首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Questions: Which environmental and management factors determine plant species composition in semi‐natural grasslands within a local study area? Are vegetation and explanatory factors scale‐dependent? Location: Semi‐natural grasslands in Lærdal, Sognog Fjordane County, western Norway. Methods: We recorded plant species composition and explanatory variables in six grassland sites using a hierarchically nested sampling design with three levels: plots randomly placed within blocks selected within sites. We evaluated vegetation‐environment relationships at all three levels by means of DCA ordination and split‐plot GLM analyses. Results: The most important complex gradient determining variation in grassland species composition showed a broad‐scale relationship with management. Soil moisture conditions were related to vegetation variation on block scale, whereas element concentrations in the soil were significantly related to variation in species composition on all spatial scales. Our results show that vegetation‐environment relationships are dependent on the scale of observation. We suggest that scale‐related (and therefore methodological) issues may explain the wide range of vegetation‐environment relationships reported in the literature, for semi‐natural grassland in particular but also for other ecosystems. Conclusions: Interpretation of the variation in species composition of semi‐natural grasslands requires consideration of the spatial scales on which important environmental variables vary.  相似文献   

3.
We test whether temporal change in species richness (ΔS [%]) is scale‐dependent, using data on hoverflies from the UK and the Netherlands. We analysed ΔS between pre‐1980 and post‐1980 periods using 5 grid resolutions (10×10, 20×20, 40×40, 80×80 and 160×160 km). We also tested the effect of data quality and of unequal survey periods on ΔS estimates, and checked for spatial autocorrelation of ΔS estimates. Using data from equal survey periods, we found significant increases in hoverfly species richness in the Netherlands at fine scales, but no significant change at coarser scales indicating a decrease in beta diversity. In the UK, ΔS was negative at fine scale, near zero at intermediate scales, and positive at coarse scales, indicating that the degree of spatial beta diversity increased between the time periods. The use of unequal survey periods (using longer periods in the past to compensate for lower survey intensity) tended to inflate past species richness, biasing ΔS estimates downwards. High data quality thresholds sometimes obscured dynamics by reducing sample size, but never reversed trends. There was little spatial autocorrelation of ΔS, implying that local drivers (land use change or environmental noise) are important in dynamics of hoverfly diversity. A second, sample agglomeration approach to measure scaling resulted in greater noise in ΔS, obscuring the NL pattern, while still showing strong evidence of fine‐scale richness loss in the UK. Our results indicate that explicit considerations of spatial (and temporal) scale are essential in studies documenting past biodiversity change, or projecting change into the future.  相似文献   

4.
Questions: Does grazing have the same effect on plant species richness at different spatial scales? Does the effect of spatial scale vary under different climatic conditions and vegetation types? Does the slope of the species‐area curve change with grazing intensity similarly under different climatic conditions and vegetation types? Location: Pastures along a climatic gradient in northeastern Spain. Methods: In zones under different regimes of sheep grazing (high‐, low‐pressure, abandonment), plant species richness was measured in different plot sizes (from 0.01 to 100 m2) and the slope of the species‐area curves was calculated. The study was replicated in five different locations along a climatic gradient from lowland semi‐arid rangelands to upland moist grasslands. Results: Species richness tended to increase with grazing intensity at all spatial scales in the moist upland locations. On the contrary, in the most arid locations, richness tended to decrease, or remain unchanged, with grazing due to increased bare soil. Grazing differentially affected the slope (z) of the species‐area curve (power function S=c Az) in different climatic conditions: z tended to increase with grazing in arid areas and decrease in moist‐upland ones. ß‐diversity followed similar pattern as z. Conclusions: Results confirm that the impact of grazing on plant species richness are spatial‐scale dependent. However, the effects on the species‐area relationship vary under different climatic conditions. This offers a novel insight on the patterns behind the different effects of grazing on diversity in moist vs. arid conditions reported in the literature. It is argued that the effect of spatial scale varies because of the different interaction between grazing and the intrinsic spatial structure of the vegetation. Variations in species‐area curves with grazing along moisture gradients suggest also a different balance of spatial components of diversity (i.e. a‐ and ß‐diversity).  相似文献   

5.
Question: Two questions about within‐stand spatial variability are addressed in this paper. How does species richness of tree regeneration respond to small‐scale ecological gradients, and what effect does natural Abies balsamea abundance have on the species richness of other tree regeneration? Location: A long‐term, gap‐silviculture experiment, Acadian mixed‐wood forest, Maine, USA. Methods: Eight stands treated with and without gap harvesting were sampled to capture sub‐stand heterogeneity of understorey tree regeneration concurrently with patterning of local stand conditions. Spatial and non‐spatial models were developed to test the relationships between two response variables [species richness of small (height ≥0.1 m, but <0.75 m) and large (height ≥0.75 m, but <1.4 m) regeneration] and five explanatory variables (depth to water table, percentage canopy transmittance, A. balsamea regeneration density, and overstorey basal area and species richness). Results: Despite high unexplained variance for all models, consistent associations among variables were found. Negative associations were found between: (1) the species richness of small regeneration and A. balsamea regeneration density and (2) the species richness of large regeneration and overstorey basal area. Positive associations were found between: (1) the species richness of small regeneration and both overstorey basal area and species richness and (2) the species richness of small and large regeneration and canopy transmittance. Conclusions: Promoting tree species diversity in Acadian mixed‐wood stands may not be achievable through the use of gap‐harvesting alone if the density of understorey Abies balsamea is not reduced either naturally or through silvicultural intervention.  相似文献   

6.
The increasing urbanization process is hypothesized to drastically alter (semi‐)natural environments with a concomitant major decline in species abundance and diversity. Yet, studies on this effect of urbanization, and the spatial scale at which it acts, are at present inconclusive due to the large heterogeneity in taxonomic groups and spatial scales at which this relationship has been investigated among studies. Comprehensive studies analysing this relationship across multiple animal groups and at multiple spatial scales are rare, hampering the assessment of how biodiversity generally responds to urbanization. We studied aquatic (cladocerans), limno‐terrestrial (bdelloid rotifers) and terrestrial (butterflies, ground beetles, ground‐ and web spiders, macro‐moths, orthopterans and snails) invertebrate groups using a hierarchical spatial design, wherein three local‐scale (200 m × 200 m) urbanization levels were repeatedly sampled across three landscape‐scale (3 km × 3 km) urbanization levels. We tested for local and landscape urbanization effects on abundance and species richness of each group, whereby total richness was partitioned into the average richness of local communities and the richness due to variation among local communities. Abundances of the terrestrial active dispersers declined in response to local urbanization, with reductions up to 85% for butterflies, while passive dispersers did not show any clear trend. Species richness also declined with increasing levels of urbanization, but responses were highly heterogeneous among the different groups with respect to the richness component and the spatial scale at which urbanization impacts richness. Depending on the group, species richness declined due to biotic homogenization and/or local species loss. This resulted in an overall decrease in total richness across groups in urban areas. These results provide strong support to the general negative impact of urbanization on abundance and species richness within habitat patches and highlight the importance of considering multiple spatial scales and taxa to assess the impacts of urbanization on biodiversity.  相似文献   

7.
Aim Insect biodiversity is often positively associated with habitat heterogeneity. However, this relationship depends on spatial scale, with most studies focused on differences between habitats at large scales with a variety of forest tree species. We examined fine‐scale heterogeneity in ground‐dwelling beetle assemblages under co‐occurring trees in the same subgenus: Eucalyptus melliodora A. Cunn. ex Schauer and E. blakelyi Maiden (Myrtaceae). Location Critically endangered grassy woodland near Canberra, south‐eastern Australia. Methods We used pitfall traps and Tullgren funnels to sample ground‐dwelling beetles from the litter environment under 47 trees, and examined differences in diversity and composition at spatial scales ranging from 100 to 1000 m. Results Beetle assemblages under the two tree species had distinctive differences in diversity and composition. We found that E. melliodora supported a higher richness and abundance of beetles, but had higher compositional similarity among samples. In contrast, E. blakelyi had a lower abundance and species richness of beetles, but more variability in species composition among samples. Main conclusions Our study shows that heterogeneity in litter habitat under co‐occurring and closely related eucalypt species can influence beetle assemblages at spatial scales of just hundreds of metres. The differential contribution to fine‐scale alpha and beta diversity by each eucalypt can be exploited for conservation purposes by ensuring an appropriate mix of the two species in the temperate woodlands where they co‐occur. This would help not only to maximize biodiversity at landscape scales, but also to maintain heterogeneity in species richness, trophic function and biomass at fine spatial scales.  相似文献   

8.
Aims: (1) Understanding how the relationship between species richness and its determinants depends on the interaction between scales at which the response and explanatory variables are measured. (2) Quantifying the relative contributions of local, intermediate and large‐scale determinants of species richness in a fragmented agro‐ecosystem. (3) Testing the hypothesis that the relative contribution of these determinants varies with the grain size at which species richness is measured. Location: A fragmented agro‐ecosystem in the Southern Judea Lowland, Israel, within a desert–Mediterranean transition zone. Methods: Plant species richness was estimated using hierarchical nested sampling in 81 plots, positioned in 38 natural vegetation patches within an agricultural matrix (mainly wheat fields) among three land units along a sharp precipitation gradient. Explanatory variables included position along that gradient, patch area, patch isolation, habitat heterogeneity and overall plant density. We used general linear models and hierarchical partitioning of variance to test and quantify the effect of each explanatory variable on species richness at four grain sizes (0.0625, 1, 25 and 225 m2). Results: Species richness was mainly affected by position along a precipitation gradient and overall plant density, and to a lesser extent by habitat heterogeneity. It was also significantly affected by patch area and patch isolation, but only for small grain sizes. The contribution of each explanatory variable to explained variance in species richness varied with grain size, i.e. scale‐dependent. The influence of geographic position and habitat heterogeneity on species richness increased with grain size, while the influence of plant density decreased with grain size. Main conclusions: Species richness is determined by the combined effect of several scale‐dependent determinants. Ability to detect an effect and effect size of each determinant varies with the scale (grain size) at which it is measured. The combination of a multi‐factorial approach and multi‐scale sampling reveals that conclusions drawn from studies that ignore these dimensions are restricted and potentially misleading.  相似文献   

9.
Aim The role of dispersal in structuring biodiversity across spatial scales is controversial. If dispersal controls regional and local community assembly, it should also affect the degree of spatial species turnover as well as the extent to which regional communities are represented in local communities. Here we provide the first integrated assessment of relationships between dispersal ability and local‐to‐regional spatial aspects of species diversity across a large geographical area. Location Northern Eurasia. Methods Using a cross‐scale analysis covering local (0.64 m2) to continental (the Eurasian Arctic biome) scales, we compared slope parameters of the dissimilarity‐to‐distance relationship in species composition and the local‐to‐regional relationship in species richness among three plant‐like groups that differ in dispersal ability: lichens with the highest dispersal ability; mosses and moss allies with intermediate dispersal ability; and seed plants with the lowest dispersal ability. Results Diversity patterns generally differed between the three groups according to their dispersal ability, even after controlling for niche‐based processes. Increasing dispersal ability is linked to decreasing spatial species turnover and an increasing ratio of local to regional species richness. All comparisons supported our expectations, except for the slope of the local‐to‐regional relationship in species richness for mosses and moss allies which was not significantly steeper than that of seed plants. Main conclusions The negative link between dispersal ability and spatial species turnover and the corresponding positive link between dispersal ability and the ratio of local‐to‐regional species richness support the idea that dispersal affects community structure and diversity patterns across spatial scales.  相似文献   

10.
We explored the small‐scale plant species mobility in a subhumid native grassland subjected to grazing by cattle in south‐western Uruguay. We established four permanent plots of 40 × 40 cm, divided in 16 × 16 cells. In each cell, the presence of species was seasonally recorded for 2 years and annually recorded for 4 years. By nesting the cells, we studied the mobility at different scales, from 6.25 cm2 to 400 cm2. At each scale we measured species richness, cumulative richness and the turnover rates of the dominant species. We found that the cumulative species richness was an increasing power function, with higher accumulation rates with smaller spatial scale. Although species richness showed seasonal fluctuations, the mean species richness was constant during the study period. We detected significant spatio‐temporal variability in mobility patterns among species. Certain species showed a high capacity to colonize new sites, whereas other species rotate among sites that they previously occupied. Grazed communities in Uruguayan Campos are structured as a dense matrix of perennials grasses and forbs, where vegetative propagation is the main form of growth of the species. The small‐scale dynamics and the high variability in the mobility characteristics could be linked with the diversity of growth forms and spatial strategies of the species in this community. We believe that a high degree of small‐scale spatial dynamics contribute to explain the species coexistence and the apparent stability of communities at local scales.  相似文献   

11.
Aim To evaluate the relative importance of water–energy, land‐cover, environmental heterogeneity and spatial variables on the regional distribution of Red‐Listed and common vascular plant species richness. Location Trento Province (c. 6200 km2) on the southern border of the European Alps (Italy), subdivided regularly into 228 3′ × 5′ quadrants. Methods Data from a floristic inventory were separated into two subsets, representing Red‐Listed and common (i.e. all except Red‐Listed) plant species richness. Both subsets were separately related to water–energy, land‐cover and environmental heterogeneity variables. We simultaneously applied ordinary least squares regression with variation partitioning and hierarchical partitioning, attempting to identify the most important factors controlling species richness. We combined the analysis of environmental variables with a trend surface analysis and a spatial autocorrelation analysis. Results At the regional scale, plant species richness of both Red‐Listed and common species was primarily related to energy availability and land cover, whereas environmental heterogeneity had a lesser effect. The greatest number of species of both subsets was found in quadrants with the largest energy availability and the greatest degree of urbanization. These findings suggest that the elevation range within our study region imposes an energy‐driven control on the distribution of species richness, which resembles that of the broader latitude gradient. Overall, the two species subsets had similar trends concerning the relative importance of water–energy, land cover and environmental heterogeneity, showing a few differences regarding the selection of some predictors of secondary importance. The incorporation of spatial variables did not improve the explanatory power of the environmental models and the high original spatial autocorrelation in the response variables was reduced drastically by including the selected environmental variables. Main conclusions Water–energy and land cover showed significant pure effects in explaining plant species richness, indicating that climate and land cover should both be included as explanatory variables in modelling species richness in human‐affected landscapes. However, the high degree of shared variation between the two groups made the relative effects difficult to separate. The relatively low range of variation in the environmental heterogeneity variables within our sampling domain might have caused the low importance of this complex factor.  相似文献   

12.
Abstract. Patterns of β‐diversity in a highly diverse tropical dry forest tree community are described; the contribution of environmental heterogeneity and distance to β‐diversity was assessed. Significant differences in elevation, insolation, slope and soil water holding capacity (p < 0.01), variables related to water availability, were found among 830 m × 100 m transects laid along contrasting slopes of a system of three parallel microbasins. A gradient in elevation and insolation was found within north‐facing transects, among 10 m × 10 m sites; south‐facing transects showed an elevation gradient while crest transects showed a gradient in water holding capacity. In total 119 species were registered, with 27 to 64 species per transect, and 4 to 16 species per site. A large β‐diversity was found among and within transects; two indices of β‐diversity consistently showed a higher β‐diversity within transects than among them. Among transects, 64% of the variance in species composition could be attributed to the environmental variables; an additional 22% to the spatial distribution of sites. Within transects, 42% of the deviance in β‐diversity values was explained by insolation, and 19% by distance. β‐diversity increased with distance and with difference in insolation among sites; north‐facing transects, those with most contrasting insolation conditions, had the steepest increase in β‐diversity with distance. Such increase was clearly associated with changes in species composition, not with changes in species richness.  相似文献   

13.
Patterns of moss and liverwort species diversity — species richness and species turnover (β‐diversity) — in three conifer‐dominated boreal forest stands of northern Alberta, Canada are described. We examined the relationship between bryophyte species diversity and micro‐environment at two sample grains, the microsite — substrate types for moss colonization: logs, stumps, tree bases, undisturbed patches of forest floor (dominated by feather moss species), and disturbed patches of forest floor — and the mesosite (25 m × 25 m plots). Microsite type and properties (e.g. decay class, hardwood vs softwood, pH) were the principal predictors of bryophyte species diversity and not micro‐environment variation among mesosites. Microsite type was the strongest predictor of microsite species richness and β‐diversity was higher among microsites and types and within microsites than among mesosites or stands. Microsite properties were significant predictors of species richness for all microsite types. Log and stump decay classes, influenced also by hardwood vs softwood predicted species richness of woody microsite types and soil pH and moisture predicted species richness of forest floor microsites. β‐diversity was highest for tree bases and disturbed patches of forest floor and lowest for logs. Mesosite β‐diversity was lower than that among microsites, and mesosite species richness was not well explained by measured environmental parameters. Results suggest that in conifer‐dominated boreal stands, species richness of microsites is only negligibly influenced by within‐stand variation at the mesosite grain and that substrate characteristics are the most important predictors of bryophyte species diversity in this ecosystem.  相似文献   

14.
Clonal propagation becomes more abundant with increasing altitudes as environmental conditions worsen. To date, little attention has been paid to the way in which clonal propagation affects genetic diversity and the fine‐scale spatial genetic structure (FSGS) of clonal alpine trees. An AFLP study was undertaken to quantify the clonal and genetic diversity and FSGS of the vulnerable treeline species Polylepis reticulata in Ecuador. We successfully genotyped 32 and 75 ramets within 4 m × 100 m (coarse scale) and 4 m × 4 m (fine scale) transects of one population, respectively. Higher genotypic diversity was detected at the coarse scale than at the fine scale, while lower genetic diversity was detected for P. reticulata than other Polylepis spp. at both scales. Significantly stronger FSGS was detected at the ramet level than the genet level for P. reticulata within a spatial distance of 3 m. The studied P. reticulata population showed pronounced FSGS (Sp = 0.012 at the genet level, a statistic reflecting declining pairwise kinship with distance) revealed restricted gene dispersal, which implies restricted seed dispersal for this population, assuming pollen flow is as extensive as that described for other wind‐pollinated tree species. Our results revealed that clonal diversity is a function of both sample size and the spatial scale of the sampling area. The findings highlights that clonal propagation has affected FSGS within a spatial distance of 3 m for this species.  相似文献   

15.
The hump-shaped relationship between plant species richness and biomass is commonly observed at fine scale for herbaceous vegetation in temperate climates. This relationship predicts that herbaceous species richness is highest at an intermediate level of biomass that corresponds to moderate competition or disturbance. However, this relationship has not previously been investigated in high arid sub-alpine mountain grasslands. We tested the humped-back prediction in the arid Trans-Himalayan mountain grassland with a seasonal grazing system. The study area is located in the bottom of a U-shaped valley, in the Manang district (3500 m a.s.l.). We sampled two hundred plots (1m × 1m) in two different types of pastures: common pasture and old field, which both have similar grazing practices. There was a significant unimodal relationship between species richness and biomass only in the common pasture, and when the two sites were analyzed together. The species turnover is estimated by DCA in standard deviation unit. The turnover was lower in the old field than in the common pasture. The unimodal relationship between plant species richness and biomass did not disappear after accounting for unknown environmental gradients expressed as DCA (detrended correspondence analysis) axes and spatial variables. The species richness is highest at 120 ± 40 g/m2. The results indicate that a hump-shaped relationship is also found in arid Trans-Himalayan grasslands.  相似文献   

16.
Maohua Ma 《应用植被学》2008,11(2):269-278
Question: How does agricultural land usage affect plant species diversity in semi‐natural buffer strips at multiple scales? Location: Lepsämä River watershed, Nurmijärvi, Southern Finland. Methods: Species diversity indicators included both richness and evenness. Plant communities in buffer strips were surveyed in 29 sampling sites. Using ArcGIS Desktop 9.0 (ArcInfo) and Fragstats 3.3 for GIS analysis, the landscape composition around each sampling site was characterized by seven parameters in square sectors at five scales: 4, 36, 100, 196, and 324ha. For each scale, Principle Component Analysis was used to examine the importance of each structural metric to diversity indicators using multiple regression and other simple analyses. Results: For all but the smallest scales (4 ha), two structural metrics including the diversity of land cover types and percentage of arable land were positively and negatively correlated with species richness, respectively. Both metrics had the highest correlation coefficients for species richness at the second largest scale (196 ha). The density of arable field edges between the fields was the only metric that correlated with species evenness for all scales, which had highest predictive power at the second smallest scale (36 ha). Conclusions: Species richness and evenness of buffer strips had scale‐dependent relationships to land use in agricultural ecosystems. The results of this study indicated that species richness depends on the pattern of arable land use at large scales, which may relate to the regional species pool. Meanwhile, species evenness depended on the level of field edge density at small scales, which relates to how the nearby farmland was divided by the edges (e.g. many small‐scale fields with high edge density or a few big‐scale fields with low edge density). This implies that it is important to manage the biodiversity of buffer strips within a landscape context at multiple scales.  相似文献   

17.
Traditional biodiversity metrics operate at the level of a plant community but do not capture spatial variation in diversity from a ‘plant's‐eye view’ of a community. Recently‐developed statistics consider the spatial patterns of plants as well as the number and distribution of species in local plant neighborhoods to quantitatively assess multispecies spatial patterns from a ‘plant's‐eye view’. We used one such statistic, the individual species area relationship (ISAR), to assess spatial patterns of species diversity in a Great Basin (USA) semi‐arid shrubland through an analysis of a spatial dataset on shrub species and locations. In conjunction with appropriate null models, the ISAR blends species area relationships with second‐order spatial statistics to measure the expected species richness in local neighborhoods of variable size around the individuals of a focal species within a community. We found that, contrary to a previous analysis using more traditional methods, the community was well‐mixed with a typical shrub surrounded on average by 4.9 shrub neighbors of 2.1 species at a neighborhood scale of 1.0 m. We also found statistically significant fine‐scale variation in diversity patterns, such that neighborhoods of two species were more diverse than expected by a heterogeneous Poisson null model that accounted for larger‐scale habitat heterogeneity. However, this effect was caused by intraspecific aggregation of these species and was not due to positive interspecific association. Contrary to previous findings in other semi‐arid shrublands, our analysis suggests that the spatial pattern of the shrub community was not significantly structured by interspecific facilitation. This result supports growing evidence for balanced species patterns of adult plants in multispecies communities. Our approach may be used in other communities to describe complex multispecies spatial patterns, quantify species‐specific associations with diversity patterns, and to generate hypotheses regarding relationships between patterns and community‐structuring processes.  相似文献   

18.
We determined the environmental correlates of vascular plant biodiversity in the Baetic‐Rifan region, a plant biodiversity hotspot in the western Mediterranean. A catalog of the whole flora of Andalusia and northern Morocco, the region that includes most of the Baetic‐Rifan complex, was compiled using recent comprehensive floristic catalogs. Hierarchical cluster analysis (HCA) and detrended correspondence analysis (DCA) of the different ecoregions of Andalusia and northern Morocco were conducted to determine their floristic affinities. Diversity patterns were studied further by focusing on regional endemic taxa. Endemic and nonendemic alpha diversities were regressed to several environmental variables. Finally, semi‐partial regressions on distance matrices were conducted to extract the respective contributions of climatic, altitudinal, lithological, and geographical distance matrices to beta diversity in endemic and nonendemic taxa. We found that West Rifan plant assemblages had more similarities with Andalusian ecoregions than with other nearby northern Morocco ecoregions. The endemic alpha diversity was explained relatively well by the environmental variables related to summer drought and extreme temperature values. Of all the variables, geographical distance contributed by far the most to spatial turnover in species diversity in the Baetic‐Rifan hotspot. In the Baetic range, climate was the most significant driver of nonendemic species beta diversity, while lithology and climate were the main drivers of endemic beta diversity. Despite the fact that Andalusia and northern Morocco are presently separated by the Atlantic Ocean and the Mediterranean Sea, the Baetic and Rifan mountain ranges have many floristic similarities – especially in their western ranges – due to past migration of species across the Strait of Gibraltar. Climatic variables could be shaping the spatial distribution of endemic species richness throughout the Baetic‐Rifan hotspot. Determinants of spatial turnover in biodiversity in the Baetic‐Rifan hotspot vary in importance between endemic and nonendemic species.  相似文献   

19.
Questions: What is the observed relationship between plant species diversity and spatial environmental heterogeneity? Does the relationship scale predictably with sample plot size? What are the relative contributions to diversity patterns of variables linked to productivity or available energy compared to those corresponding to spatial heterogeneity? Methods: Observational and experimental studies that quantified relationships between plant species richness and within‐sample spatial environmental heterogeneity were reviewed. Effect size in experimental studies was quantified as the standardized mean difference between control (homogeneous) and heterogeneous treatments. For observational studies, effect sizes in individual studies were examined graphically across a gradient of plot size (focal scale). Relative contributions of variables representing spatial heterogeneity were compared to those representing available energy using a response ratio. Results: Forty‐one observational and 11 experimental studies quantified plant species diversity and spatial environmental heterogeneity. Observational studies reported positive species diversity‐spatial heterogeneity correlations at all points across a plot size gradient from ~1.0 × 10?1 to ~1.0 × 1011 m2, although many studies reported spatial heterogeneity variables with no significant relationships to species diversity. The cross‐study effect size in experimental studies was not significantly different from zero. Available energy variables explained consistently more of the variance in species richness than spatial heterogeneity variables, especially at the smallest and largest plot sizes. Main conclusions: Species diversity was not related to spatial heterogeneity in a way predictable by plot size. Positive heterogeneity‐diversity relationships were common, confirming the importance of niche differentiation in species diversity patterns, but future studies examining a range of spatial scales in the same system are required to determine the role of dispersal and available energy in these patterns.  相似文献   

20.
Lately there has been a shift in Sweden from grazing species‐rich semi‐natural grasslands towards grazing ex‐arable fields in the modern agricultural landscape. Grazing ex‐arable fields contain a fraction of the plant species richness confined to semi‐natural grasslands. Still, they have been suggested as potential target sites for re‐creation of semi‐natural grasslands. We asked to what extent does fine‐scale variation in soil conditions, management history and site location effect local plant diversity in grazed ex‐arable fields. We examined local soil conditions such as texture, pH, organic carbon, nitrogen (N) and extractable phosphate (P) and effects on plant richness in ten pairs of grazed ex‐fields and neighbouring semi‐natural grasslands in different rural landscapes. Each grassland pair where in the same paddock. A multivariate test showed that site location and land use history explained more of differences in species richness than local soil property variables. Plant species richness was positively associated to grazed ex‐fields with low pH, low N and P levels. Sites with high plant richness in semi‐natural grasslands also had more species in the adjacent grazed ex‐fields, compared to sites neighbouring less species‐rich semi‐natural grasslands. Although both soil properties and species richness were different in grazed ex‐fields compared to semi‐natural grassland, the site location within a landscape, and vicinity to species‐rich grasslands, can override effects of soil properties. In conclusion, if properly located, ex‐arable fields may be an important habitat to maintain plant diversity at larger spatio‐temporal scales and should considered as potential sites for grassland restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号