首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of membrane-impermeable sulfhydryl reagents on glucose-specific enzyme II (EIIGlc) activity has been studied in Salmonella typhimurium whole cells and in properly sealed inverted cytoplasmic membrane vesicles. Glutathione N-hexylmaleimide and N-polymethylenecarboxymaleimides inactivate methyl alpha-D-glucopyranoside (alpha-MeGlc) transport and phosphorylation in whole cell preparations at a dithiol that can be protected by oxidizing reagents, trivalent arsenicals, or phosphorylation of EIIGlc. Accessibility to this activity-linked site is restricted to small apolar reagents or to polar reagents with a hydrophobic spacer between the polar group and the reactive maleimide moiety. These same reagents inactivate alpha-MeGlc phosphorylation in inverted cytoplasmic membrane vesicles. Inhibition results from reaction at a dithiol that can be protected by nonpermeant mercurials, oxidants, and arsenicals as well as by phosphorylation of EII. The characteristics of this site are virtually identical with those of the activity-linked dithiol elucidated in intact cells. No evidence could be found for a second activity-linked site on the other side of the membrane when the permeable reagent N-ethylmaleimide was used. Since only one activity-linked dithiol can be detected with sealed inverted membrane vesicles or intact cells and it is accessible to membrane-impermeable sulfhydryl reagents from both sides of the cytoplasmic membrane, we suggest that it is located in a channel constructured by the carrier and that the channel spans the membrane. A second dithiol, not essential for activity, is located near the outer surface of the cytoplasmic membrane.  相似文献   

2.
The water permeability of human erythrocytes has been monitored by nuclear magnetic resonance (NMR) before and after treatment of the cells with various sulfhydryl reagents. Preincubation of the cells with N-ethylmaleimide (NEM), a non-inhibitory sulfhydryl reagent, results in a faster and more sensitive inhibition of water exchange by mercurials. The inhibition of water exchange by p-chloromercuribenzene sulfonate (PCMBS) was maximal at a binding of approximately 10 nmol PCMBS per mg protein when non-specific sulfhydryl groups are blocked by NEM. Inhibition by PCMBS has been correlated with the binding of 203Hg to erythrocyte membrane proteins. A significant binding of label to band 3 and the polypeptides in band 4.5 occurs, with approximately 1 mol of mercurial bound per mol of protein. Inhibition of water transport by sulfhydryl reagents does not induce major morphological changes in the cells as assessed by freeze-fracture and scanning electron microscopy.  相似文献   

3.
Incubation of [3H]palmitic acid, ATP, and CoA with inside-out membrane vesicles prepared from human or other mammalian red cells resulted in nearly exclusive 3H-palmitoylation of the Mr = 32,000 Rh polypeptides. [3H]Palmitic, [3H]myristic, and [3H]oleic acids were comparably esterified onto Rh polypeptides in inside-out membrane vesicles in the presence of ATP and CoA, although [3H]palmitic acid was preferentially incorporated by intact human red cells. Experiments using sulfhydryl reagents or tryptic digestions suggested that multiple sulfhydryl groups on the Rh polypeptides located near the cytoplasmic leaflet of the lipid bilayer were 3H-palmitoylated; the exofacial sulfhydryl group essential for Rh antigenic reactivity was not 3H-palmitoylated. Transfer of fatty acid from [14C]palmitoyl-CoA to sites on the Rh polypeptides occurred even after previous incubation of inside-out membrane vesicles at 95 degrees C or after solubilization of inside-out membrane vesicles in Triton X-100. Hydrodynamic analyses of Triton X-100-solubilized membranes surprisingly demonstrated that 3H-palmitoylated Rh polypeptides behaved as a protein of apparent Mr = 170,000. These in vitro studies suggest that palmitoylation of Rh polypeptides occurs within a macromolecular complex by a highly selective but possibly nonenzymatic mechanism.  相似文献   

4.
Inhibition experiments employing sulfhydryl binding and sulfhydryl oxidizing reagents showed the presence of essential thiol groups in the chitinolytic system of Clostridium 9.1. Inhibition of fermentation by membrane-impermeable reagents was relieved upon addition of excess reductant, suggesting the involvement of essential thiol groups in sugar transport activity. The chitinolytic system and the fermentation of the bacterium appeared relatively insensitive to oxygen.  相似文献   

5.
The molecular characteristics of thiamin (T) transport were studied in the small intestinal and renal brush border membrane vesicles of rats, using [(3)H]T at high specific activity. The effects of various chemical modifiers (amino acid blockers) on T uptake were examined and their specificity assessed. Treatment with the carboxylic specific blockers 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate, (1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide hydrochloride and N-ethyl-5-phenylisoaxolium-3'-sulfonate (Woodward's Reagent K) and with the sulfhydryl specific blocker p-chloromercuribenzene sulfonate inhibited T transport in both types of vesicles. Phenylglyoxal, but not ninhydrin, both reagents for arginine residues, and diethylpyrocarbonate, a reagent for histidine residues, specifically decreased T transport only in renal and small intestinal vesicles respectively. Similarly 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole reacted, but not N-acetylimidazole, both of which are reagents for tyrosine residues. However, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole inhibition was aspecific. Acetylsalicylic acid, a reagent for lysine and serine residues, decreased T transport, but the lysine effect was aspecific. Acetylsalicylic acid serine blockage also eliminated T/H(+) exchange in small intestinal vesicles. Taken together, these results suggest that for T transport carboxylic and sulfhydryl groups and serine residues are essential in both renal and small intestinal brush border membrane vesicles. In addition, arginine and histidine residues are also essential respectively for renal and small intestinal transporters. Serine was essential for the T/H(+) antiport mechanism.  相似文献   

6.
S H Lee  N S Cohen  A J Jacobs  A F Brodie 《Biochemistry》1979,18(11):2232-2239
Membrane vesicles from Mycobacterium phlei contain carrier proteins for proline, glutamine, and glutamic acid. The transport of proline is Na+ dependent and required substrate oxidation. A proline carrier protein was solubilized from the membrane vesicles by treatment with cholate and Triton X-100. Electron microscopic observation of the detergent-treated membrane vesicles showed that they are closed structures. The detergent-extracted proteins were purified by means of sucrose density gradient centrifugation, followed by gel filtration and isoelectric focusing. A single protein with a molecular weight of 20,000 +/- 1000 was found on polyacrylamide gel electrophoresis. Reconstitution of proline transport was demonstrated when the purified protein was incubated with the detergent-extracted membrane vesicles. This reconstituted transport system was specific for proline and required substrate oxidation and Na+. The purified protein was also incorporated into liposomes, and proline uptake was demonstrated when energy was supplied as a membrane potential introduced by K+ diffusion via valinomycin. The uptake of proline was Na+ dependent and was inhibited by uncoupler or by sulfhydryl reagents.  相似文献   

7.
The (Ca2+ + Mg2+)-adenosine triphosphatase (ATPase) of sarcoplasmic reticulum contains a cysteine residue at position 12 of its sequence. This sulfhydryl group was 1 out of a total of 10-11 that were labeled by treatment of sarcoplasmic reticulum vesicles with N-[3H]ethylmaleimide under saturating conditions. This was shown by isolating a 31-residue NH2-terminal peptide from a tryptic digest of the succinylated ATPase, prepared from N-[3H]ethylmaleimide-labeled vesicles. Reaction of the vesicles with glutathione maleimide, parachloromercuribenzoic acid, or parachloromercuriphenyl sulfonic acid, membrane-impermeant reagents, prevented further reaction of sulfhydryl groups with N-ethylmaleimide. This result indicates that all sulfhydryl groups that are reactive with N-ethylmaleimide are on the outside of the vesicles. Since Cys12 is located in a hydrophilic NH2-terminal portion of the ATPase, the labeling results suggest that the NH2 terminus of the ATPase is on the cytoplasmic side of the membrane. These results are consistent with earlier observations (Reithmeier, R. A. F., de Leon, S., and MacLennan, D. H. (1980) J. Biol. Chem. 255, 11839-11846) that the (Ca2+ + Mg2+)-ATPase is synthesized without an NH2-terminal signal sequence.  相似文献   

8.
Glycine transporter from rat brain stem and spinal cord is inactivated by specific sulfhydryl reagents. Modification of lysine residues also promotes a decrease of the transporter activity but in a lesser extent than that promoted by thiol group reagents. Mercurials showed a more marked inhibitory effect than maleimide derivatives. SH groups display a similar reactivity for p-chloromercuribenzenesulfonate (pCMBS) and mersalyl in synaptosomal membrane vesicles and proteoliposomes reconstituted with the solubilized transporter. However, different reactivity is observed with N-ethylmaleimide (MalNEt), the greatest effect being attained in membrane vesicles. The rate of inactivation by pCMBS and MalNEt is pseudo-first-order showing time- and concentration-dependence. pCMBS and MalNEt decrease the Vmax for glycine transport and to a lesser extent act on the apparent Km. Treatment with dithiothreitol (DTT) of the transporter modified by pCMBS results in a complete restoration of transporter activity indicating that the effect exercised by the reagent is specific for cysteine residues on the protein. It is concluded that SH groups are involved in the glycine transporter function and that these critical residues are mostly located in a relatively hydrophilic environment of the protein.  相似文献   

9.
The changes in water diffusion across human erythrocyte membranes following exposure to various inhibitors and proteolytic enzymes have been studied on isolated erythrocytes suspended in isotonic buffered solutions. An important issue was to investigate whether the sulfhydryl reacting reagents that have been applied in osmotic experiments showed similar effects on diffusional permeability. It was found that mercurials, including mersalyl, were the only sulfhydryl reacting reagents that were efficient inhibitors. Under optimal conditions a similar degree of inhibition (around 45%) was found with all mercury-containing sulfhydryl reagents. Other reagents, including the sulfhydryl reagent DTNB, phloretin, or H2DIDS, the specific inhibitor of the anion transport system in erythrocyte membrane, did not appear to inhibit significantly the diffusional permeability. No changes in water diffusion were noticed after exposure to erythrocytes to trypsin and chymotrypsin. A new kind of experiments was that in which the effects of exposure of erythrocytes to two or more agents were studied. It was found that none of the chemical manipulations of membranes that did not affect water diffusion hampered the inhibitory action of mercurials. These findings show that the SH groups involved in water diffusion across erythrocyte membrane do not react with any of the other SH reagents aside from mercurials and that the molecular mechanism of water transport is not affected by chymotryptic cleavage of band 3 protein into the 60 and 35 kD fragments. The NMR method appears as a useful tool for studying changes in water diffusion in erythrocyte membranes following various chemical manipulations of the membranes with the aim of locating the water channel.  相似文献   

10.
The effects of tyrosine- and sulfhydryl-specific reagents on the Na+-dependent transport of phosphate in brush border membrane vesicles prepared from rat renal cortex were investigated. This study is the first to show that the tyrosine-specific reagents 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and tetranitromethane inactivate the transporter in a concentration- and time-dependent fashion while the membrane impermeant tyrosine reagent, N-acetylimidazole, has no effect on phosphate uptake. The membrane permeant sulfhydryl reagent N-ethylmaleimide also caused a time- and concentration-dependent inactivation of this transport process but the membrane impermeant reagents 7-chloro-4-sulfobenzo-2-oxa-1,3-diazole and eosin-5-maleimide had little effect on phosphate uptake. The inhibitory effects of both tyrosine- and sulfhydryl-specific reagents were additive, but no protection from inactivation by tyrosine-specific reagents could be achieved by preincubation of the vesicles with the substrates of the transporter or with competitive inhibitors of the transport process. These results suggest that the amino acids modified by these agents are located either within the membrane or on the cytosolic surface of the transporter. These residues may not participate in substrate binding, but may be important for the conformational change of the transporter necessary for the translocation of phosphate across these membranes. This study also shows that Na+-dependent phosphate transport can be inactivated by other reagents which covalently modify histidine, carboxyl, and amino groups on proteins.  相似文献   

11.
Membrane-walls from Gaffkya homari require a specific interrelationship between membrane and wall that functions in the incorporation of nascent peptidoglycan into the preexisting peptidoglycan of the wall. Two different methods were used to inhibit selectively this incorporation process: (i) sensitivity to sulfhydryl reagents and (ii) heat inactivation. Of the sulfhydryl reagents tested, 2.2 mM iodoacetamide inhibited the synthesis of wall peptidoglycan 50%, whereas greater than 100 mM was required to inhibit the synthesis of sodium dodecyl sulfate (SDS)-soluble peptidoglycan. Heat treatment at 37 degrees C (t 1/2 = 5.7 min) inhibited wall peptidoglycan synthesis without affecting SDS-soluble peptidoglycan synthesis. Inhibition of LD-carboxypeptidase by iodoacetamide and heat gave 50% inhibition and t 1/2 values similar to those observed for the incorporation process. Thus, it is suggested that the LD-carboxypeptidase may be one of the enzymes responsible for the sulfhydryl sensitivity and heat lability and that this enzyme may play a role in the relationship between membrane and wall in G. homari.  相似文献   

12.
Summary A brief review of the data relating the glucose transport system and other membrane functions of red cells to surface sulfhydryl groups is presented. The effect of a variety of sulfhydryl reagents on glucose efflux rates from loaded red cells was studied. Neither iodoacetate nor iodoacetamide at 5mm inhibited efflux. Several maleimide derivatives and disulfides inhibited efflux in 0.7 to 2.0mm concentrations. Organomercury compounds, on the other hand, were active in the 0.07 to 0.1mm range. These data suggest that, if sulfhydryl groups are important in the glucose efflux process, they are not equally accessible to the above reagents; and that the primary effect of these reagents may be on structural elements near membrane sulfhydryl groups.  相似文献   

13.
Both inactivation of sulfobromophthalein transport in rat liver plasma membrane vesicles by sulfhydryl group reagents and subsequent reactivation by 2-mercaptoethanol are shown to be modulated by ligands to bilitranslocase. In particular, bilirubin, sulfobromophthalein and Thymol blue behave as negative effectors in the inactivation reaction and as positive effectors in the reactivation reaction. Kinetic data provide further evidence of the existence of two classes of sulfhydryl groups involved in transport activity. The effect brought about by remarkably low concentrations of bilirubin is in line with the physiological function of bilitranslocase as a bilirubin carrier.  相似文献   

14.
The sulfate transport in AH-66 hepatoma ascites cells was examined under various controlled conditions using 35SO42- as a tracer. The sulfate efflux rate was dependent on temperature, pH and anion species of the cell suspending medium. The efflux rate became saturated as the concentration of extracellular anions was increased. The efflux of anion was inhibited by some chemical reagents specifically reactive with amino or sulfhydryl groups. The results obtained in this study suggest that sulfate anions were transported by a facilitated transport system(s), and that some membrane protein(s) is involved in the anion transport system(s) of AH-66 cells. Both amino and sulfhydryl groups are thought to play a determinant role at the sulfate transport site in AH-66 cells.  相似文献   

15.
The molecular characteristics of thiamin (T) transport were studied in the small intestinal and renal brush border membrane vesicles of rats, using [3H]T at high specific activity. The effects of various chemical modifiers (amino acid blockers) on T uptake were examined and their specificity assessed. Treatment with the carboxylic specific blockers 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate, (1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide hydrochloride and N-ethyl-5-phenylisoaxolium-3′-sulfonate (Woodward’s Reagent K) and with the sulfhydryl specific blocker p-chloromercuribenzene sulfonate inhibited T transport in both types of vesicles. Phenylglyoxal, but not ninhydrin, both reagents for arginine residues, and diethylpyrocarbonate, a reagent for histidine residues, specifically decreased T transport only in renal and small intestinal vesicles respectively. Similarly 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole reacted, but not N-acetylimidazole, both of which are reagents for tyrosine residues. However, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole inhibition was aspecific. Acetylsalicylic acid, a reagent for lysine and serine residues, decreased T transport, but the lysine effect was aspecific. Acetylsalicylic acid serine blockage also eliminated T/H+ exchange in small intestinal vesicles. Taken together, these results suggest that for T transport carboxylic and sulfhydryl groups and serine residues are essential in both renal and small intestinal brush border membrane vesicles. In addition, arginine and histidine residues are also essential respectively for renal and small intestinal transporters. Serine was essential for the T/H+ antiport mechanism.  相似文献   

16.
A series of amphiphilic polymethylenecarboxymaleimides has been synthesized for use as sulfhydryl reagents applicable to membrane proteins. Physical properties of the compounds which are relevant to their proposed mode of action have been determined. By comparing rates of reaction in aqueous and aprotic solvents, the compounds have been shown to react exclusively with the thiolate ion. The effects of the reagents on three membrane-associated proteins are reported, and in two cases a comparative study has been made of the effects on the proteins in the absence of membranes. A mechanism is proposed whereby the reagents are anchored at the lipid/water interface by the negatively charged carboxyl group, thus siting the reactive maleimide in a plane whose depth is defined by the length of the reagent. Supporting evidence for this model is provided by the inability of the reagents to traverse membranes, and variation of their inhibitory potency with chain length when the proteins are embedded in the membrane, but not when extracted into solution. As examples of general use of the reagents to probe sulfhydryl groups in membrane proteins, the reagents have been used to (a) determine the depths in the membrane at which two populations of sulfhydryl groups occur in the mitochondrial phosphate transporter; (b) locate a single sulfhydryl associated with the active site ofD--hydroxybutyrate dehydrogenase in the inner mitochondrial membrane; (c) examine sulfhydryl groups in theD-3-glyceraldehyde phosphate dehydrogenase associated with the human red blood cell membrane.  相似文献   

17.
Four amino acid dicarboxylic amphiphiles which contain cysteine or homocysteine were synthesized. Each forms synthetic bilayer membranes upon hydration. Extensive sonication above the lipid phase transition temperature, 61 to 82 degrees C, produced 1000 A diameter vesicles. Treatment of the vesicles with water-soluble carbodiimides during and after sonication induced oligopeptide formation at the vesicle surface with retention of vesicle size and shape. Size exclusion chromatography indicates the products are predominantly di- to decapeptides. The permeability characteristics of the amino acid and peptide vesicles to [3H]glucose and 6-carboxyfluorescein are reported. The amino acid vesicles are among the least permeable nonpolymerized bilayer vesicles described in the literature to date. Formation of the peptide vesicles increases the membrane permeability, whereas in other polymerizable lipid vesicles the permeability decreases upon polymerization. The amino acid vesicles can be immobilized on Sephadex beads by reaction with carbodiimide. The impermeability, biodegradability, and ease of immobilization make this class of vesicles attractive materials for the encapsulation of reagents.  相似文献   

18.
Inhibition of lectin-induced lymphocyte activation by five reagents capable of combining with or oxidizing free sulfhydryl groups was examined. Each of the reagents tested was capable of inhibiting [methyl-3H]thymidine or [14C]uridine incorporation into trichloroacetic acid-insoluble material. Four of these reagents, iodoacetamide and N-ethylmaleimide (alkylating agents) and 5,5′-dithiobis (2-nitrobenzoic acid) and p-hydroxymercuriphenylsulfonic acid (sulfhydryl binding agents), inhibited activation when added to lymphocyte cultures together with lectin or at any time thereafter through 48 hr. In contrast, the sulfhydryl oxidizing agent diazine dicarboxylic acid bis[N,N-dimethylamide] (diamide) was effective only when added within 30–60 min of lectin or when added after 24 hr. This inhibition of lymphocyte activation was not due to decreased intracellular levels of reduced glutathione or to inhibition of binding of lectin to the lymphocyte. These results suggest that maintenance of free sulfhydryl groups is important during the early induction of lymphocyte activation and suggest that an obligatory step or steps in the activation sequence may involve sulfhydryl interactions.  相似文献   

19.
Interaction of purified human liver and placental alkaline phosphatases (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) with sulfhydryl groups, sulfhydryl reagents, and Mg2+ were studied. L-Cysteine (0.1 mmol/l) or Mg2+ activated the liver enzyme 4-5-fold and the placental enzyme 2-3-fold, with optimal pH 7.5-8.0; these activations were not additive. L-Cysteine (2 mmol/l) inhibited both enzymes maximally at pH greater than 9.0; phosphate protected the enzymes. S-Methylcysteine had little effect, with or without Mg2+. Inhibition by sulfur-containing compounds paralleled their ability to bind Zn2+. Fluoresceine mercury acetate (specific for sulfhydryl groups) inhibited the isoenzymes, whereas iodoacetic acid, iodoacetamide, dithionitrobenzoic acid, and p-chloromercuribenzoate had little effect. The inhibition was reversed by L-cysteine and only slightly protected by inorganic phosphate. Thus, there are two sites on human liver and placental alkaline phosphatase that interact with L-cysteine; a Mg2+-binding site, which results in activation, and a site that involves one or both of the bound Zn2+ ions and results in inactivation. Both enzymes have a protected essential thiol group.  相似文献   

20.
The roles of sulfhydryl and disulfide groups in the specific binding of synthetic cannabinoid CP-55,940 to the cannabinoid receptor in membrane preparations from the rat cerebral cortex have been examined. Various sulfhydryl blocking reagents including p-chloromercuribenzoic acid (p-CMB), N-ethylmaleimide (NEM), o-iodosobenzoic acid (o-ISB), and methyl methanethiosulfonate (MMTS) inhibited the specific binding of [3H]CP-55,940 to the cannabinoid receptor in a dose-dependent manner. About 80–95% inhibition was obtained at a 0.1 mM concentration of these reagents. Scatchard analysis of saturation experiments indicates that most of these sulfhydryl modifying reagents reduce both the binding affinity (Kd) and capacity (Bmax). On the other hand, DL-dithiothreitol (DTT), a disulfide reducing agent, also irreversibly inhibited the specific binding of [3H]CP-55,940 to the receptor and about 50% inhibition was obtained at a 5 mM concentration. Furthermore, 5mM DTT was abelt to dissociate 50% of the bound ligand from the ligand-receptor complex. The marked inhibition of [3H]CP-55,940 binding by sulfhydryl reagents suggests that at least one free sulfhydryl group is essential to the binding of the ligand to the receptor. In addition, the inhibition of the binding by DTT implies that besides free sulfhydryl group(s), the integrity of a disulfide bridge is also important for [3H]CP-55,940 binding to the cannabinoid receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号