm thermal niches, with MAT and spring forcing being the primary drivers for the onset dates (estimated by linear and Bayesian mixed-effect models), respectively. The identified thermal threshold should be integrated into the Earth-System-Models for a better understanding of spring phenology in response to global warming and an improved prediction of global climate-carbon feedbacks.  相似文献   

8.
Immune defense is temperature dependent in cold‐blooded vertebrates (CBVs) and thus directly impacted by global warming. We examined whether immunity and within‐host infectious disease progression are altered in CBVs under realistic climate warming in a seasonal mid‐latitude setting. Going further, we also examined how large thermal effects are in relation to the effects of other environmental variation in such a setting (critical to our ability to project infectious disease dynamics from thermal relationships alone). We employed the three‐spined stickleback and three ecologically relevant parasite infections as a “wild” model. To generate a realistic climatic warming scenario we used naturalistic outdoors mesocosms with precise temperature control. We also conducted laboratory experiments to estimate thermal effects on immunity and within‐host infectious disease progression under controlled conditions. As experimental readouts we measured disease progression for the parasites and expression in 14 immune‐associated genes (providing insight into immunophenotypic responses). Our mesocosm experiment demonstrated significant perturbation due to modest warming (+2°C), altering the magnitude and phenology of disease. Our laboratory experiments demonstrated substantial thermal effects. Prevailing thermal effects were more important than lagged thermal effects and disease progression increased or decreased in severity with increasing temperature in an infection‐specific way. Combining laboratory‐determined thermal effects with our mesocosm data, we used inverse modeling to partition seasonal variation in Saprolegnia disease progression into a thermal effect and a latent immunocompetence effect (driven by nonthermal environmental variation and correlating with immune gene expression). The immunocompetence effect was large, accounting for at least as much variation in Saprolegnia disease as the thermal effect. This suggests that managers of CBV populations in variable environments may not be able to reliably project infectious disease risk from thermal data alone. Nevertheless, such projections would be improved by primarily considering prevailing thermal effects in the case of within‐host disease and by incorporating validated measures of immunocompetence.  相似文献   

9.
Climate change‐induced shifts in phenology have important demographic consequences, and are frequently used to assess species' sensitivity to climate change. Therefore, developing accurate phenological predictions is an important step in modeling species' responses to climate change. The ability of such phenological models to predict effects at larger spatial and temporal scales has rarely been assessed. It is also not clear whether the most frequently used phenological index, namely the average date of a phenological event across a population, adequately captures phenological shifts in the distribution of events across the season. We use the long‐tailed tit Aegithalos caudatus (Fig. 1) as a case study to explore these issues. We use an intensive 17‐year local study to model mean breeding date and test the capacity of this local model to predict phenology at larger spatial and temporal scales. We assess whether local models of breeding initiation, termination, and renesting reveal phenological shifts and responses to climate not detected by a standard phenological index, that is, population average lay date. These models take predation timing/intensity into account. The locally‐derived model performs well at predicting phenology at the national scale over several decades, at both high and low temperatures. In the local model, a trend toward warmer Aprils is associated with a significant advance in termination dates, probably in response to phenological shifts in food supply. This results in a 33% reduction in breeding season length over 17 years – a substantial loss of reproductive opportunity that is not detected by the index of population average lay date. We show that standard phenological indices can fail to detect patterns indicative of negative climatic effects, potentially biasing assessments of species' vulnerability to climate change. More positively, we demonstrate the potential of detailed local studies for developing broader‐scale predictive models of future phenological shifts.  相似文献   

10.
The magnitude and direction of phenological shifts from climate warming could be predictably variable across the planet depending upon the nature of physiological controls on phenology, the thermal sensitivity of the developmental processes and global patterns in the climate warming. We tested this with respect to the flight phenology of adult nocturnal moths (3.33 million captures of 334 species) that were sampled at sites in southern and northern Finland during 1993–2012 (with years 2005–2012 treated as an independent model validation data set). We compared eight competing models of physiological controls on flight phenology to each species and found strong support for thermal controls of phenology in 66% of the species generations. Among species with strong thermal control of phenology in both the south and north, the average development rate was higher in northern vs. southern populations at 10 °C, but about the same at 15 and 20 °C. With a 3 °C increase in temperature (approximating A2 scenario of IPPC for 2090–2099 relative to 1980–1999) these species were predicted to advance their phenology on average by 17 (SE ± 0.3) days in the south vs. 13 (±0.4) days in the north. The higher development rates at low temperatures of poleward populations makes them less sensitive to climate warming, which opposes the tendency for stronger phenological advances in the north from greater increases in temperature.  相似文献   

11.
Global climate change will remodel ecological communities worldwide. However, as a consequence of biotic interactions, communities may respond to climate change in idiosyncratic ways. This makes predictive models that incorporate biotic interactions necessary. We show how such models can be constructed based on empirical studies in combination with predictions or assumptions regarding the abiotic consequences of climate change. Specifically, we consider a well‐studied ant community in North America. First, we use historical data to parameterize a basic model for species coexistence. Using this model, we determine the importance of various factors, including thermal niches, food discovery rates, and food removal rates, to historical species coexistence. We then extend the model to predict how the community will restructure in response to several climate‐related changes, such as increased temperature, shifts in species phenology, and altered resource availability. Interestingly, our mechanistic model suggests that increased temperature and shifts in species phenology can have contrasting effects. Nevertheless, for almost all scenarios considered, we find that the most subordinate ant species suffers most as a result of climate change. More generally, our analysis shows that community composition can respond to climate warming in nonintuitive ways. For example, in the context of a community, it is not necessarily the most heat‐sensitive species that are most at risk. Our results demonstrate how models that account for niche partitioning and interspecific trade‐offs among species can be used to predict the likely idiosyncratic responses of local communities to climate change.  相似文献   

12.
Plant phenology, the study of seasonal plant activity driven by environmental factors, has found a renewal in the context of global climate change. Phenological events, such as leaf unfolding, exert strong control over seasonal exchanges of matter and energy between the land surface and the atmosphere. Phenological models that simulate the start of the growing season should be efficient tools to predict vegetation responses to climatic changes and related changes in energy balance. Species‐specific phenological models developed in the eighties have not been used for global‐scale predictions because their predictions were inaccurate in external conditions. Recent advances in phenology modelling at the species level suggest that prediction at a large scale may now be possible. In the present study, we tested the performance of species‐specific phenological models in time and space, looking at their ability (i) to predict regional phenology when previously fitted at a local scale, and (ii) to predict phenological trends, linked to climate changes, observed over a long‐term. For that task we used an historical phenological dataset from Ohio from the late ninetieth century and an airborne pollen dataset from Ontario, Québec and Maryland from the late twentieth century. The results show that the species‐specific phenological models used in this study were able to predict regional phenology even though they were fitted locally. The reconstruction of a phenological time series over the twentieth century showed a significant advancement of 0.2 days per year in the date of flowering of Ulmus americana, but very weak trends for Fraxinus americana and Quercus velutina.  相似文献   

13.
Rapid temperature increase and its impacts on alpine ecosystems in the Qinghai–Tibetan Plateau, the world's highest and largest plateau, are a matter of global concern. Satellite observations have revealed distinctly different trend changes and contradicting temperature responses of vegetation green‐up dates, leading to broad debate about the Plateau's spring phenology and its climatic attribution. Large uncertainties in remote‐sensing estimates of phenology significantly limit efforts to predict the impacts of climate change on vegetation growth and carbon balance in the Qinghai–Tibetan Plateau, which are further exacerbated by a lack of detailed ground observation calibration. Here, we revealed the spatiotemporal variations and climate drivers of ground‐based herbaceous plant green‐up dates using 72 green‐up datasets for 22 herbaceous plant species at 23 phenological stations, and corresponding daily mean air temperature and daily precipitation data from 19 climate stations across eastern and southern parts of the Qinghai–Tibetan Plateau from 1981 to 2011. Results show that neither the continuously advancing trend from 1982 to 2011, nor a turning point in the mid to late 1990s as reported by remote‐sensing studies can be verified by most of the green‐up time series, and no robust evidence for a warmer winter‐induced later green‐up dates can be detected. Thus, chilling requirements may not be an important driver influencing green‐up responses to spring warming. Moreover, temperature‐only control of green‐up dates appears mainly at stations with relatively scarce preseason snowfall and lower elevation, while coupled temperature and precipitation controls of green‐up dates occur mostly at stations with relatively abundant preseason snowfall and higher elevation. The diversified interactions between snowfall and temperature during late winter to early spring likely determine the spatiotemporal variations of green‐up dates. Therefore, prediction of vegetation growth and carbon balance responses to global climate change on the world's roof should integrate both temperature and snowfall variations.  相似文献   

14.
为了更好地了解全球变暖对草地生态系统的影响机制, 该文介绍了红外加热技术的原理、增温效应及其优缺点, 重点从植物物候、光合生理、生长发育、群落结构和功能、土壤特性, 特别是植物群落地下过程方面, 系统综述了基于红外加热技术模拟气候变暖对草地生态系统影响的最新研究进展, 在此基础上探讨了未来草地生态系统响应全球变暖研究拟重视的研究领域。  相似文献   

15.
Climate change exposes benthic species populations in coastal ecosystems to a combination of different stressors (e.g., warming, acidification and eutrophication), threatening the sustainability of the ecological functions they provide. Thermal stress appears to be one of the strongest drivers impacting marine ecosystems, acting across a wide range of scales, from individual metabolic performances to geographic distribution of populations. Accounting for and integrating the response of species functional traits to thermal stress is therefore a necessary step in predicting how populations will respond to the warming expected in coming decades. Here, we developed an individual‐based population model using a mechanistic formulation of metabolic processes within the framework of the dynamic energy budget theory. Through a large number of simulations, we assessed the sensitivity of population growth potential to thermal stress and food conditions based on a climate projection scenario (Representative Concentration Pathway; RCP8.5: no reduction of greenhouse gas emissions). We focused on three bivalve species with contrasting thermal tolerance ranges and distinct distribution ranges along 5,000 km of coastline in the NE Atlantic: the Pacific oyster (Magallana gigas), and two mussel species: Mytilus edulis and Mytilus galloprovincialis. Our results suggest substantial and contrasting changes within species depending on local temperature and food concentration. Reproductive phenology appeared to be a core process driving the responses of the populations, and these patterns were closely related to species thermal tolerances. The nonlinear relationship we found between individual life‐history traits and response at the population level emphasizes the need to consider the interactions resulting from upscaling across different levels of biological organisation. These results underline the importance of a process‐based understanding of benthic population response to seawater warming, which will be necessary for forward planning of resource management and strategies for conservation and adaptation to environmental changes.  相似文献   

16.
Spring phenology of temperate trees has advanced worldwide in response to global warming. However, increasing temperatures may not necessarily lead to further phenological advance, especially in the warmer latitudes because of insufficient chilling and/or shorter day length. Determining the start of the forcing phase, that is, when buds are able to respond to warmer temperatures in spring, is therefore crucial to predict how phenology will change in the future. In this study, we used 4,056 leaf‐out date observations during the period 1969–2017 for clones of European beech (Fagus sylvatica L.) and pedunculate oak (Quercus robur L.) planted in 63 sites covering a large latitudinal gradient (from Portugal ~41°N to Norway ~63°N) at the International Phenological Gardens in order to (a) evaluate how the sensitivity periods to forcing and chilling have changed with climate warming, and (b) test whether consistent patterns occur along biogeographical gradients, that is, from colder to warmer environments. Partial least squares regressions suggest that the length of the forcing period has been extended over the recent decades with climate warming in the colder latitudes but has been shortened in the warmer latitudes for both species, with a more pronounced shift for beech. We attribute the lengthening of the forcing period in the colder latitudes to earlier opportunities with temperatures that can promote bud development. In contrast, at warmer or oceanic climates, the beginning of the forcing period has been delayed, possibly due to insufficient chilling. However, in spite of a later beginning of the forcing period, spring phenology has continued to advance at these areas due to a faster satisfaction of heat requirements induced by climate warming. Overall, our results support that ongoing climate warming will have different effects on the spring phenology of forest trees across latitudes due to the interactions between chilling, forcing and photoperiod.  相似文献   

17.
Climate change is shifting species’ distribution and phenology. Ecological traits, such as mobility or reproductive mode, explain variation in observed rates of shift for some taxa. However, estimates of relationships between traits and climate responses could be influenced by how responses are measured. We compiled a global data set of 651 published marine species’ responses to climate change, from 47 papers on distribution shifts and 32 papers on phenology change. We assessed the relative importance of two classes of predictors of the rate of change, ecological traits of the responding taxa and methodological approaches for quantifying biological responses. Methodological differences explained 22% of the variation in range shifts, more than the 7.8% of the variation explained by ecological traits. For phenology change, methodological approaches accounted for 4% of the variation in measurements, whereas 8% of the variation was explained by ecological traits. Our ability to predict responses from traits was hindered by poor representation of species from the tropics, where temperature isotherms are moving most rapidly. Thus, the mean rate of distribution change may be underestimated by this and other global syntheses. Our analyses indicate that methodological approaches should be explicitly considered when designing, analysing and comparing results among studies. To improve climate impact studies, we recommend that (1) reanalyses of existing time series state how the existing data sets may limit the inferences about possible climate responses; (2) qualitative comparisons of species’ responses across different studies be limited to studies with similar methodological approaches; (3) meta‐analyses of climate responses include methodological attributes as covariates; and (4) that new time series be designed to include the detection of early warnings of change or ecologically relevant change. Greater consideration of methodological attributes will improve the accuracy of analyses that seek to quantify the role of climate change in species’ distribution and phenology changes.  相似文献   

18.
There is strong correlative evidence that human-induced climate warming is contributing to changes in the timing of natural events. Firm attribution, however, requires cause-and-effect links between observed climate change and altered phenology, together with statistical confidence that observed regional climate change is anthropogenic. We provide evidence for phenological shifts in the butterfly Heteronympha merope in response to regional warming in the southeast Australian city of Melbourne. The mean emergence date for H. merope has shifted −1.5 days per decade over a 65-year period with a concurrent increase in local air temperatures of approximately 0.16°C per decade. We used a physiologically based model of climatic influences on development, together with statistical analyses of climate data and global climate model projections, to attribute the response of H. merope to anthropogenic warming. Such mechanistic analyses of phenological responses to climate improve our ability to forecast future climate change impacts on biodiversity.  相似文献   

19.
A significant global challenge lies in our current inability to anticipate, and therefore prepare for, critical ecological thresholds (i.e. tipping points in ecosystems). This deficit stems largely from an inadequate understanding of the many complex interactions between species and the environment at the ecosystem level, and the paucity of mechanistic models relating environment to population dynamics at the species level. In marine ecosystems, abundant, short‐lived and fast‐growing species such as anchovies or squids, consistently function as ‘keystone’ groups whose population dynamics affect entire ecosystems. Increasing exploitation coupled with climate change impacts has the potential to affect these ecological groups and consequently, the entire marine ecosystem. There are currently very few models that predict the impact of climate change on these keystone groups. Here we use a combination of individual‐based bioenergetics and stage‐structured population models to characterize the fundamental capacity of cephalopods to respond to climate change. We demonstrate the potential for, and mechanisms behind, two unfavourable climate‐change‐induced thresholds in future population dynamics. Although one threshold was the direct consequence of a decrease in incubation time caused by ocean warming, the other threshold was linked to survivorship, implying the possibility of management through a modification of fishing mortality. Additional substantive changes in phenology were also predicted, with a possible loss in population resilience. Our results demonstrate the feasibility of predicting complex nonlinear dynamics with a reasonably simplistic mechanistic model, and highlight the necessity of developing such approaches for other species if attempts to moderate the impact of climate change on natural resources are to be effective.  相似文献   

20.
A rapidly changing climate has the potential to interfere with the timing of environmental cues that ectothermic organisms rely on to initiate and regulate life history events. Short‐lived ectotherms that exhibit plasticity in their life history could increase the number of generations per year under warming climate. If many individuals successfully complete an additional generation, the population experiences an additional opportunity to grow, and a warming climate could lead to a demographic bonanza. However, these plastic responses could become maladaptive in temperate regions, where a warmer climate could trigger a developmental pathway that cannot be completed within the growing season, referred to as a developmental trap. Here we incorporated detailed demography into commonly used photothermal models to evaluate these demographic consequences of phenological shifts due to a warming climate on the formerly widespread, multivoltine butterfly (Pieris oleracea). Using species‐specific temperature‐ and photoperiod‐sensitive vital rates, we estimated the number of generations per year and population growth rate over the set of climate conditions experienced during the past 38 years. We predicted that populations in the southern portion of its range have added a fourth generation in recent years, resulting in higher annual population growth rates (demographic bonanzas). We predicted that populations in the Northeast United States have experienced developmental traps, where increases in the thermal window initially caused mortality of the final generation and reduced growth rates. These populations may recover if more growing degree days are added to the year. Our framework for incorporating detailed demography into commonly used photothermal models demonstrates the importance of using both demography and phenology to predict consequences of phenological shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号