首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The outcome of plant–plant interactions depends on environmental (e.g. grazing and climatic conditions) and species-specific attributes (e.g. life strategy and dispersal mode of the species involved). However, the joint effects of such factors on pairwise plant–plant interactions, and how they modulate the role of these interactions at the community level, have not been addressed before. We assessed how these species-specific (life strategy and dispersal) and environmental (grazing and rainfall) factors affected the co-occurrence of 681 plant species pairs on open woodlands in south-eastern Australia. Species-specific attributes affected the co-occurrence of most species pairs, with higher co-occurrence levels dominating for drought-intolerant species. The dispersal mechanism only affected drought-tolerant beneficiaries, with more positive co-occurrences for vertebrate-dispersed species. Conversely, the percentage of facilitated species at the community scale declined under higher rainfall availabilities. A significant grazing × rainfall interaction on the percentage of facilitated species suggests that grazing-mediated protection was important under low to moderate, but not high, rainfall availabilities. This study improves our ability to predict changes in plant–plant interactions along environmental gradients, and their effect on community species richness, by highlighting that: (1) species-specific factors were more important than environmental conditions as drivers of a large amount (~37%) of the pairwise co-occurrences evaluated; (2) grazing and rainfall interaction drive the co-occurrence among different species in the studied communities, and (3) the effect of nurse plants on plant species richness will depend on the relative dominance of particular dispersal mechanisms or life strategies prone to be facilitated.  相似文献   

2.
Spatial patterns of plant species are determined by an array of ecologica factors including biotic and abiotic environmental constraints and intrinsic species traits. Thus, an observed aggregated pattern may be the result of short‐distance dispersal, the presence of habitat heterogeneity, plant–plant interactions or a combination of the above. Here, we studied the spatial pattern of Mediterranean alpine plant Silene ciliata (Caryophyllaceae) in five populations and assessed the contribution of dispersal, habitat heterogeneity and conspecific plant interactions to observed patterns. For this purpose, we used spatial point pattern analysis combined with specific a priori hypotheses linked to spatial pattern creation. The spatial pattern of S. ciliata recruits was not homogeneous and showed small‐scale aggregation. This is consistent with the species’ short‐distance seed dispersal and the heterogeneous distribution of suitable sites for germination and establishment. Furthermore, the spatial pattern of recruits was independent of the spatial pattern of adults. This suggests a low relevance of adult‐recruits interactions in the spatial pattern creation. The difference in aggregation between recruits and adults suggests that once established, recruits are subjected to self‐thinning. However, seedling mortality did not erase the spatial pattern generated by seed dispersal, as S. ciliata adults were still aggregated. Thus, the spatial aggregation of adults is probably due to seed dispersal limitation and the heterogeneous distribution of suitable sites at seedling establishment rather than the presence of positive plant–plant interactions at the adult stage. In fact, a negative density‐dependent effect of the conspecific neighbourhood was found on adult reproductive performance. Overall, results provide empirical evidence of the lack of a simple and direct relationship between the spatial structure of plant populations and the sign of plant–plant interactions and outline the importance of considering dispersal and habitat heterogeneity when performing spatial analysis assessments.  相似文献   

3.
Facilitation by nurse plants plays an important role in determining community composition in severe environments. Although the unidirectional effect of nurses on beneficiary species has received considerable research interest, nurse‐mediated interactions among beneficiary species (so‐called indirect interactions) are less known. Consequently, community composition in nurse plant systems is generally considered as a simple consequence of the facilitative effect of the nurse even though beneficiary species may significantly contribute to community assembly and modulate the direct nurse effects on the community. In an observational study we assessed nurse effects and nurse‐mediated beneficiary interactions in two contrasting nurse plant systems in dry environments using a newly developed framework. We quantified plant–plant interaction intensity using the relative interaction index (RII) at the community and species level for three Retama sphaerocarpa shrub size‐classes in a semiarid shrubland and four Arenaria tetraquetra cushion plant communities differing in aspect and elevation in dry alpine gravel habitats. The observed RII was split into nurse and beneficiary effects, and related to individual mass, species frequency and abundance using generalized linear mixed models. Results showed predominantly positive nurse effects and negative beneficiary interactions. The effect size of nurse plants, however, was significantly higher than the effect size of beneficiary species in both systems. Individual plant mass and abundance of species was dependent on the combined effects of nurse and beneficiary species whereas species occurrence was related to nurse effects only. Despite evident differences, the semiarid and alpine nurse plant systems showed strong functional parallelisms. We found interdependence between the effects of nurse and beneficiary species on beneficiary plant assemblages emphasizing their combined role on community assembly in both systems. Our results highlight the need to consider indirect interactions to understand fully plant community dynamics.  相似文献   

4.
Richness and diversity of perennial plant species were evaluated in 17 Stipa tenacissima steppes along a degradation gradient in semiarid SE Spain. The main objective of the study was to evaluate the relative importance of historical human impacts, small‐scale patch attributes and environmental factors as determinants of perennial plant species richness and diversity in S. tenacissima steppes, where vegetation is arranged as discrete plant patches inserted on a bare ground matrix. Partial least squares regression was used to determine the amount of variation in species richness and diversity that could be significantly explained by historical human impacts, patch attributes, and environmental factors together and separately. They explained up to 89% and 69% of the variation in species richness and diversity, respectively. In both cases, the predictive power of patch attributes models was higher than that of models consisting of abiotic characteristics and variables related to human impact, suggesting that patch attributes are the major determinants of species richness and diversity in semiarid S. tenacissima steppes. However, patch attributes alone are not enough to explain the observed variation in species richness and diversity. The area covered by late‐successional sprouting shrubs and the distance between consecutive patches were the most influencing individual variables on species richness and diversity, respectively. The implications of these results for the management of S. tenacissima steppes are discussed.  相似文献   

5.
Aim The study aims to decipher the co‐occurrence of understorey plant assemblages and, accordingly, to identify a set of species groups (diversity deconstruction) to better understand the multiple causal processes underlying post‐fire succession and diversity patterns in boreal forest. Location North‐eastern Canadian boreal forest (49°07′–51°44′ N; 70°13′–65°15′ W). Methods Data on understorey plant communities and habitat factors were collected from 1097 plots. Species co‐occurrence was analysed using null model analysis. We derive species groups (i.e. biodiversity deconstruction) using the strength of pairwise species co‐occurrences after accounting for random expectation under a null model and cluster analyses. We examine the influence of a set of spatiotemporal environmental variables (overstorey composition, time‐since‐fire, spatial location and topography) on richness of species groups using Bayesian model averaging, and their relative influence through hierarchical partitioning of variance. Results Understorey plant assemblages were highly structured, with co‐occurrence‐based classification providing species groups that were coherently aggregated within, but variably segregated between, species groups. Group richness models indicate both common and distinct responses to factors affecting plant succession. For example, Group 2 (e.g. Rhododendron groenlandicum and Cladina rangiferina) showed concurrent contrasting responses to overstorey composition and was strongly segregated from Groups 3 (e.g. Clintonia borealis and Maianthenum canadense) and 4 (e.g. Epilobium angustifolium and Alnus rugosa). Groups 3 and 4 showed partial similarity, but they differed in their response to time‐since‐fire, drainage and latitude, which were more important for Group 1 (e.g. Ptilium crista‐castrensis and Empetrum nigrum). A single successional model based on total richness masked crucial group‐level relationships with factors that we examined, such as latitude. Main conclusions By demonstrating the co‐occurrence structure and linking to causal factors, the results from this study characterize both common and distinct responses of understorey plants to biophysical attributes of sites, and potential interspecific interactions, behind non‐random assemblage structure during post‐fire succession. A biodiversity deconstruction approach could offer a concise and explicit framework to gain a better understanding of the complex assembly of ecological communities during succession.  相似文献   

6.
Recent studies have shown that the tussock grass Stipa tenacissima L. facilitates the establishment of late-successional shrubs, in what constitutes the first documented case of facilitation of woody plants by grasses. With the aim of increasing our knowledge of this interaction, in the present study we investigated the effects of S. tenacissima on the foliar δ13C, δ15N, nitrogen concentration, and carbon : nitrogen ratio of introduced seedlings of Pistacia lentiscus L., Quercus coccifera L., and Medicago arborea L. in a semi-arid Mediterranean steppe. Six months after planting, the values of δ13C ranged between -26.9‰ and -29.6‰, whereas those of δ15N ranged between -1.9‰ and 2.7‰. The foliar C : N ratio ranged between 10.7 and 53.5, and the nitrogen concentration ranged between 1.0% and 4.4%. We found no significant effect of the microsite provided by S. tenacissima on these variables in any of the species evaluated. The values of δ13C were negatively correlated with predawn water potentials in M. arborea and were positively correlated with relative growth rate in Q. coccifera. The values of δ15N were positively correlated with the biomass allocation to roots in the latter species. The present results suggest that the modification of environmental conditions in the are surrounding S. tenacissima was not strong enough to modify the foliar isotopic and nitrogen concentration of shrubs during the early stages after planting.  相似文献   

7.
The ability of saplings to tolerate browsing (i.e. the ability to persist with reduced biomass and to compensate for biomass loss) is influenced by the level of stress and their growth strategies. Ultimately, insight into species‐specific responses of saplings to browsing, shade and competition from neighbours will help explain diversity, structure and function of grazed ecosystems such as the endangered wood‐pasture systems. We measured the survival, whole‐sapling biomass and compensatory growth responses of two coniferous (Picea abies and Abies alba) and two deciduous (Acer pseudoplatanus and Fagus sylvatica) tree species to simulated summer browsing (one single clipping event), shade (installation of a shade cloth) and neighbour removal (mowing surrounding vegetation to ground level) treatments and the interactions between them after two‐growing seasons. For all species, there were interacting effects on growth of browsing and environmental condition (shade and neighbours). Simulated browsing resulted in relatively smaller growth losses when plants were growing slowly due to competitive conditions related to herbaceous neighbours. Although none of the clipped saplings could fully compensate for their biomass losses, the saplings were closer to compensation under high competitive conditions than under low competitive conditions. Survival of the clipped saplings remained relatively high and was only significantly reduced for Picea and Acer. Picea was least tolerant of competition and was the only species for which growth was not negatively affected by strong irradiance of a mountain pasture. Surprisingly, the tolerance of saplings to herbivory as browsing tolerance was enhanced under conditions that negatively affected sapling performance (i.e. survival and growth). Apparently, the relative impact of browsing at the early sapling stage is linked to tree life history characteristics such as competition and shade tolerance and will be lower in situations with intense competitive interactions and/or strong irradiance.  相似文献   

8.
The study of plant–plant interactions along grazing and abiotic stress gradients is a major research topic in plant ecology, but the joint effects of both stressors on the outcome of plant–plant interactions remains poorly understood. We used two different factorial experiments conducted in a semi‐arid Mediterranean steppe to assess: 1) the role of the perennial grass Stipa tenacissima, a low‐palatability species, providing protection from rabbit herbivory to the shrub Retama sphaerocarpa (experiment 1), and 2) the effects of environmental amelioration provided by Stipa on the recovery of Retama after rabbit damage under two contrasted levels of water availability (experiment 2). In the experiment 1, water stress worked as an indirect modulator of herbivore protection by Stipa. This species protected Retama seedlings from rabbit herbivory during the wetter conditions of spring and winter, but this effect dissapeared when rabbit pressure on Retama increased during summer drought due to the decrease in alternative food resources. In the experiment 2, Stipa exerted a negative effect on the survival of Retama seedlings during the three years of the experiment, regardless of inter‐annual differences in rainfall or the watering level applied. This negative effect was mainly due to excessive shading. However, Stipa increased Retama recovery after initial rabbit impact, overriding in part this negative shade effect. Conversely, Stipa impact on the Fv/Fm of Retama seedlings depended on the intra‐annual water dynamics and its experimental manipulation, overall contradicting predictions from the stress–gradient hypothesis. The complex interactions found between herbivory, microclimatic amelioration from Stipa, and water availability as drivers of Retama performance illustrate the importance of considering the temporal dynamics of both biotic and abiotic stressors to fully understand the outcome of plant–plant interactions.  相似文献   

9.
Understanding the mechanisms of species coexistence is a key task for ecology. Recent theory predicts that both competition and predation (which causes apparent competition among prey) can either promote or limit species coexistence. Both mechanisms cause negative interactions between individuals, and each mechanism promotes stable coexistence if it causes negative interactions to be stronger between conspecifics than between heterospecifics. However, the relative importance of competition and predation for coexistence in natural communities is poorly known. Here, we study how competition and apparent competition via pre‐dispersal seed predators affect the long‐term fecundity of Protea shrubs in the fire‐prone Fynbos biome (South Africa). These shrubs store all viable seeds produced since the last fire in fire‐proof cones. Competitive effects on cone number and pre‐dispersal seed predation reduce their fecundity and can thus limit recruitment after the next fire. In 27 communities comprising 49 990 shrubs of 22 Protea species, we measured cone number and per‐cone seed predation rate of 2154 and 1755 focal individuals, respectively. Neighbourhood analyses related these measures to individual‐based community maps. We found that conspecific neighbours had stronger competitive effects on cone number than heterospecific neighbours. In contrast, apparent competition via seed predators was comparable between conspecifics and heterospecifics. This indicates that competition stabilizes coexistence of Protea species, whereas pre‐dispersal seed predation does not. Larger neighbours had stronger competitive effects and neighbours with large seed crops exerted stronger apparent competition. For 97% of the focal plants, competition reduced fecundity more than apparent competition. Our results show that even in communities of closely related and ecologically similar species, intraspecific competition can be stronger than interspecific competition. On the other hand, apparent competition through seed predators need not have such a stabilizing effect. These findings illustrate the potential of ‘community demography’, the demographic study of multiple interacting species, for understanding plant coexistence.  相似文献   

10.
There has been much debate about the role of plant interactions in the structure and function of vegetation communities. Here the results of a pot experiment with controlled environments are described where three environmental variables (nutrients, sediment type and waterlogging) were manipulated factorially to identify their effects on the growth and intensity of interactions occurring between Spartina anglica and Puccinellia maritima. The two species were grown in split-plot planting treatments, representing intraspecific and interspecific addition series experiments, to determine individual and interactive effects of environmental factors and plant interactions on plant biomass.
Above-ground growth of both species involved interactions between the environmental and planting treatments, while below-ground, environmental factors affected the biomass irrespective of planting treatments. It was suggested that this difference in growth response is evidence that in our experiment plant interactions between the two species occur primarily at the above-ground level.
The intensity of plant interactions varied in a number of ways. First, interactions between Spartina and Puccinellia were distinctly asymmetrical, Puccinellia exerting a competitive effect on Spartina, with no reciprocal effect, and with a facilitative effect of Spartina on Puccinellia in low nutrient conditions. Second, the interactions varied in intensity in different environmental conditions. Interspecific competitive effects of Puccinellia on Spartina were more intense in conditions favourable to growth of Puccinellia and reduced or non-existent in environments with more abiotic stress. Third, intraspecific competition was found to be less intense for both species than interspecific interactions. Finally, the intensity of plant interactions involving both species was more intense above ground than below ground, with a disproportionate reduction in the intensity of interspecific competition below relative to above ground in treatments with less productive sediments and greater immersion. This is interpreted as reflecting a potential mechanism by which Spartina may be able to evade competitive neighbours.  相似文献   

11.
Network approaches can increase our understanding of both changes in ecosystems and the role that individual species play in such changes. In ecology, networks have been applied mainly to the study of food webs and mutualistic interactions, with few studies on plant communities. This study used a network approach to examine a semi-arid plant community along a Stipa tenacissima abundance gradient at two locations in SE Spain: (1) an open shrub land where S. tenacissima is a highly competitive species, and (2) an alpha steppe where S. tenacissima forms the end stable successional community. In alpha steppe, the influence of slope was also examined. We detected that S. tenacissima influenced the network structuring process, and that network organization changed along the gradient. In open shrub land, when S. tenacissima became abundant, it dominated the community and other species disappeared. This resulted in a reduction of the number of links that S. tenacissima established. At the alpha-steppe, S. tenacissima coexists with other species, developing more links as it becomes more abundant. On gentle slope zones of alpha steppe, S. tenacissima is more competitive and becomes dominant for high abundance values, reducing its links with other species. The organization of networks varied similarly in both locations. When plant species reduce their abundance and number, links are more heterogeneously distributed in networks. This leads to a concentration of most of the links around a few species, particularly S. tenacissima, which is the most abundant in this case. We conclude that, in order to study plant communities, it is convenient to consider the properties of individual components together with the interaction between them.  相似文献   

12.
Determining which drivers lead to a specific species assemblage is a central issue in community ecology. Although many processes are involved, plant–plant interactions are among the most important. The phylogenetic limiting similarity hypothesis states that closely related species tend to compete stronger than distantly related species, although evidence is inconclusive. We used ecological and phylogenetic data on alpine plant communities along an environmental severity gradient to assess the importance of phylogenetic relatedness in affecting the interaction between cushion plants and the whole community, and how these interactions may affect community assemblage and diversity. We first measured species richness and individual biomass of species growing within and outside the nurse cushion species, Arenaria tetraquetra. We then assembled the phylogenetic tree of species present in both communities and calculated the phylogenetic distance between the cushion species and its beneficiary species, as well as the phylogenetic community structure. We also estimated changes in species richness at the local level due to the presence of cushions. The effects of cushions on closely related species changed from negative to positive as environmental conditions became more severe, while the interaction with distantly related species did not change along the environmental gradient. Overall, we found an environmental context‐dependence in patterns of phylogenetic similarity, as the interaction outcome between nurses and their close and distantly‐related species showed an opposite pattern with environmental severity.  相似文献   

13.
The aim of this study is to classify and describe all plant communities with Quercus coccifera covering the entire eastern Adriatic coast and islands from north Croatia to south Albania, and to relate their species composition, chorotypes and life forms to environmental factors using Pignatti ecological indicator values. From total 70 phytosociological relevés, we identified and described four floristically and ecologically distinctive vegetation communities (two new proposed subassociations, one association and stand each) using TWINSPAN and the Braun-Blanquet classification scheme. In Croatia and Montenegro, Q. coccifera is forming macchia within the Fraxino orni–Quercetum cocciferae pistacietosum lentisci. Quercus coccifera occurs only sparsely in south Croatia as a shrubland within Fraxino orni–Quercetum cocciferae nerietosum oleandri subassociation or macchia within the Erico arboreae–Arbutetum unedonis association. Despite the difference in biogeographic position and bioclimates, low shrubby Albanian Q. coccifera stands are more closely related to the Q. coccifera communities from the western Mediterranean. Eastern Adriatic communities appear exclusively within the Querceta ilicis vegetation zone and spread within the meso-Mediterranean belt. They nevertheless are an important part of the region's natural heritage and management plans must ensure that all forms of land are used in a sustainable way.  相似文献   

14.
The niche is a necessary consideration when estimating habitable area and geographic range of a species. Modellers often examine the fundamental niche and the environmental requirements for plant species, ignoring interactions among species. In deserts, positive plant interactions are important drivers of biodiversity and structure communities through many mechanistic pathways including modifying environmental conditions. Thus, we tested the hypothesis that desert shrubs increase the geographical extent of some annual species because, through modifying the microclimate, they match the niche requirements of beneficiary species. We used the database of the Global Biodiversity Information Facility to construct MaxEnt species distribution models (SDM) with and without reported benefactor species within the Mojave Desert in California. We chose 20 annual species to be modeled including 10 species that had been previously reported in the literature as being facilitated (beneficiary) and 10 that had no record of being facilitated (unreported). Beneficiary annuals co‐occurred significantly more with benefactor shrubs than the unreported annual species. The inclusion of shrubs into SDMs significantly improved model predictability and geographic range for all the beneficiary annual species, but not for the unreported annual species. Thus, positive interactions are species specific and it is possible to determine annual species dependency on benefactor shrubs at the regional scale. The co‐occurrence of benefactor shrubs and annual species can be used as a proxy for facilitation and recent developments in SDM techniques encourage the inclusion of biotic interactions. Species distribution models should include estimates of facilitation because biotic interactions determine the niche of species and can have implications with a changing climate.  相似文献   

15.
Plant‐emitted volatile organic compounds (VOCs) mediate interactions within a plant community. Typically, receiving a signal from a damaged neighbour enhances the defensive attributes of a receiver plant. The mechanisms underlying plant–plant interactions may be divided into active and passive processes, both of which involve transit of VOCs between plants and are vulnerable to environmental perturbation. Numerous studies have documented between‐plant interactions, but the specific effects on a receiver plant's interactions with herbivores have received little attention. Moreover, the relative contributions of active and passive processes to plant defence and the effects of environmental pollutants on the processes have been largely unexplored. We used a system comprising Brassica oleracea var. italica (broccoli) and the specialist herbivore Plutella xylostella to test whether plants previously exposed to herbivore‐damaged neighbours differed from nonexposed plants in their susceptibility to oviposition. We then investigated the roles of active and passive mechanisms in our observations and whether differences in susceptibility remained under elevated ozone concentrations. Plants exposed to herbivore‐damaged neighbours were more susceptible to oviposition than plants exposed to undamaged neighbours, which indicates associational susceptibility. Mechanistically, active and passive volatile‐mediated processes occurred in tandem with the passive process – involving adsorption of sesquiterpenes to receiver plants – appearing to structure the oviposition response. Exposure to ozone rapidly degraded the sesquiterpenes and eliminated the associational susceptibility. Plant volatiles have typically been thought to play roles in between‐plant interactions and to promote receiver plant defence. Here, we show that receiver plants may also become more susceptible to oviposition and thus more likely to be damaged. Extensive disruption of volatile‐mediated interactions by an atmospheric pollutant highlights the need to consider the pervading environment and changes therein when assessing their ecological significance.  相似文献   

16.
Aim We estimated the patterns of seed deposition provided by the eyed lizard, Timon lepidus, and evaluated whether these patterns can be generalized across plant species with different traits (fruit and seed size) and spatial distributions. Location Monteagudo Island, Atlantic Islands National Park (north‐western Spain). Methods We radio‐tracked seven lizards for 14 days and estimated their home ranges using fixed kernels. We also geo‐referenced all fruit‐bearing individuals of four plant species dispersed by eyed lizards in the study area (Corema album, Osyris alba, Rubus ulmifolius and Tamus communis), measured the passage time of their seeds through the lizard gut, and estimated seed predation in four habitats (bare sand, grassland, shrub and gorse). Seed dispersal kernels were estimated using a combination of these data and were combined with seed predation probability maps to incorporate post‐dispersal seed fate (‘seed survival kernels’). Results Median seed gut‐passage times were around 52–98 h, with maximum values up to 250 h. Lizards achieved maximum displacement in their home ranges within 24–48 h. Seed predation was high (80–100% of seeds in 2 months), particularly under Corema shrub and gorse. Seed dispersal kernels showed a common pattern, with two areas of preferential seed deposition, but the importance of these varied among plant species. Interspecific differences among dispersal kernels were strongly reduced by post‐dispersal seed predation; hence, seed survival kernels of the different plant species showed high auto‐ and pairwise‐correlations at small distances (< 50 m). As a result, survival to post‐dispersal seed predation increased with dispersal distance for O. alba and T. communis, but not for C. album. Main conclusions Seed dispersal by lizards was determined primarily by the interaction between the dispersers’ home ranges and the position of the fruit‐bearing plants. As a result, seed rain shared a common template, but showed considerable variation among species, determined by their specific spatial context. Seed predation increased the spatial coherence of the seed rain of the different species, but also resulted in contrasting relationships between seed survival and dispersal distance, which may be of importance for the demographic and evolutionary processes of the plants.  相似文献   

17.
For a species to be able to respond to environmental change, it must either succeed in following its optimal environmental conditions or in persisting under suboptimal conditions, but we know very little about what controls these capacities. We parameterized species distribution models (SDMs) for 135 plant species from the Algerian steppes. We interpreted low false‐positive rates as reflecting a high capacity to follow optimal environmental conditions and high false‐negative rates as a high capacity to persist under suboptimal environmental conditions. We also measured functional traits in the field and built a unique plant trait database for the North‐African steppe. For both perennial and annual species, we explored how these two capacities can be explained by species traits and whether relevant trait values reflect species strategies or biases in SDMs. We found low false‐positive rates in species with small seeds, flowers attracting specialist pollinators, and specialized distributions (among annuals and perennials), low root:shoot ratios, wide root‐systems, and large leaves (perennials only) (R2 = .52–58). We found high false‐negative rates in species with marginal environmental distribution (among annuals and perennials), small seeds, relatively deep roots, and specialized distributions (annuals) or large leaves, wide root‐systems, and monocarpic life cycle (perennials) (R2 = .38 for annuals and 0.65 for perennials). Overall, relevant traits are rarely indicative of the possible biases of SDMs, but rather reflect the species' reproductive strategy, dispersal ability, stress tolerance, and pollination strategies. Our results suggest that wide undirected dispersal in annual species and efficient resource acquisition in perennial species favor both capacities, whereas short life spans in perennial species favor persistence in suboptimal environmental conditions and flowers attracting specialist pollinators in perennial and annual species favor following optimal environmental conditions. Species that neither follow nor persist will be at risk under future environmental change.  相似文献   

18.
Investigating plant–pollinator interactions and pollen dispersal are particularly relevant for understanding processes ensuring long‐term viability of fragmented plant populations. Pollen dispersal patterns may vary strongly, even between similar congeneric species, depending on the mating system, pollinator assemblages and floral traits. We investigated pollen dispersal and fruit production in a population of Vaccinium oxycoccos, an insect‐pollinated shrub, and compared the pollen dispersal pattern with a co‐flowering, sympatric congener, V. uliginosum. We examined whether they share pollinators (through interspecific fluorescent dye transfers) and may differently attract pollinators, by comparing their floral colour as perceived by insects. Fluorescent dyes were mainly dispersed over short distances (80% within 40.4 m (max. 94.5 m) for V. oxycoccos and 3.0 m (max. 141.3 m) for V. uliginosum). Dye dispersal in V. oxycoccos was not significantly affected by plant area, floral display or the proximity to V. uliginosum plants. Interspecific dye transfers were observed, indicating pollinator sharing. The significantly lower dye deposition on V. oxycoccos stigmas suggests lower visitation rates by pollinators, despite higher flower density and local abundance. The spectral reflectance analysis indicates that bees are unlikely to be able to discriminate between the two species based on floral colour alone. Fruit production increased with increasing floral display, but was not affected by proximity to V. uliginosum plants. Our study highlights that fragmented populations of V. oxycoccos, when sympatric with co‐flowering V. uliginosum, might incur increased competition for the shared pollinators in the case of pollination disruption, which might then reduce outcrossed seed set.  相似文献   

19.
Abstract. An integrated analysis of the colonization patterns of forest plant species was carried out in a 34‐ha, mixed deciduous forest in northern Belgium. First, we sought to describe the relationships between land use history and environmental conditions. Land use history and soil type were related and negative correlations between pH and secondary forest age were found. The density of the shrub layer increases with secondary forest age. Litter quantity and cover of Urtica dioica were mainly indirectly influenced by land use history. Litter starts accumulating at low pH values and high shrub density and Urtica dioica grows vigorously on nutrient enriched soils where much light can reach the ground. Next, the importance of these human‐altered environmental conditions for the colonization of forest plant species was assessed relative to the importance of dispersal limitation. Therefore, the distribution of 16 forest species was mapped and species‐specific spatio‐temporal isolation measures were calculated. The analysis revealed that the colonization patterns of the slowly colonizing species (i.e. ‘ancient forest plant species’) are best explained by a combination of spatio‐temporal isolation, soil type, pH and the (non‐)cover of Urtica dioica. By contrast, spatio‐temporal isolation was never a limiting factor for good colonizing forest species. Our results suggest that colonization of ‘ancient forest plant species’ is hampered by a combination of dispersal‐ and recruitment limitation and that the relative importance of both factors is species‐specific.  相似文献   

20.
Jana Gesina Engels  Kai Jensen 《Oikos》2010,119(4):679-685
Understanding the mechanisms that shape plant distribution patterns is a major goal in ecology. We investigated the role of biotic interactions (competition and facilitation) and abiotic factors in creating horizontal plant zonation along salinity gradients in the Elbe estuary. We conducted reciprocal transplant experiments with four dominant species from salt and tidal freshwater marshes at two tidal elevations. Ten individuals of each species were transplanted as sods to the opposing marsh type and within their native marsh (two sites each). Transplants were placed at the centre of 9‐m2 plots along a line parallel to the river bank. In order to disentangle abiotic and biotic influences, we set up plots with and without neighbouring vegetation, resulting in five replicates per site. Freshwater species (Bolboschoenus maritimus and Phragmites australis) transplanted to salt marshes performed poorly regardless of whether neighbouring vegetation was present or not, although 50–70% of the transplants did survive. Growth of Phragmites transplants was impaired also by competition in freshwater marshes. Salt marsh species (Spartina anglica and Puccinellia maritima) had extremely low biomass when transplanted to freshwater marshes and 80–100% died in the presence of neighbours. Without neighbours, biomass of salt marsh species in freshwater marshes was similar to or higher than that in salt marshes. Our results indicate that salt marsh species are precluded from freshwater marshes by competition, whereas freshwater species are excluded from salt marshes by physical stress. Thus, our study provides the first experimental evidence from a European estuary for the general theory that species boundaries along environmental gradients are determined by physical factors towards the harsh end and by competitive ability towards the benign end of the gradient. We generally found no significant impact of competition in salt marshes, indicating a shift in the importance of competition along the estuarine gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号