首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid and reproducible method has been developed for the simultaneous isolation of basolateral and brush-border membranes from the rabbit renal cortex. The basolateral membrane preparation was enriched 25-fold in (Na+ + K+)-ATPase and the brush-border membrane fraction was enriched 12-fold in alkaline phosphatase, whereas the amount of cross-contamination was low. Contamination of these preparations by mitochondria and lysosomes was minimal as indicated by the low specific activities of enzyme markers, i.e., succinate dehydrogenase and acid phosphatase. The basolateral fraction consisted of 35–50% sealed vesicles, as demonstrated by detergent (sodium dodecyl sulfate) activation of (Na+ + K+)-ATPase activity and [3H]ouabain binding. The sidedness of the basolateral membranes was estimated from the latency of ouabain-sensitive (Na+ + K+)-ATPase activity assayed in the presence of gramicidin, which renders the vesicles permeable to Na+ and K+. These studies suggest that nearly 90% of the vesicles are in a right-side-out orientation.  相似文献   

2.
Purified lamb kidney Na+, K+-ATPase, consisting solely of the Mτ = 95,000 catalytic subunit and the Mτ~- 44,000 glycoprotein, was solubilized with Triton X-100 and incorporated into unilamellar phospholipid vesicles. Freeze-fracture electron microscopy of the vesicles showed intramembranous particles of approximately 90–100 Å in diameter, which are similar to those seen in the native Na+,K+-ATPase fraction. Digestion of the reconstituted proteins with neuraminidase indicated that the glycoprotein moiety of the Na+,K+-ATPase was asymmetrically oriented in the reconstituted vesicles, with greater than 85% of the total sialic acid directed toward the outside of the vesicles. In contrast, in the native Na+,K+-ATPase fraction, the glycoprotein was symmetrically distributed. Purified glycoprotein was also asymmetrically incorporated into phospholipid vesicles using Triton X-100 and without detergents as described by R. I. MacDonald and R. L. MacDonald (1975, J. Biol. Chem.250, 9206–9214). The glycoprotein-containing vesicles were 500–1000 Å in diameter, unilamellar, and, in contrast to the vesicles containing the Na+,K+-ATPase, did not contain the 90- to 100-Å intramembranous particles. These results indicate that the intramembranous particles observed in the native Na+,K+-ATPase and in the reconstituted Na+,K+-ATPase are not due to the glycoprotein alone, but represent either the catalytic subunit, or the catalytic plus the glycoprotein subunit.  相似文献   

3.
(Na+ + K+)-ATPase activity is demonstrated in plasma membranes from pig mesenteric lymph nodes. After dodecyl sulfate treatment plasma membranes have an 18-fold higher (Na+ + K+)-ATPase activity, while their ouabain-insensitive Mg2+-ATPase is markedly lowered. A solubilized (Na+ + K+)-ATPase fraction, obtained by Lubrol WX treatment of the membranes, has very high specific activity (21μmol Pi/h per mg protein). Concanavalin A has no effect on these partially purified (Na+ + K+)-ATPase, while it inhibits (40%) this activity in less purified fractions which still contain Mg2+-ATPase activity.  相似文献   

4.
Permeability properties of reconstituted rabbit skeletal muscle sarcoplasmic reticulum vesicles were characterized by measuring efflux rates of [3H]inulin, [3H]choline+, 86Rb+, and 22Na+, as well as membrane potential changes using the voltage-sensitive probe, 3,3′-dipentyl-2,2′-oxacarbocyanine. Native vesicles were dissociated with deoxycholate and were reconstituted by dialysis. Energized Ca2+ accumulation was partially restored. About 12 of the reconstituted vesicles were found to be ‘leaky’, i.e., permeable to choline+ or Tris+ but not to inulin. The remaining reconstituted vesicles were ‘sealed’, i.e., impermeable to choline+, Tris+ and inulin. Sealed reconstituted vesicles could be further subdivided according to their K+, Na+ permeability. About 12, previously designated Type I, were readily permeable to K+ and Na+, indicating the presence of the K+, Na+ channel of sarcoplasmic reticulum. The remaining sealed vesicles (Type II) formed a permeability barrier to K+ and Na+, suggesting that they lacked the K+, Na+ channel. These studies show that the K+, Na+ channel of sarcoplasmic reticulum can be solubilized with detergent and reconstituted with retention of activity. Furthermore, our results suggest that part or all of the decreased Ca2+-loading efficiency of reconstituted vesicles may be due to the presence of a significant fraction of leaky vesicles.  相似文献   

5.
The effects of ethanol on physicochemical and enzymatic perturbations of neuronal membranes were examined. Using synaptic plasma membrane (SPM) isolated from cerebral cortex of Sprague-Dawley rats, a biphasic mode of action for ethanol was observed with (Na++K+)-ATPase, but not with Ca2+-ATPase or acetylcholinesterase. (Na++K+)-ATPase was found to be more sensitive to low concentration of sodium deoxycholate treatment than Ca2+-ATPase. A sharp transition break of (Na++K+)-ATPase activity in response to temperature changes was found with SPM preparation. Arrhenius plots of the response also indicated that (Na++K+)-ATPase is more sensitive to temperature changes than Ca2+-ATPase. The fluorescence polarization of TNS-membrane complex decreases as ethanol concentration increases, indicating an increase in membrane fluidity. However, ethanol, at low concentration (<0.3%) appears to elevate TNS fluorescence, but a hhigher concentration (3%) ethanol tends to lower the intensity of maximal emission. The results of this study indicate that ethanol may interact with the synaptic plasma membranes and elicit specific biochemical responses depending on the concentration of the alcohol used.  相似文献   

6.
The effects of deoxycholate, taurocholate and cholate on transport and mucosal ATPase activity have been investigated in the rat jejunum in vivo using closed-loop and perfusion techniques.In the closed-loops, 5 mM deoxycholate selectively inactivated (Na+ + K+)-ATPase, and net secretion of Na+ induced by 2.5 mM deoxycholate was due to reduced lumen to plasma flux of the ion; deoxycholate (2.5 mM) produced marked inhibition of 3-O-methylglucose transport. Luminal disappearance rates of deoxycholate (60.5±2.9 % per g wet wt of gut) greatly exceeded those of taurocholate (4.3±1.0).In the perfusion studies 1 mM deoxycholate induced net secretion of water, Na+ and Cl, and inhibited active glucose transport; concomitantly “total” ATPase, (Na+ + K+)-ATPase, and Mg2+-ATPase were inhibited. At higher concentrations (5 mM) deoxycholate stimulated Mg2+-ATPase activity. Taurocholate and cholate at 1 mM had no effect on transport or (Na+ + K+)-ATPase. Mucosal lactase, sucrase and maltase activities were not affected by 1 mM deoxycholate, taurocholate or cholate.These results suggest that deoxycholate inhibits sodium-coupled glucose transport by inhibition of (Na+ + K+)-ATPase at the lateral and basal membranes of the epithelial cell, rather than from an effect at the brush-border membrane level.  相似文献   

7.
Endogenous phospholipids of a purified (NaK)-ATPase were displaced by exogenous phosphatidyl choline. If vesicles were made from phosphatidyl choline and enzyme containing only phosphatidyl choline, coupled Na+K+ transport could be demonstrated. This transport was inhibitable by ouabain. Therefore, the number of components necessary for Na+K+ transport has been reduced to the purified (NaK)-ATPase and one phospholipid.  相似文献   

8.
Previous work has shown that cholesterol levels are modulated in plasma membranes from some but not all tissues of poikilotherms over the course of temperature change. To gain a better understanding of tissue and membrane domain-specific cholesterol function during thermal adaptation we examined effects of cholesterol on membrane physical properties and (Na+,K+)-ATPase in native and cholesterol-enriched basolateral membranes from kidney and intestine of thermally acclimated trout (Oncorhynchus mykiss). Membrane order (as indicated by fluorescence depolarization studies) is increased, whereas its thermal sensitivity is decreased by elevated cholesterol levels in mem branes with relatively low endogenous amounts of cholesterol (intestinal membranes and renal membranes from cold-acclimated fish). Thermal sensitivities of membrane order in kidney are 1.5-fold higher in native compared with cholesterol-enriched basolateral membranes. For renal plasma membranes, (Na+,K+)- ATPase activity is lowest near the transition between native and surpraphysiological cholesterol levels. Endogenous cholesterol levels (relative to phospholipid contents) in intestinal basolateral membranes from cold-acclimated fish vary more than 1.5-fold; membranes with cholesterol/phospholipid molar ratios of 0.3 have activities of (Na+,K+)-ATPase that are twofold lower than native membranes having a ratio of 0.2. These results suggests that maintenance of cholesterol levels in intestinal basolateral membranes during thermal acclimation may ensure sufficient activity of (Na+,K+)-ATPase. Membrane function in kidney, with its high native cholesterol content, is less likely to be affected by temperature change. Accepted: 21 January 1997  相似文献   

9.
10.
Electrophysiological studies on renal thick ascending limb segments indicate the involvement of a luminal Na+/K+/Cl cotransport system and a K+ channel in transepithelial salt transport. Sodium reabsorption across this segment is blocked by the diuretics furosemide and bumetanide. The object of our study has been to identify in intact membranes and reconstitute into phospholipid vesicles the Na+/K+/Cl cotransporter and K+ channel, as an essential first step towards purification of the proteins involved and characterization of their roles in the regulation of transepithelial salt transport. Measurements of 86Rb+ uptake into membrane vesicles against large opposing KCl gradients greatly magnify the ratio of specific compared to non-specific isotope flux pathways. Using this sensitive procedure, it has proved possible to demonstrate in crude microsomal vesicle preparations from rabbit renal outer medulla two 86Rb+ fluxes. (A) A furosemide-inhibited 86Rb+ flux in the absence of Na+ (K+-K+ exchange). This flux is stimulated by an inward Na+ gradient (Na+/K+ cotransport) and is inhibited also by bumetanide. (B) A Ba2+-inhibited 86Rb+ flux, through the K+ channel. Luminal membranes containing the Na+/K+/Cl cotransporter and K+ channels, and basolateral membranes containing the Na+/K+ pumps were separated from the bulk of contaminant protein by metrizamide density gradient centrifugation. The Na+/K+/Cl cotransporter and K+ channel were reconstituted in a functional state by solubilizing both luminal membranes and soybean phospholipid with octyl glucoside, and then removing detergent on a Sephadex column.  相似文献   

11.
A technique currently used for isolation of brush border membranes from renal and intestinal epithelium that involves vigorous tissue homogenization and sedimentation of non-luminal membranes in the presence of Mg2+ has been adapted to rat liver. Liver plasma membranes so prepared consisted almost exclusively of vesicles by electron microscopy, showed some contamination with endoplasmic reticulum and minimal contamination with mitochondria or Golgi by marker enzymes, were highly enriched in alkaline phosphatase, Mg2+-ATPase, and 5′-nucleotidase activity compared with homogenate, and showed little enrichment in (Na+,K+)-ATPase. Comparison of this enzymatic profile with cytochemical studies localizing (Na+,K+)-ATPase and alkaline phosphatase to the sinusoidal/lateral and canalicular membranes, respectively, suggested that these membranes were predominantly of canalicular origin. They had a lower (Na+ + K+)-ATPase specific activity, lower lipid content, and higher cholesterol to phospholipid molar ratio than a conventional plasma membrane preparation believed to be enriched in canaliculi. Moreover, it was possible to measure movement of d-[3H]glucose into an osmotically sensitive space bounded by these membrane vesicles.  相似文献   

12.
The two major ATPase activities of intact and leaky cardiac membrane vesicles (microsomes) were characterized with respect to ionic activation requirements. The predominant ATPase activity of intact vesicles was (K+ + Ca2+)-ATPase, an enzymic activity localized to sarcoplasmic reticulum, whereas the predominant ATPase activity of leaky, sodium dodecyl sulfate-pretreated vesicles was (Na+ + K+)-ATPase, an enzymic activity localized to sarcolemma. The (K+ + Ca2+)-ATPase activity was stimulated 4- to 5-fold by 100 mM K+ in the presence of 50 μM Ca2+. Phosphorylation of the (K+ + Ca2+)-ATPase of intact vesicles with [γ-32P]ATP was Ca2+ dependent, and monovalent cations including K+ increased the level of [32P]phosphoprotein by up to 50% when phosphorylation was measured at 5°C. After the intact vesicles were treated with SDS (0.30 mg/ml), (K+ + Ca2+)-ATPase was inactivated, as was Ca2+-dependent 32P incorporation. The monovalent cation-stimulated ATPase activity of the particulate residue (SDS-extracted membrane vesicles) displayed the usual characteristics of ouabain-sensitive (Na+ + K+)-ATPase and the activity was increased 9- to 14-fold over the small amount of patent (Na+ + K+)-ATPase activity of intact membrane vesicles. 32P incorporation by the (Na+ + K+)-ATPase of SDS-extracted vesicles was Na+ dependent, and Na+-stimulated incorporation was increased 7- to 9-fold over that of intact vesicles.Slab gel polyacrylamide electrophoresis of both intact and SDS-extracted crude vesicle preparations revealed at least 40 distinct Coomassie Blue-positive protein bands and provided evidence for a possible heterogeneous membrane origin of the vesicles. Periodic acid-Schiff staining of the gels revealed at least two major glycoproteins. Simultaneous electrophoresis of the 32P-intermediates of the (K+ + Ca2+)-ATPase and the (Na+ + K+)-ATPase in the same gels did not resolve the two enzymes clearly. With sucrose gradient centrifugation of intact membrane vesicles, it was possible to physically resolve the two ATPase activities. Latent (Na+ + K+)-ATPase activity (unmasked by exposing the various fractions to SDS) was found in the higher regions of the gradient, whereas (K+ + Ca2+)-ATPase activity was primarily in the denser regions. A reasonable interpretation of the data is that cardiac microsomes consist of membrane vesicles derived both from sarcolemma and sarcoplasmic reticulum. (Na+ + K+)-ATPase is localized to intact vesicles of sarcolemma but is mainly latent, whereas (K+ + Ca2+)-ATPase is mostly patent and is localized to vesicles of sarcoplasmic reticulum.  相似文献   

13.
The ATP phosphohydrolase (ATPase) activity of a corn (Zea mays L., WF9 × Mo17) root plasma membrane fraction was enriched almost 2-fold by selective extraction with 0.1% (w/v) deoxycholate. The detergent treatment solubilized about 30% of the total membrane protein and some ATP hydrolyzing activity that was not K+-stimulated, but the major portion of the ATPase activity could be pelleted with membranes. The properties of the ATPase associated with the detergent-extracted plasma membrane fraction were similar to those for the ATPase of the untreated plasma membrane fraction with respect to substrate specificity, pH optimum, kinetics with MgATP, ion stimulation, and inhibitor sensitivity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed only minor differences in protein composition resulting from the detergent treatment.

The plasma membrane fraction from corn roots contained an endogenous protein kinase activity. This was shown by the time course of phosphate incorporation and by the labeling of a number of protein bands on SDS-polyacrylamide gel electrophoresis. The deoxycholate treatment removed measurable protein kinase activity and allowed the demonstration of a rapidly turning over covalent phosphorylated intermediate associated with the detergent-extracted plasma membrane fraction. The phosphorylated intermediate was present as a 100,000 dalton polypeptide and may represent the catalytic subunit of the plasma membrane K+-ATPase.

  相似文献   

14.
Effects of commonly used purification procedures on the yield and specific activity of (Na+ + K+)-ATPase (Mg2+-dependent, Na+ + K+-activated ATP phosphohydrolase, EC 3.6.1.3), the turnover number of the enzyme, and the kinetic parameters for the ATP-dependent ouabain-enzyme interaction were compared in canine brain, heart and kidney. Kinetic parameters were estimated using a graphical analysis of non-steady state kinetics. The protein recovery and the degree of increase in specific activity of (Na+ + K+)-ATPase and the ratio between (Na+ + K+)-ATPase and Mg2+-ATPase activities during the successive treatments with deoxycholate, sodium iodide and glycerol were dependent on the source of the enzyme. A method which yields highly active (Na+ + K+)-ATPase preparations from the cardiac tissue was not suitable for obtaining highly active enzyme preparations from other tissues. Apparent turnover numbers of the brain (Na+ + K+)-ATPase preparations were not significantly affected by the sodium iodide treatment, but markedly decreased by deoxycholate or glycerol treatments. Similar glycerol treatment, however, failed to affect the apparent turnover number of cardiac enzyme preparations. Cerebral and cardiac enzyme preparations obtained by deoxycholate, sodium iodide and glycerol treatments had lower affinity for ouabain than renal enzyme preparations, primarily due to higher dissociation rate constants for the ouabain enzyme complex. This tissue-dependent difference in ouabain sensitivity seems to be an artifact of the purification procedure, since less purified cerebral or cardiac preparations had lower dissociation rate constants. Changes in apparent association rate constants were minimal during the purification procedure. These results indicate that the presently used purification procedures may alter.  相似文献   

15.
We studied the possible use of the detergent Brij 58 in physiological experiments for the reorientation of right-side-out plasmalemmal vesicles, which were isolated from wheat (Triticum aestivum L.) coleoptiles. The activities of K+, Mg2+-ATPase and the ATP-dependent H+-potential were higher in Brij 58-treated vesicles, whereas membrane permeability for K+ and Na+ remained unchanged. Brij 58 did not suppress the ATP-dependent IAA transport into vesicles and RNA polymerase II activation by IAA–protein plasmalemmal complexes in the system of isolated nuclei. The conclusion was that, using Brij 58, we could obtain the plasmalemmal fraction, which consisted almost completely of closed inverted vesicles. These vesicles can be applied for the in vitro study of the processes, which occur on the cytosolic plasmalemmal surface.  相似文献   

16.
Summary Human erythrocyte Ca2+-translocating ATPase was solubilized from calmodulin-depleted membranes using the detergent Triton X-100, and subsequently purified by calmodulin-affinity chromatography. The purified enzyme was reconstituted in artificial phospholipid vesicles using a cholate-dialysis method and various phospholipids. The reconstituted enzyme was able to translocate Ca2+ inside the vesicles, both in the absence and in the presence of the Ca2+-chelating agent, oxalate, inside the vesicles. The tightness of coupling between ATP hydrolysis and cation translocation was investigated by the use of different ionophoretic compounds. The efficiency of Ca2+ translocation was measured by the ability of the ionophores to stimulate ATP hydrolytic activity of the reconstituted enzyme. It was found that the maximum stimulation of the ATP hydrolytic activity was induced by the electroneutral Ca2+/2H+ ionophore A23187 (9 to 10-fold). A Ca2+ ionophore unable to translocate H+, CYCLEX-2E, was less efficient in stimulating the activity of the reconstituted enzyme (two- to threefold). However, the combined addition of CYCLEX-2E plus protonophores further increased the ATP hydrolytic activity (around fourfold), whereas, the protonophores did not further stimulate ATP hydrolysis in the presence of A23187. Furthermore, in the absence of Ca2+ ionophore, the electroneutral K+(Na+)/H+ ionophoretic exchanger, nigericin, or the electroneutral Na+(K+)/H+ ionophoretic exchanger, monensin, stimulated the rate of ATP hydrolysis in the reconstituted enzyme two- or threefold, respectively. These results suggest that the Ca2+-ATPase not only translocates Ca2+ but also H+ in the opposite direction.  相似文献   

17.
Frozen aqueous suspensions of partially purified membrane-bound renal (Na+ + K+)-ATPase have been irradiated at –135°C with high-energy electrons. (Na+ + K+)-ATPase and K+-phosphatase activities are inactivated exponentially with apparent target sizes of 184 ± 4 kDa and 125 ± 3 kDa, respectively. These values are significantly lower then found previously from irradiation of lyophilized membranes. After reconstitution of irradiated (Na+ + K+)-ATPase into phospholipid vesicles the following transport functions have been measured and target sizes calculated from the exponential inactivation curves: ATP-dependent Na+?K+ exchange, 201 ± 4 kDa; (ATP + Pi)-activated Rb+?Rb+ exchange, 206 ± 7 kDa and ATP-independent Rb+?Rb+ exchange, 117 ± 4 kDa. The apparent size of the α-chain, judged by disappearance of Coomassie stain on SDS-gels, lies between 115 and 141 kDa. That for the β-glycoprotein, though clearly smaller, could not be estimated. We draw the following conclusions: (1) The simplest interpretation of the results is that the minimal functional unit for (Na+ + K+)-ATPase is αβ. (2) The inactivation target size for (Na+ + K+)-dependent ATP hydrolysis is the same as for ATP-dependent pumping of Na+ and K+. (3) The target sizes, for K+-phosphatase (125 kDa) and ATP-independent Rb+?Rb+ exchange (117 kDa) are indistinguishable from that of the α-chain itself, suggesting that cation binding sites and transport pathways, and the p-nitrophenyl phosphate binding site are located exclusively on the α-chain. (4) ATP-dependent activities appear to depend on the integrity of an αβ complex.  相似文献   

18.
A procedure is described for isolating plasma, smooth and other cellular membranes from hypotonically lysed protoplasts of the marine diatom, Nitzschia alba. From starting material of approximately 10 g wet weight (1010 cells), about 168 mg (organic weight) of a membrane-enriched fraction, exclusive of mitochondria, is obtained by differential centrifugation. From this, six membrane fractions are separated on a discontinuous sucrose gradient by isopycnic centrifugation.The plasma membranes, from the density region 1.23-1.29 g/cc, consist of small vesicles and sheets. They are purified approximately 20-fold, based on the increase in specific activity of a (Na+-K+-Mg2+)-ATPase, an enzyme found predominantly in these membranes. They also contain the highest specific and total activity of a (Mg2+)-ATPase and, in addition, are distinguished chemically by their high sterol specific content and high molar ratio of sterol/phospholipid (0.792-0.854). The carbohydrate/ protein ratio (0.070-0.072) is appreciably lower than that of the smooth membranes.The smooth membranes separate into two distinct fractions, a light and heavy component, which occur at the top of the sucrose gradient in densities of 1.13 and 1.18 g/cc, respectively. Both fractions are composed of relatively large membrane vesicles and membrane sheets and are distinguished from other membrane fractions by an exceptionally high carbohydrate/protein ratio (0.194-0.294).The light component shows the highest specific content of lipid, phospholipid, neutral lipid, carbohydrate, sialic acid, and RNA, and the highest specific activity of NADPH cytochrome c reductase, 5′-nucleotidase and phosphodiesterase compared to the other five fractions. It shows the lowest Na+ plus K+ stimulation of the (Mg2+)-ATPase. This fraction is probably enriched in endoplasmic reticulum.The heavy component contains some Golgi-like vesicles, sacs and tubules. It is characterized by the highest total content of chemical constituents analyzed, with the exception of RNA, and by the highest specific activity of thiamine pyrophosphatase, uridine diphosphatase, acid and alkaline phosphatase, and glucose-6-phosphatase, suggesting that this component is enriched in Golgi membranes approximately 13-fold.A most striking feature of these diatom membranes is the presence in all fractions of (Mg2+)-ATPase activity which is stimulated 5- to 10-fold by the presence of equimolar Na2+ plus K+. The data clearly differentiate these membrane fractions from each other as well as from membranes prepared from animal cells.  相似文献   

19.
Summary The (Na++K+)-ATPase of garfish olfactory nerve axon plasma membrane was purified about sixfold by treatment of the membrane with sodium dodecyl sulfate followed by sucrose density gradient centrifugation. The estimated molecular weights of the two major polypeptide components of the enzyme preparation on sodium dodecyl sulfate gels were 110,000 and 42,000 daltons, which were different from those of the corresponding peptides of rabbit kidney (Na++K+)-ATPase. No carbohydrate was detected in the 42,000-dalton component either by the periodic acid-Schiff reagent or by the more sensitive concanavalin A-peroxidase staining procedure. The molecular properties of the garfish (Na++K+)-ATPase, such as theK m for ATP, pH optimum, energies of activation, Na and K ion dependence and vanadium inhibition, were, however, similar to those of the kidney enzyme.The partially purified garfish (Na++K+)-ATPase was reconstituted into phospholipid vesicles by a freeze-thaw-sonication procedure. The reconstituted enzyme was found to catalyze a time and ATP dependent22Na+ transport. The ratio of22Na+ pumped to ATP hydrolyzed was about 1; under the same reconstitution and assay conditions, eel electroplax (Na++K+)-ATPase, however, gave a22Na+ pumped to ATP hydrolyzed ratio of nearly 3.  相似文献   

20.
A heat-labile, non-dialysable and protease-sensitive endogenous activator (NaAF) capable of stimulating the Na+, K+-ATPase system has been demonstrated. The activator (NaAF) activity was partially enriched (about 10 fold) by dialysis (30 kDa cutoff) under negative pressure and pH 4.8 precipitation. The NaAF has been found to occur in the cytosolic fractions of tissues such as the kidney and brain from two different species (rabbit and pig) tested so far. Also, the factor from one tissue stimulates with equal efficacy the Na+, K+-ATPase systems of other tissues regardless of the species; thus demonstrating universal nature of the activator. Some degree of cross-reactivity was noted between the activating effects of this activator (for the Na+,K+-ATPase) and that for the H+,K+-ATPase recently described (J. Biol. Chem. 262:5664–5670, 1987). The purified NaAF obtained from sephacryl S-300 column chromatography activates the pure renal medullary Na+,K+-ATPase in a dose dependent manner.A preliminary account of this work was published in Fed. Proc. 46(4): 4466, 1987  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号