首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Seasonal fluctuations in climatic factors are expected to increase in future decades. However, little is known about the response of tropical species communities to seasonal fluctuations in climate and resource availability, particularly across different habitat types. We examined the relationship between spatio‐temporal fluctuations in the abundance of fruits and invertebrates and two avian feeding guilds, i.e. frugivores and insectivores, in forest and farmland habitats in western Kenya. Fruits and invertebrates fluctuated substantially throughout the year, but seasonal fluctuations were asynchronous between the two habitat types. Species richness and total abundance of frugivores and insectivores also fluctuated strongly and were closely related to the abundance of their respective resources. Frugivore species richness fluctuated anti‐cyclical in forest and farmland habitats, suggesting that several frugivorous species tracked fruit resources across habitat boundaries. In contrast, insectivorous bird richness fluctuated synchronously in the two habitat types, suggesting a lack of local‐scale movements across habitat boundaries. We conclude that bird communities strongly respond to seasonal fluctuations in resource availability, but responses differ between feeding guilds. While frugivores seem to respond flexibly to seasonal fluctuations, for instance by tracking fruit resources across habitat boundaries, insectivorous birds appear to be more susceptible to the expected increase in seasonal fluctuations in resource availability.  相似文献   

4.
Forest encroachment into savanna is occurring at an unprecedented rate across tropical Africa, leading to a loss of valuable savanna habitat. One of the first stages of forest encroachment is the establishment of tree seedlings at the forest–savanna transition. This study examines the demographic bottleneck in the seedlings of five species of tropical forest pioneer trees in a forest–savanna transition zone in West Africa. Five species of tropical pioneer forest tree seedlings were planted in savanna, mixed/transition, and forest vegetation types and grown for 12 months, during which time fire occurred in the area. We examined seedling survival rates, height, and stem diameter before and after fire; and seedling biomass and starch allocation patterns after fire. Seedling survival rates were significantly affected by fire, drought, and vegetation type. Seedlings that preferentially allocated more resources to increasing root and leaf starch (starch storage helps recovery from fire) survived better in savanna environments (frequently burnt), while seedlings that allocated more resources to growth and resource‐capture traits (height, the number of leaves, stem diameter, specific leaf area, specific root length, root‐to‐shoot ratio) survived better in mixed/transition and forest environments. Larger (taller with a greater stem diameter) seedlings survived burning better than smaller seedlings. However, larger seedlings survived better than smaller ones even in the absence of fire. Bombax buonopozense was the forest species that survived best in the savanna environment, likely as a result of increased access to light allowing greater investment in belowground starch storage capacity and therefore a greater ability to cope with fire. Synthesis: Forest pioneer tree species survived best through fire and drought in the savanna compared to the other two vegetation types. This was likely a result of the open‐canopied savanna providing greater access to light, thereby releasing seedlings from light limitation and enabling them to make and store more starch. Fire can be used as a management tool for controlling forest encroachment into savanna as it significantly affects seedling survival. However, if rainfall increases as a result of global change factors, encroachment may be more difficult to control as seedling survival ostensibly increases when the pressure of drought is lifted. We propose B. buonopozense as an indicator species for forest encroachment into savanna in West African forest–savanna transitions.  相似文献   

5.
6.
Plant establishment and growth on rocky outcrops in the Itatiaia massif (2400 m a.s.l.), southeastern Brazil, are limited by lack of soil and by freezing temperatures in winter nights. Mat‐forming species of different sizes and shapes on bare rock provide substrate for other plants to establish. The habitat preference of two geophytes, Stevia camporum (Asteraceae) and Alstroemeria foliosa (Alstroemeriaceae), was compared with regard to their association with the type of mat species and distinct rock topographies. The habitat preference of the mat species in regard to topography was also assessed. We found 1706 ramets of S. camporum and 1317 of A. foliosa in 253 vegetation islands ranging in size from 0.005 to 18.097 m2. Mat species in these islands were Fernseea itatiaiae, Vriesea itatiaiae (both Bromeliaceae), Pleurostima gounelleana (Velloziaceae) and/or Campylopus pilifer (Dicranaceae) and other mosses. Mat species were segregated by topography. Geophytes were similarly distributed across types of topography but showed negative interspecific association. S. camporum occurred mostly on the moss‐dominated islands, whereas A. foliosa was more common in P. gounelleana islands. We found geophyte co‐occurrence in larger vegetation islands containing both P. gounelleana and mosses as mat species. Thus, the effect of topography on geophyte segregation was indirect, since topography affects mat species distribution, and the geophyte preference for distinct mat species as substrate resulted in their segregation.  相似文献   

7.
Åke Berg  Tomas Pärt 《Ecography》1994,17(2):147-152
The aim with this study was to investigate whether abundance of farmland birds on fields at forest edges were associated with (I) type of field (young set-aside vs arable fields), (n) the length and structure of the field-forest edge zone, and/or (m) with residual habitats such as habitat islands, ditches, roads etc Twenty-eight farmland bird species (all nesting and/or foraging on open fields) were censused during the breeding season on 48 plots (open fields with adjoining forest edges) in the central parts of Sweden, covering a total area of 595 ha Skylark Alauda arvensis , linnet Carduelis cannabina , whitethroat Sylvia communis and whinchat Saxicola rubetra were found in significantly higher numbers in set-aside-plots than cereal ones However, the most important factor explaining variation in the abundance of most species was the structure of the field-forest ecotone, with the length of shrubby southern deciduous forest edges being the most important factor in 7 of the species Mixed forest edges seemed to be of some importance for the abundance of 3 species, while associations between abundance and length of the other deciduous and coniferous field-forest ecotones only were significant for one species each Skylarks, white wagtails Motaalla alba and whinchats were positively associated to ditches and yellowhammers Emberiza citrinella and linnets were significantly associated to habitat islands The observed preferences for set-asides and shrubby field forest edges are suggested to be results of reduced predation risk and increased food abundance  相似文献   

8.
ABSTRACT Large‐scale transformation of forested landscapes is a major factor in loss of biological diversity in the American tropics. Investigators examining the responses of species to deforestation rarely control for variation in the amount of forest relative to other habitats at the landscape‐level. Bellavista Reserve on the western slope of the Andes in Ecuador is located between similar‐sized areas of pristine, protected forest, and deforested landscapes. We used strip‐transect counts and mist netting to evaluate habitat use by passerine birds in a habitat mosaic consisting of abandoned pastures, forest edges, forest fragments, and large blocks of interior tropical montane cloud forest (TMCF). During 3600 net hours, we had 1476 captures, including 346 recaptures. Of 78 species captured in mist nets, 30 had sufficient counts for Poison Rate Regression (PRR) modeling (a statistical method for comparing counts). Twelve species (40%) had capture patterns indicative of an affinity for mature TMCF, and 6 species (20%) had significantly higher counts in degraded areas (forest edge, forest fragment, and regenerating pastures) than in interior TMCF. The remaining 40% showed no significant bias in detection among habitats. Combined with strip‐count data, our results suggest that about 38% of the 119 species sampled at the Bellavista Reserve occur primarily in mature TMCF, avoiding edges and early second‐growth forest. Populations of these species may be vulnerable to further loss, fragmentation, and degradation of TMCF and, as such, deserve additional study and a place on lists of species of conservation concern.  相似文献   

9.
Frugivores must deal with seasonal changes in fruit availability and changes from year to year, as most species of tropical forest fruiting trees have considerable interannual variation in phenology and many are mast fruiters. We quantified seasonal and interannual changes in the fruit diet in a frugivore and important seed disperser, the white‐handed gibbon, Hylobates lar, in Thailand. We used 40‐d following data during April and May replicated in six consecutive years to study interannual variability in the diet and compared it with seasonal changes measured in monthly samples of the same size collected in three successive years. The 40‐d periods of following also allowed us to measure the decline in dietary similarity with time over a finer scale. We measured fruit diet similarity between replicated 5‐d periods using the percentage overlap (Renkonen's) index and Jaccard's similarity index. Seasonally, average dietary overlap between adjacent months was low, and similarity approached zero after four months. Average rate of decline in similarity exceeded 20 percent per 5‐d period. Variation in fruit species in the diet between years was high and was correlated with interannual variation in fruiting phenology. The strongest correlation occurred in the case of Nephelium melliferum, a highly preferred species that dominated the diet in good fruiting years. It is difficult to separate changes in food species preference from changes in availability from year to year. We devised a relative measure of preference that depends on the degree to which the gibbons rely on prior knowledge to find sources.  相似文献   

10.
Frugivory and seed dispersal are key processes for the maintenance of biodiversity. This is particularly true in the Neotropics, where most plant species depend on animals to disperse their seeds and most birds and mammals include fruits in their diets. We performed a continental‐scale literature review to build a database of interactions between neotropical fruits and fruit‐eating birds and mammals. Our objective was to evaluate the viability of combining literature data from different studies to describe the structure of highly diverse fruit–frugivore neotropical communities. We investigated sites that had been the focus of studies of at least four different avian and/or mammalian taxonomic orders and we included in our database only those conducted for at least a 6‐month period in order to account for the seasonality in fruit availability. In spite of a large number of study sites investigated for frugivory (n = 156), we found a huge gap in the knowledge of community‐wide fruit–frugivore interactions in the Neotropics, since most studies focused on single or a few species. Nevertheless, we were able to construct diverse plant–frugivore qualitative networks for 17 areas unevenly spread throughout the neotropical region. Using complex network analyses, we found that these networks were highly informative and non‐randomly organized. Most networks were both significantly nested and modular, characteristics related to stability and resilience in biological systems. We concluded that it is possible to use merged data to build networks for sites of conservation interest. The main advantage of using this approach is to optimize resources, avoiding exhaustive, costly and time‐consuming fieldwork when data is already available. Whilst bearing in mind the shortcomings of this methodology, these results can be used in studies aiming to understand the ecological processes structuring different communities in the neotropical region and to support conservation and restoration actions.  相似文献   

11.
Taxonomy and diversity of symptomatic lichenicolous fungi (visible as fruitbodies on lichen thalli, their discoloration, and/or deformation) and their specificity to lichen hosts is becoming more and more studied. However, information on their ecology is still scarce. We assess how large the specialization of these fungi towards their hosts and microhabitat is. Epiphytic, epixylic and epigeic lichens and associated lichenicolous fungi were studied on 144 permanent plots in Białowieża Forest in relation to forest communities, species of tree phorophyte and substrates. On all these three studied levels lichenicolous fungi were more specialized than their lichen hosts. Our study provides the first estimation of ecological dependences between associations of lichenicolous fungi and their hosts, microhabitats and forest communities in a primeval forest ecosystem representative of lowland Europe.  相似文献   

12.
Although seed-dispersal networks are increasingly used to infer the functioning of ecosystems, few studies have investigated the link between the properties of these networks and the ecosystem function of seed dispersal by animals. We investigate how frugivore communities and seed dispersal change with habitat disturbance and test whether relationships between morphological traits and functional roles of seed dispersers change in response to human-induced forest edges. We recorded interaction frequencies between fleshy fruited plants and frugivorous bird species in tropical montane forests in the Bolivian Andes and recorded functional bird traits (body mass, gape width and wing tip length) associated with quantitative (seed-removal rate) and qualitative (seed-deposition pattern) components of seed-dispersal effectiveness. We found that the abundance and richness of frugivorous birds were higher at forest edges. More fruits were removed and dispersed seeds were less clustered at edges than in the interior. Additionally, functional and interaction diversity were higher at edges than in the interior, but functional and interaction evenness did not differ. Interaction strength of bird species increased with body mass, gape width and wing tip length in the forest interior, but was not related to bird morphologies at forest edges. Our study suggests that increases in functional and interaction diversity and an even distribution of interaction strength across bird morphologies lead to enhanced quantity and tentatively enhanced quality of seed dispersal. It also suggests that the effects of species traits on ecosystem functions can vary along small-scale gradients of human disturbance.  相似文献   

13.
Tropical forests harbor diverse ecological communities of plants and animals that are organized in complex interaction networks. The diversity and structure of plant–animal interaction networks may change along elevational gradients and in response to human‐induced habitat fragmentation. While previous studies have analyzed the effects of elevation and forest fragmentation on species interaction networks in isolation, to our knowledge no study has investigated whether the effects of forest fragmentation on species interactions may differ along elevational gradients. In this study, we analyzed main and interaction effects of elevation and forest fragmentation on plant–frugivore interaction networks at plant and bird species level. Over a period spanning two years, we recorded plant–frugivore interactions at three elevations (1000, 2000 and 3000 m a.s.l.) and in two habitat types (continuous and fragmented forest) in tropical montane forests in southern Ecuador. We found a consistent effect of elevation on the structure of plant–frugivore networks. We observed a decrease in the number of effective bird partners of plants and, thus, a decline in the redundancy of bird species with increasing elevation. Furthermore, bird specialization on specific plant partners increased towards high elevations. Fragmentation had a relatively weak effect on the interaction networks for both plant and bird species, but resulted in a significant increase in bird specialization in fragmented forests at high elevations. Our results indicate that forest fragmentation may have stronger effects on plant–frugivore interaction networks at high compared to low elevations because bird species richness declined more steeply towards high elevations than plant species richness. We conclude that conservation efforts should prioritize the maintenance of consumer diversity, for instance by maintaining stretches of continuous forest. This applies in particular to species‐poor communities, such as those at high elevations, as the ecological processes in these communities seem most sensitive towards forest fragmentation.  相似文献   

14.
  • Climate change is driving movements of many plants beyond, as well as within, their current distributional ranges. Even migrant plants moving within their current range may experience different plant–soil feedbacks (PSF) because of divergent nonlocal biotic soil conditions. Yet, our understanding to what extent soil biotic conditions can affect the performance of within‐range migrant plants is still very limited.
  • We assessed the emergence and growth of migrant forest herbs (Milium effusum and Stachys sylvatica) using soils and seeds collected along a 1,700 km latitudinal gradient across Europe. Soil biota were manipulated through four soil treatments, i.e. unsterilized control soil (PSFUS), sterilized soil (PSFS), sterilized soil inoculated with unsterilized home soil (PSFS+HI) and sterilized soil inoculated with unsterilized foreign soil (PSFS+FI, expected to occur when both plants and soil biota track climate change).
  • Compared to PSFS, PSFUS had negative effects on the growth but not emergence of both species, while PSFS+FI only affected Ssylvatica across all seed provenances. When considering seed origin, seedling emergence and growth responses to nonlocal soils depended on soil biotic conditions. Specifically, the home–away distance effect on seedling emergence differed between the four treatments, and significant responses to chemistry either disappeared (M. effusum) or changed (S. sylvatica) from PSFUS to PSFS.
  • Soil biota emerge as an important driver of the estimated plant migration success. Our results of the effects of soil microorganisms on plant establishment provide relevant information for predictions of the distribution and dynamics of plant species in a changing climate.
  相似文献   

15.
16.
Habitat loss can trigger cascades of secondary extinctions, changing the organization of interacting assemblages. Until recently, most extinction models in interaction systems had limited ecological realism. Here, we estimate a realistic sequence of species extinctions resulting from habitat loss to assess its impacts on the structure of frugivory networks from the Brazilian Atlantic Forest. We show that realistic and random extinctions led to similar patterns. We also identified a threshold in the response of network structure to habitat loss. When forest cover was reduced to less than 40% of the landscape, network organization changed dramatically. Hence, the number of species being lost, rather than the order of species extinctions, is the key determinant of its impacts on the organization of frugivory networks. We highlight the need to conserve around 40% of forest cover to keep the basic organization of frugivory networks, a threshold already reached at the best‐preserved Brazilian Atlantic Forest bioregion.  相似文献   

17.
The forest–steppe ecotone in southern Siberia is highly sensitive to climate change; global warming is expected to push the ecotone northwards, at the same time resulting in degradation of the underlying permafrost. To gain a deeper understanding of long‐term forest–steppe carbon dynamics, we use a highly resolved, multiproxy, palaeolimnological approach, based on sediment records from Lake Baikal. We reconstruct proxies that are relevant to understanding carbon dynamics including carbon mass accumulation rates (CMAR; g C m?2 yr?1) and isotope composition of organic matter (δ13CTOC). Forest–steppe dynamics were reconstructed using pollen, and diatom records provided measures of primary production from near‐ and off‐shore communities. We used a generalized additive model (GAM) to identify significant change points in temporal series, and by applying generalized linear least‐squares regression modelling to components of the multiproxy data, we address (1) What factors influence carbon dynamics during early Holocene warming and late Holocene cooling? (2) How did carbon dynamics respond to abrupt sub‐Milankovitch scale events? and (3) What is the Holocene carbon storage budget for Lake Baikal. CMAR values range between 2.8 and 12.5 g C m?2 yr?1. Peak burial rates (and greatest variability) occurred during the early Holocene, associated with melting permafrost and retreating glaciers, while lowest burial rates occurred during the neoglacial. Significant shifts in carbon dynamics at 10.3, 4.1 and 2.8 kyr bp provide compelling evidence for the sensitivity of the region to sub‐Milankovitch drivers of climate change. We estimate that 1.03 Pg C was buried in Lake Baikal sediments during the Holocene, almost one‐quarter of which was buried during the early Holocene alone. Combined, our results highlight the importance of understanding the close linkages between carbon cycling and hydrological processes, not just temperatures, in southern Siberian environments.  相似文献   

18.
Several ecological studies and monitoring programs of biodiversity have shown that using fewer collecting methods in biological surveys is more efficient than several redundant ones. However, in an attempt to increase species detection, researchers are still using as many field methods as possible in the surveys of arthropods and other megadiverse groups of invertebrates. The challenge is to reduce the overall time and effort for surveys while still retaining as much information about species richness and assemblage composition as possible. Researchers usually face a trade-off of loosing some information in order to have more efficient surveys. Here we show that more species were obtained in harvestmen surveys using a reduced version of the traditional method of active nocturnal search. We evaluated both the congruence and efficiency of the beating tray, and three versions of active nocturnal search across a tropical forest area in the Amazon basin. As nocturnal search has long been proved to be the most efficient method to capture arachnids, we tested three variations of this method in an attempt to improve harvestmen survey. A total of 2338 individuals of 23 species, in 20 genera and 10 families, were recorded using all methods together. Just one method, the active cryptic nocturnal search, encountered all taxa sampled with the maximum effort (sum of all methods) and data from this method recovered the ecological patterns found by the more intensive methods. Financial costs and time spent sampling and identifying specimens were reduced by 87% when compared to the maximum effort. We suggest that only one method, active cryptic nocturnal search, is the most efficient method to both sample and monitor harvestmen in Amazon tropical forests.  相似文献   

19.
Mass‐flowering crops lead to spatial redistributions of pollinators and to transient shortages within nearby semi‐natural grasslands, but the impacts on plant–pollinator interactions remain largely unexplored. Here, we characterised which pollinator species are attracted by oilseed rape and how this affected the structure of plant–pollinator networks in nearby grasslands. We surveyed 177 networks from three countries (Germany, Sweden and United Kingdom) in 24 landscapes with high crop cover, and compared them to 24 landscapes with low or no oilseed rape during and after crop blooming. On average 55% of grassland pollinator species were found on the crop, which attracted 8–35% of individuals away from grasslands. However, networks in the grasslands were resistant to these reductions, since mainly abundant and highly mobile species were attracted. Nonetheless, simulations indicated that network structural changes could be triggered if > 50% of individuals were attracted to the crop (a value well‐above that found in our study system), which could affect community stability and resilience to further disturbance.  相似文献   

20.
In plant–animal interactions, species are commonly labeled as either mutualists or antagonists, based on the most common, most studied, or most easily observed outcome. Nevertheless, evidence from simple systems comprising 2–4 species suggests that those labels are an oversimplification: individual species often function in both roles, either simultaneously or at different places or times. We include both mutualistic and antagonistic interactions between mammals and seeds in a multilayer network, to explore for the first time the community‐level consequences of the dual roles played by some species. We tested whether negative and positive interactions within a plant–frugivore network are separated into different modules, or whether they overlap due to the presence of frugivores that both kill and disperse seeds. The frugivorous diets of nonvolant small mammals were studied at one dry tropical forest site in southeastern Brazil by analyzing fecal samples from individuals captured in live traps. Seed viability was assessed with a tetrazolium test to determine the outcome of those interactions, as estimated by whether or not seeds survived gut passage. Interactions were analyzed as a weighted multilayer network, subdivided into one potentially mutualistic (live seeds deposited) and one antagonistic (dead seeds deposited) layer. The two layers had similar structure with high overlap between them. Some mammal species exhibited highly central, dual roles, acting both as antagonists and mutualists, in many cases of the same plant species. Dispersal service by most of these small mammals is accompanied by seed destruction, suggesting that the selective pressures exerted by those animals on the plants is much more complex than often assumed. Our results demonstrate that the complexity of plant–frugivore networks can not be fully understood without proper incorporating measures of seed fate following gut passage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号