首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the biological significance of carotenoid oxidation products using inhibition of Na+-K+-ATPase activity as an index. β-Carotene was completely oxidized by hypochlorous acid and the oxidation products were analyzed by capillary gasliquid chromatography and high performance liquid chromatography. The Na+-K+-ATPase activity was assayed in the presence of these oxidized carotenoids and was rapidly and potently inhibited. This was demonstrated for a mixture of β-carotene oxidative breakdown products, β-Apo-10′-carotenal and retinal. Most of the β-carotene oxidation products were identified as aldehydic. The concentration of the oxidized carotenoid mixture that inhibited Na+-K+-ATPase activity by 50% (IC50) was equivalent to 10μM non-degraded β-carotene, whereas the IC50 for 4-hydroxy-2-nonenal, a major lipid peroxidation product, was 120 μM. Carotenoid oxidation products are more potent inhibitors of Na+-K+-ATPase than 4-hydroxy-2-nonenal. Enzyme activity was only partially restored with hydroxylamine and/or β-mercaptoethanol. Thus, in vitro binding of carotenoid oxidation products results in strong enzyme inhibition. These data indicate the potential toxicity of oxidative carotenoid metabolites and their activity on key enzyme regulators and signal modulators.  相似文献   

2.
Arginine vasopressin stimulates Na+-K+-ATPase activity located in the rat thick ascending limb of s'Henle loop. Mammalian hypothalamus appears to produce a factor capable of inhibiting Na+-K+-ATPase activity in a variety of tissues. The effect of a purified rat hypothalamic extract with and without AVP on rat renal Na+-K+-ATPase activity was evaluated by a cytochemical technique. The hypothalamic extract alone failed to affect basal Na+-K+-ATPase activity throughout renal segments after 10 min exposure. Na+-K+-ATPase activity stimulated by AVP (1–10 fmol l?1) for 10 min was inhibited by rat hypothalamic extract over the concentration range 10?7–10?3 U ml?1 in a dose-dependent manner. Complete inhibition of AVP-stimulated Na+-K+-ATPase activity occurred at a hypothalamic extract concentration of 10?3 U ml?1. Only Na+-K+-ATPase activity located in the renal medullary thick ascending limb was influenced by the rat hypothalamic extract.  相似文献   

3.
Abstract: The effect of hypoxia on Na+,K+-ATPase and Na+-K+-Cl? cotransport activity in cultured rat brain capillary endothelial cells (RBECs) was investigated by measuring 86Rb+ uptake as a tracer for K+. RBECs expressed both Na+,K+-ATPase and Na+-K+-Cl? cotransport activity (4.6 and 5.5 nmol/mg of protein/min, respectively). Hypoxia (24 h) decreased cellular ATP content by 43.5% and reduced Na+,K+-ATPase activity by 38.9%, whereas it significantly increased Na+-K+-Cl? cotransport activity by 49.1% in RBECs. To clarify further the mechanism responsible for these observations, the effect of oligomycin-induced ATP depletion on these ion transport systems was examined. Exposure of RBECs to oligomycin led to a time-dependent decrease of cellular ATP content (by ~65%) along with a complete inhibition of Na+,K+-ATPase and a coordinated increase of Na+-K+-Cl? cotransport activity (up to 100% above control values). Oligomycin augmentation of Na+-K+-Cl? cotransport activity was not observed in the presence of 2-deoxy-d -glucose (a competitive inhibitor of glucose transport and glycolysis) or in the absence of glucose. These results strongly suggest that under hypoxic conditions when Na+,K+-ATPase activity is reduced, RBECs have the ability to increase K+ uptake through Na+-K+-Cl? cotransport.  相似文献   

4.
Spermine activated Na+-K+-ATPase when the concentrations of K+ and ATP were low, whereas it inhibited K+-dependent and ouabain-inhibitable monophosphatase. The activating effect of sperimine was not due to the substitution for K+ or Na+. Excess K+ inhibited Na+-K+-ATPase partially, and reduced the spermine activation. When 1 mM ATP was used, spermine at higher concentrations inhibited Na+-K+-ATPase, and did not activate at all. It is suggested that the K+-sites essential to Na+-K+-ATPase and the K+-phosphatase co-exist at different places of the enzyme.  相似文献   

5.
In this study an attempt was made to elucidate the possible mechanism of the brain microsomal (Na+-K+)ATPase inhibition based on the assumption that glycoprotein part of the enzyme is exposed on the outer membrane surface. In our experiments the modification with concanavalin A of sugar end groups exposed by neuraminidase treatment resulted in a significant decrease of the brain (Na+-K+)ATPase activity. The percentage of the enzyme inhibition by concanavalin A binding to the neuraminidase-treated preparation corresponds to the amount of liberated sialic acids. The modification of the glycoprotein part of the brain (Na+-K+)ATPase complex by neuraminidase and concanavalin A treatments did not affect K+-nitrophenylphosphatase activity.  相似文献   

6.
Rat hindbrain NaI-enriched microsomal (Na+-K+)-ATPase activity, K+-pNPPase activity, and Na+-dependent steady-state phosphorylation levels all increase approx 10-fold relative to microsomal protein between 5 days prenatally and 60 days postnatally. These activities, as well as the mean wet weight of the hindbrain, are at half of their 60 day values shortly after the 10th postnatal day. For all ages, these hindbrain activities average over twice those found in the forebrain in a companion paper (Bertoni & Siegel , 1978). Increases during development in the amount of the related phosphorylatable polypeptide, estimated by densitometry of stained polyacrylamide gels containing fixed amounts of microsomal protein dissolved in SDS, are in agreement with increases in steady state levels of Na+-dependent phosphorylation. The fraction of total phosphorylation that is Na+-dependent rises steadily during development consistent with, but not obligatorily due to, a conversion of some of the previously Na+-independent portion. Mg2+-ATPase and Mg2+ -pNPPase activities and steady-state Na+,-independent phosphorylation levels do not increase in parallel during development. These observations add further support to the proposed partial reaction scheme for (Na+- K+)-ATPase. The major increments in (Na +-K+)-ATPase occur simultaneously with the deposition of specialized plasma membranes, particularly in the molecular layer of the cerebellum, as described in previous studies of rat hind brain.  相似文献   

7.
—Batrachotoxin (BTX) in low concentrations (20 nm ) depolarizes electrically excitable membranes (Albuquerque , Daly and Witkop , 1971). At these levels, BTX does not inhibit Na+-K+-ATPase. At much higher concentrations (60 μm ) BTX partially inhibits Na+-K+-ATPase from electroplax of Electrophorus electricus. In contrast to inhibition by cardiac glycosides, the inhibition of Na+-K+-ATPase by batrachotoxin is not antagonized by KCl. BTX had no effect on ATP levels in stimulated nerve muscle preparations at the time when sustained contracture was initiated by the drug. Phosphocreatine levels were decreased and levels of glucose-6-phosphate and 6-phosphogluconate were increased, while levels of fructose-1,6-diphosphate and α-ketoglutarate were unchanged. It is concluded that the inhibition of Na+-K+-ATPase or lowering of ATP levels by BTX is not significantly involved in the membrane depolarization produced by the toxin.  相似文献   

8.
Zinc ion in micromolar concentrations is an irreversible inhibitor of Electrophorus electricus electroplax microsomal (Na+-K+)-ATPase. The rate of inhibition is dependent on [ZnCl2] and the extent of inhibition varies with the ratio of ZnCl2 to microsomal protein. The same kinetics are observed for inhibition of K+ -p-nitrophenylphosphatase and steady-state levels of Na+ -dependent enzyme phosphorylation. The observations suggest that a Zn2+ -sensitive conformational restraint is important to both kinase and phosphatase activities. The fact that inhibition is irreversible has implications for models seeking to relate zinc effects in tissue to inhibition of (Na+-K+)-ATPase.  相似文献   

9.
R B Koch  T I Gilliland 《Life sciences》1977,20(6):1051-1061
Na+-K+ ATPase activity from nerve ending particle (NEP) fractions of dog olfactory tissue homogenates showed different patterns of response to odorants. Similar turbinal groupings were removed from the right and left sides of the septum in the nasal cavity and NEP preparations were tested with eight different odor compounds, including 2-keto alkane homologs and the optical isomers d- and l-carvone. Odorant stimulation of Na+-K+ ATPase activity from paired turbinal groupings did not show bilateral symmetry. Different patterns of stimulation were observed for each turbinal grouping and for each odorant. A stimulation of over 200% was observed in one preparation in response to 2-nonanone.A study of the response of Na+-K+ ATPase activity from individual turbinals showed that the enzyme in each turbinal had a different response pattern to six different odorants. Inhibitory and stimulatory responses were observed for the individual turbinal NEP preparations. These results support the proposal that odor sensing initiation may occur through odorant perturbation of the Na+-K+ ATPase activity.  相似文献   

10.
Abstract— The activities of (Na+ K+)-ATPase and its proposed partial reactions, K +-pNPPase and Na +-dependent phosphorylation, all increase tenfold relative to microsomal protein between 5 days prior to birth and 60 days postnatally in NaI-treated rat cerebral microsomes, and all reach half of their adult values between the fifth and tenth postnatal day. These increases are concurrent with the most rapid changes in cerebral wet weight. Increases in the amount of the related phosphorylatable polypeptide during development. as estimated by densitometry of Coomassie-stained polyacrylamide gels after electrophoresis of constant amounts of microsomal protein dissolved in sodium dodecylsulfate, parallel the increments in levels of Na +-dependent phosphorylation. The fraction of total phosphorylation that is Na +-dependent increases steadily during development. suggesting a precursor role for some of the Na +-independent fraction. The results are consistent with a single biosynthetic control for the enzymatic sites critical to the partial reactions of (Na +-K +)-ATPase. No changes in turnover number or affinity for substrate or ligands were found during development. Little similarity was noted among the age-related changes of Mg 2+ -ATPase activity. Mg 2+ -paranitrophenylphosphatase activity, and Na+-independent phosphorylation levels. The most rapid changes in (Na+-K+)-ATPase take place during the period corresponding to glial proliferation and neuronal arborization.  相似文献   

11.
In the cortical collecting duct (CCD), arginin vasopressin (AVP) has been shown to increase the number and activity of basolateral Na+-K+-ATPase by recruiting or activating a latent pool of pumps. However, the precise mechanism of this phenomenon is still unknown. The aim of this study was to investigate whether this AVP-induced increase in basolateral Na+-K+-ATPase could depend on a dephosphorylation process. To this purpose, the effect of protein serine/threonine phosphatase (PP) inhibitors was examined on both the specific 3H-ouabain binding (to evaluate the number of pumps in the basolateral membrane) and the ouabain-dependent 86Rb uptake (to evaluate pump functionality) in the presence or absence of AVP. In addition, the activity of two PP, PP1 and PP2A, was measured and the influence of AVP was examined on both enzymes. Experiments have been performed on mouse CCD isolated by microdissection. Results show that inhibition of PP2A prevents the AVP-induced increase in the number and activity of Na+-K+-ATPases, independent of an effect on the apical cell sodium entry. In addition, AVP rapidly increased the activity of PP2A without effect on PP1. These data suggest that PP2A is implied in the regulation of Na+-K+-ATPase activity by AVP in the CCD and that the AVP-dependent increase in the number of Na+-K+-ATPases is mediated by a PP2A-dependent dephosphorylation process. Received: 22 March 1996/Revised: 21 June 1996  相似文献   

12.
Serum- and glucocorticoid-induced kinase 1 (SGK1) is thought to be an important regulator of Na+ reabsorption in the kidney. It has been proposed that SGK1 mediates the effects of aldosterone on transepithelial Na+ transport. Previous studies have shown that SGK1 increases Na+ transport and epithelial Na+ channel (ENaC) activity in the apical membrane of renal epithelial cells. SGK1 has also been implicated in the modulation of Na+-K+-ATPase activity, the transporter responsible for basolateral Na+ efflux, although this observation has not been confirmed in renal epithelial cells. We examined Na+-K+-ATPase function in an A6 renal epithelial cell line that expresses SGK1 under the control of a tetracycline-inducible promoter. The results showed that expression of a constitutively active mutant of SGK1 (SGK1TS425D) increased the transport activity of Na+-K+-ATPase 2.5-fold. The increase in activity was a direct consequence of activation of the pump itself. The onset of Na+-K+-ATPase activation was observed between 6 and 24 h after induction of SGK1 expression, a delay that is significantly longer than that required for activation of ENaC in the same cell line (1 h). SGK1 and aldosterone stimulated the Na+ pump synergistically, indicating that the pathways mediated by these molecules operate independently. This observation was confirmed by demonstrating that aldosterone, but not SGK1TS425D, induced an 2.5-fold increase in total protein and plasma membrane Na+-K+-ATPase 1-subunit abundance. We conclude that aldosterone increases the abundance of Na+-K+-ATPase, whereas SGK1 may activate existing pumps in the membrane in response to chronic or slowly acting stimuli. sodium transport; serum- and glucocorticoid-induced kinase; A6 cells; sodium pump  相似文献   

13.
The existence of a subsarcolemmal space with restricted diffusion for Na+ in cardiac myocytes has been inferred from a transient peak electrogenic Na+-K+ pump current beyond steady state on reexposure of myocytes to K+ after a period of exposure to K+-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na+ that accumulated in the diffusion-restricted space during pump inhibition in K+-free extracellular solution. However, there are no known physical barriers that account for such restricted Na+ diffusion, and we examined if changes of activity of the Na+-K+ pump itself cause the transient peak current. Reexposure to K+ reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na+ concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K+-free pipette solution could not be reconciled with restricted subsarcolemmal Na+ diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na+- and K+ concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na+-K+ pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na+-K+ pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K+-induced peak Na+-K+ pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K+-induced peak Na+-K+ pump current reflects the effect of conformation-dependent β1 pump subunit glutathionylation, not restricted subsarcolemmal diffusion of Na+.  相似文献   

14.
Most vital cellular functions aredependent on a fine-tuned regulation of intracellular ion homeostasis.Here we have demonstrated, using COS cells that were untransfected ortransfected with wild-type rat ouabain-resistantNa+-K+-ATPase, that partial inhibition ofNa+-K+-ATPase has a dramatic influence oncell attachment to fibronectin. Ouabain dose-dependently decreasedattachment in untransfected cells and in cells expressing wild-typeNa+-K+-ATPase, but not in cells expressingouabain-insensitive Na+-K+-ATPase, whereasinhibition of Na+-K+-ATPase by loweringextracellular K+ concentration decreased attachment in allthree cell types. Thirty percent inhibition ofNa+-K+-ATPase significantly attenuatedattachment. Na+-K+-ATPase inhibition caused asustained increase in the intracellular Ca2+ concentrationthat obscured Ca2+ transients observed in untreated cellsduring attachment. Inhibitors of Ca2+ transporterssignificantly decreased attachment, but inhibition ofNa+/H+ exchanger did not. Ouabain reduced focaladhesion kinase autophosphorylation but had no effect on cell surfaceintegrin expression. These results suggest that the level ofNa+-K+-ATPase activity strongly influences cellattachment, possibly by an effect on intracellular Ca2+.

  相似文献   

15.
The Na+-K+-ATPase is a known target of cardiac glycosides such as digitoxin and ouabain. We determined that the enzyme also is a target of the structurally-related triterpene glycoside actein, present in the herb black cohosh. Actein’s inhibition of Na+-K+-ATPase activity was less potent than that of digitoxin, but actein potentiated digitoxin’s inhibitory effect on Na+-K+-ATPase activity and MDA-MB-453 breast cancer cell growth. We observed different degrees of signal amplification for the two compounds. Actein’s inhibitory effect on ATPase activity was amplified 2-fold for cell growth inhibition, whereas digitoxin’s signal was amplified 20-fold. Actein induced a biphasic response in proteins downstream of ATPase: low dose and short duration of treatment upregulated NF-κB promoter activity, p-ERK, p-Akt and cyclin D1 protein levels, whereas higher doses and longer exposure inhibited these activities. Actein and digitoxin may be a useful synergistic combination for cancer chemoprevention and/or therapy.  相似文献   

16.
Hg2+ binding to ouabain-sensitive Na+-K+-ATPase of rat platelet membrane was specific with a Ka of 1.3×109 moles and Bmax of 3.8 nmoles/mg protein. The binding of mercury to Na+-K+-ATPase also inhibits the enzyme significantly (P<0.001), which is greater than its ouabain sensitivity. Further in the cytosol of washed platelets conjugation of reduced glutathione (GSH) to Hg2+ is correlated dose dependently (25, 50 and 100 pmoles) to enhanced GSH-S-transferase (GST) activity. It may be concluded from the present in vitro experiments that mercury binds specifically to thiol groups present in the platelet membrane Na+-K+-ATPase, inhibits the enzyme and induces changes in platelet function, namely, platelet aggregation by interfering with the sodium pump.  相似文献   

17.
The (Na++K+)-activated, Mg2+-dependent ATPase from rabbit kidney outer medulla was prepared in a partially inactivated, soluble from depleted of endogenous phospholipids, using deoxycholate. This preparation was reactivated 10 to 50-fold by sonicated liposomes of phosphatidylserine, but not by non-sonicated phosphatidylserine liposomes or sonicated phosphatidylcholine liposomes. The reconstituted enzyme resembled native membrane preparations of (Na++K+)-ATPase in its pH optimum being around 7.0 showing optimal activity at Mg2+: ATP mol ratios of approximately 1 and a Km value for ATP of 0.4 mM.Arrhenius plots of this reactivated activity at a constant pH of 7.0 and an Mg2+: ATP mol ratio of 1:1 showed a discontinuity (sharp change of slope) at 17 °C, With activation energy (Ea) values of 13–15 kcal/mol above this temperature and 30–35 kcal below it. A further discontinuity was also found at 8.0 °C and the Ea below this was very high (> 100 kcal/mol).Incresed Mg2+ concentrations at Mg2+: ATP ratios in excess of 1:1 inhibited the (Na++K+)-ATPase activity and also abolished the discontinuities in the Arrhenius plots.The addition of cholesterol to phosphatidylserine at a 1:1 mol ratio partially inhibited (Na++K+)-ATPase reactivation. Arrhenius plots under these conditions showed a single discontinuity at 20°C and Ea values of 22 and 68kcal/mol above and below this temperature respectively. The ouabain-insensitive Mg2+-ATPase normally showed a linear Arrhenius plot with an Ea of 8 kcal/mol. The cholesterol-phosphatidylserine mixed liposomes stimulated the Mg2+-ATPase activity, which now also showed a discontinuity at 20 °C with, however, an increased value of 14 kcal/mol above this temperature and 6 kcal/mol below. Kinetic studies showed that cholesterol had no significant effect on the Km for ATP.Since both of cholesterol and Mg2+ are know to alter the effects of temperature on the fluidity of phospholipids the above result are discussed in this context.  相似文献   

18.
Abstract: The effect of endothelins (ET-1 and ET-3) on 86Rb+ uptake as a measure of K+ uptake was investigated in cultured rat brain capillary endothelium. ET-1 or ET-3 dose-dependently enhanced K+ uptake (EC50 = 0.60 ± 0.15 and 21.5 ± 4.1 nM, respectively), which was inhibited by the selective ETA receptor antagonist BQ 123 (cyclo-d -Trp-d -Asp-Pro-d -Val-Leu). Neither the selective ETB agonists IRL 1620 [N-succinyl-(Glu9,-Ala11,15)-ET-1] and sarafotoxin S6c, nor the ETB receptor antagonist IRL 1038 [(Cys11,Cys15)-ET-1] had any effect on K+ uptake. Ouabain (inhibitor of Na+,K+-ATPase) and bumetanide (inhibitor of Na+-K+-Cl? cotransport) reduced (up to 40% and up to 70%, respectively) the ET-1-stimulated K+ uptake. Complete inhibition was seen with both agents. Phorbol 12-myristate 13-acetate (PMA), activator of protein kinase C (PKC), stimulated Na+,K+-ATPase and Na+-K+-Cl? cotransport. ET-1-but not PMA-stimulated K+ uptake was inhibited by 5-(N-ethyl-N-isopropyl)amiloride (inhibitor of Na+/H+ exchange system), suggesting a linkage of Na+/H+ exchange with ET-1-stimulated Na+,K+-ATPase and Na+-K+-Cl? cotransport activity that is not mediated by PKC.  相似文献   

19.
Brain edema that forms during the early stages of stroke involves increased transport of Na+ and Cl across an intact blood-brain barrier (BBB). Our previous studies have shown that a luminal BBB Na+-K+-Cl cotransporter is stimulated by conditions present during ischemia and that inhibition of the cotransporter by intravenous bumetanide greatly reduces edema formation in the rat middle cerebral artery occlusion model of stroke. The present study focused on investigating the effects of hypoxia, which develops rapidly in the brain during ischemia, on the activity and expression of the BBB Na+-K+-Cl cotransporter, as well as on Na+-K+-ATPase activity, cell ATP content, and intracellular volume. Cerebral microvascular endothelial cells (CMECs) were assessed for Na+-K+-Cl cotransporter and Na+-K+-ATPase activities as bumetanide-sensitive and ouabain-sensitive 86Rb influxes, respectively. ATP content was assessed by luciferase assay and intracellular volume by [3H]-3-O-methyl-D-glucose and [14C]-sucrose equilibration. We found that 30-min exposure of CMECs to hypoxia ranging from 7.5% to 0.5% O2 (vs. 19% normoxic O2) significantly increased cotransporter activity as did 7.5% or 2% O2 for up to 2 h. This was not associated with reduction in Na+-K+-ATPase activity or ATP content. CMEC intracellular volume increased only after 4 to 5 h of hypoxia. Furthermore, glucose and pyruvate deprivation increased cotransporter activity under both normoxic and hypoxic conditions. Finally, we found that hypoxia increased phosphorylation but not abundance of the cotransporter protein. These findings support the hypothesis that hypoxia stimulation of the BBB Na+-K+-Cl cotransporter contributes to ischemia-induced brain edema formation. edema; blood-brain barrier; bumetanide; cell volume  相似文献   

20.
Objective: Here we investigated the impact of chronic high-intensity interval training (HIIT) and caffeine consumption on the activities of Na+-K+-ATPase and enzymes of the antioxidant system, as well as anxiolytic-like behaviour in the rat brain.

Methods: Animals were divided into groups: control, caffeine (4?mg/kg), caffeine (8?mg/kg), HIIT, HIIT plus caffeine (4?mg/kg) and HIIT plus caffeine (8?mg/kg). Rats were trained three times per week for 6 weeks, and caffeine was administered 30 minutes before training. We assessed the anxiolytic-like behaviour, Na+-K+-ATPase, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, levels of reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) in the brain.

Results and discussion: HIIT-induced anxiolytic-like behaviour increased Na+-K+-ATPase and GPx activities and TBARS levels, altered the activities of SOD and CAT in different brain regions, and decreased GSH levels. Caffeine, however, elicited anxiogenic-like behaviour and blocked HIIT effects. The combination of caffeine and HIIT prevented the increase in SOD activity in the cerebral cortex and GPx activity in three brain regions. Our results show that caffeine promoted anxiogenic behaviour and prevented HIIT-induced changes in the antioxidant system and Na+-K+-ATPase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号