首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文比较了大然乳酸脱氢酶和硫酸铵稳定的乳酸脱氢酶在盐酸胍性过程式中失活与内源荧光的变化速度.酶失活表现为三相反应,即极快相,其速度常数用停流装置也无法测定;快相和慢相,1M胍变性时,此二相的一级反应速度常数分别为2.7×10~(-3)秒~(-1)和4.17×10~(-4)秒~(-1).在2M硫酸铵存在条件下,用2M胍更性时,快相和慢相的一极反应速度常数分别为6.16×10~(-3)秒~(-1)和1.88×10~(-3)秒~(-1).内源荧光强度的变化表现为二相反应,即极快相,相当酶失活的极快相,但变化幅度远小于酶失活的变化幅度;快相,相当于酶失活的快相,其速度常数为失活速度常数的1/3倍.上述结果表明,类似肌酸激酶,乳酸脱氢酶的失活速度快于酶分子整体构象的变化,相对于整个酶分子来说,活性中心的构象变化对变性剂更加敏感.  相似文献   

2.
Fumarase (EC 4.2.1.2) and mitochondrial L-malate dehydrogenase (EC 1.1.1.37) were both inhibited by NaAuCl4 and KAuBr4. The inhibition for both was measured as a function of gold complex concentration and aquation time, and the NaAuCl4 inhibition was also measured in the presence of 0.15 M NaCl. Regeneration of the enzyme activity after NaAuCl4 inhibition using L-cysteine, L-methionine and NaCN was also investigated. Sodium dodecyl sulfate (SDS) acrylamide gel electrophoresis and amino acid analysis was performed on the NaAuCl4 inhibited enzymes as well as on ribonuclease A (EC 3.1.26.2), lysozyme (EC 3.2.1.17) and liver alcohol dehydrogenase (EC 1.1.1.1). It was observed that the inhibition was proportional to the gold complex concentration but decreased markedly after aquation of the complex. In the presence of NaCl the initial rate of inactivation is essentially unaffected unless the complex has been aquated and then the initial rate is increased. Gel electrophoresis on gold complex-enzyme mixtures show polymerization for ribonuclease and lysozyme and amino acid analysis indicates that no oxidation has taken place. From these results, a binding mechanism is postulated for the inhibition of the dehydrogenases by direct displacement of a halide ligand, probably by two groups on the enzyme, at least one of which may be a sulfur containing acid.  相似文献   

3.
Summary The rate constants for the photodynamic inactivation of hen egg-white lysozyme at different temperatures were studied. Arrhenius plots of the methylene blue sensitized photo-inactivation of lysozyme gave an experimental activation energy of 7.5 kcal/mol. The rate constants for the photodynamic inactivation of lysozyme in the presence of riboflavin decreased almost linearly in the temperature range 4–38° C. The photosensitized oxidation of lysozyme at –20° C in freezing and non-freezing solvents was possible only in the presence of riboflavin. The effect of dye concentration on the quantum yield and rate constant for the photodynamic inactivation of lysozyme was examined. The quantum yields were lower when the concentrations of methylene blue used were low, and increased on increasing dye concentration, getting to a maximum and then declined at higher dye concentrations. It was found that in the case of riboflavin sensitized photo-inactivation of lysozyme both the rate constant and the quantum yield increased as the dye concentration increased. No maximum was observed over the range of dye concentrations studied. A new mechanism is postulated for the photodynamic action of lysozyme in the presence of riboflavin.  相似文献   

4.
Koningic acid, a sesquiterpene antibiotic, is a specific inhibitor of the enzyme glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12). In the presence of 3 mM of NAD+, koningic acid irreversibly inactivated the enzyme in a time-dependent manner. The pseudo-first-order rate constant for inactivation (kapp) was dependent on koningic acid concentration in saturate manner, indicating koningic acid and enzyme formed a reversible complex prior to the formation of an inactive, irreversible complex; the inactivation rate (k 3) was 5.5.10(-2) s-1, with a dissociation constant for inactivation (Kinact) of 1.6 microM. The inhibition was competitive against glyceraldehyde 3-phosphate with a Ki of 1.1 microM, where the Km for glyceraldehyde 3-phosphate was 90 microM. Koningic acid inhibition was uncompetitive with respect to NAD+. The presence of NAD+ accelerated the inactivation. In its absence, the charcoal-treated NAD+-free enzyme showed a 220-fold decrease in apparent rate constant for inactivation, indicating that koningic acid sequentially binds to the enzyme next to NAD+. The enzyme, a tetramer, was inactivated when maximum two sulfhydryl groups, possibly cysteine residues at the active sites of the enzyme, were modified by the binding of koningic acid. These observations demonstrate that koningic acid is an active-site-directed inhibitor which reacts predominantly with the NAD+-enzyme complex.  相似文献   

5.
The kinetics of inactivation of the pyruvate dehydrogenase component of the pigeon breast muscle pyruvate dehydrogenase complex in the presence of 5,5'-dithiobis (2-nitrobenzoate) is biphasic. The rate constants for the fast and slow phases of the inactivation reaction are close to those for modification of two classes of SH-groups differing in their reactivities towards the inhibitor. The reaction order with respect to the inhibitor concentration suggests that the two distinct SH-groups are essential for the enzyme activity. Modification of these SH-groups results in inhibition of the overall activity of the pyruvate dehydrogenase complex and of the 2-hydroxyethyl thiamine pyrophosphate - acceptor oxidoreductase activity of its decarboxylating component. Thiamine pyrophosphate exerts a protective effect on the enzyme only at the slow phase of the enzyme inactivation and SH-modification. As a result of interaction between the holoenzyme and pyruvate (or apoenzyme and 2-hydroxyethyl thiamine pyrophosphate) the rate of the enzyme inactivation is increased. This is associated with masking of non-essential SH-groups and with an increase of the accessibility of two essential SH-groups to the inhibitor. The data obtained suggest the interrelationship between the essential SH-groups and the 2-hydroxyethyl thiamine pyrophosphate-acceptor oxidoreductase activity of pyruvate dehydrogenase.  相似文献   

6.
The 2,2'-azobis(2-amidinopropane) (AAPH)-induced inactivation and oxidative modification of lysozyme, as determined by the loss of tryptophan-associated fluorescence (TAF) and the increase in dinitrophenylhydrazine-reactive carbonyl groups (CO), were studied in the absence and in the presence of antioxidants. AAPH induced a progressive inactivation of the enzyme and a parallel decrease of its TAF. Both changes were closely correlated (R2 = 0.97); however, the inactivation was only partially associated with an increase in CO. The latter reached maximal values at times half those needed to attain maximal losses in both lysozyme activity and TAF. A stoichiometric comparison reveals that whereas over 74% of the enzyme molecules had lost their activity, only 5% exhibited an increment in CO. CO formation was affected differentially by boldine and trolox. Both antioxidants fully protected against the early inactivation and loss of TAF; however, the increase in CO was completely unaffected by trolox. Exposure of lysozyme to Fe3+/ascorbate induced no loss of activity or TAF, but it led to an accumulation of CO similar to that induced by AAPH. Results indicate that CO formation and lysozyme inactivation are two mechanistically dissociable events and that changes in the former parameter can perfectly occur in the absence of changes in the latter.  相似文献   

7.
The properties of the pyruvate dehydrogenase component isolated from the pigeon breast muscle pyruvate dehydrogenase complex were studied upon inactivation of the enzyme in an incomplete reaction mixture: in the presence of cofactors and pyruvate, and in the absence of electron acceptors. The substrate-dependent inactivation was shown to result in the modification of two sulfhydryl groups per mole of the enzyme, in the appearance of a maximum at 235 nm in the protein absorption spectrum, and in the involvement of 1.5 moles of the [2-14C]-pyruvate fragment per mole of the pyruvate dehydrogenase. The fragment-protein bond is acid-stable, labile in alkali, and breaks up in the presence of performic acid, neutral hydroxylamine and dithiothreitol. An acetyl-substituted form of pyruvate dehydrogenase appearing with the participation of sulfhydryl enzyme groups is suggested.  相似文献   

8.
The kinetics of thermal inactivation of rabbit muscle lactate dehydrogenase at different temperatures has been studied using the kinetic method for the substrate reaction during irreversible inhibition of enzyme activity previously described by Tsou [Adv. Enzymol. Relat. Areas Mol. Biol. (1988), 61, 381–436]. The results show that thermal inactivation of the enzyme is an irreversible reaction. Microscopic rate constants were determined for thermal inactivation of the free enzyme and the enzyme–substrate complex. The inactivation rate constant of the free enzyme is much larger than the rate constant of the enzyme–substrate complex. The results suggest that the presence of the substrate has a certain protective effect against thermal inactivation of the enzyme.  相似文献   

9.
Summary Partially purified flounder muscle (Pseudopleuronectus americanus) glyceraldehyde 3-phosphate dehydrogenase was immobilized on cyanogen bromide-activated Sepharose. The catalytic properties of the immobilized preparation were studied to determine if immobilization alters the kinetic properties of the native holoenzyme. The results indicate that the pH activity profile of immobilized glyceraldehyde 3-phosphate dehydrogenase did not differ from that of the native enzyme. The Michaelis constants (Km) for NAD and glyceraldehyde 3-phosphate were somewhat altered. The enzyme stability toward various inactivation treatments in the presence and absence of NAD was characterized and compared to that of he native enzyme. When either form of the enzyme was incubated with urea at concentrations greater than 2m, inactivation occurred very rapidly. Incubation in 0.1% trypsin for 60 minutes decreased the activity of immobilized glyceraldehyde 3-phosphate dehydrogenase by 45% and of the native soluble enzyme by 70%. The immobilized enzyme also exhibited considerably more stability than the native soluble enzyme when exposed to a temperature of 50° or to 20 mm ATP. In all cases NAD either greatly reduced the rate of inactivation or completely protected the enzyme from inactivation.  相似文献   

10.
Modification of two SH-groups in the molecule of formate dehydrogenase by dithiobisnitrobenzoate or to dacetamide results in the enzyme inactivation. Coenzymes, but not the substrate, protect the enzyme against the inactivation. NAD in the presence of potassium azide completely preserves the enzyme activity. Two SH-groups per enzyme molecule are protected from modification. The Km values for partially inactivated formate dehydrogenase remain constant for both substrates. The enzyme with modified SH-groups does not bind conezymes. The pH-dependence of the inactivation rate reveals the ionizable group with pK 9.6 (25 degrees C). The involvement of essential SH-groups in coenzyme binding is discussed.  相似文献   

11.
2-Pentynoyl-CoA inactivates glutaryl-CoA dehydrogenase at a rate that considerably exceeds the rates of inactivation of short chain and medium chain acyl-CoA dehydrogenases by this inhibitor and related 2-alkynoyl-CoAs. To determine the rate of inactivation by 2-pentynoyl-CoA, we investigated the inactivation in the presence of a non-oxidizable analog, 3-thiaglutaryl-CoA, which competes for the binding site. The enhanced rate of inactivation does not reflect an alteration in specificity for the acyl group, nor does it reflect the covalent modification of a residue other than the active site glutamate. In addition to determining the inactivation of catalytic activity a spectral intermediate was detected by stopped-flow spectrophotometry, and the rate constants of formation and decay of this charge transfer complex (lambdamax approximately 790 nm) were determined by global analysis. Although the rate-limiting step in the inactivation of the other acyl-CoA dehydrogenases can involve the abstraction of a proton at C-4, this is not the case with glutaryl-CoA dehydrogenase. Glutaryl-CoA dehydrogenase is also differentiated from other acyl-CoA dehydrogenases in that the catalytic base must access both C-2 and C-4 in the normal catalytic pathway. Access to C-4 is not obligatory for the other dehydrogenases. Analysis of the distance from the closest carboxylate oxygen of the glutamate base catalyst to C-4 of a bound acyl-CoA ligand for medium chain, short chain, and isovaleryl-CoA dehydrogenases suggests that the increased rate of inactivation reflects the carboxylate oxygen to ligand C-4 distance in the binary complexes. This distance for wild type glutaryl-CoA dehydrogenase is not known. Comparison of the rate constants of inactivation and formation of a spectral species between wild type glutaryl-CoA dehydrogenase and a E370D mutant are consistent with the idea that this distance in glutaryl-CoA dehydrogenase contributes to the enhanced rate of inactivation and the 1,3-prototropic shift catalyzed by the enzyme.  相似文献   

12.
The 3-alpha-hydroxysteroid dehydrogenase and the 3-beta-hydroxysteroid dehydrogenase of Pseudomonas testosteroni were purified to homogeneity by polyaerylamide gel electrophoresis using the following stages: DEAE cellulose chromatography, affinity chromatography on oestrone-aminocaproate sepharose and Sephadex gel filtration. The pure 3-alpha-hydroxysteroid dehydrogenase was completely devoid of 3-beta-hydroxysteroid dehydrogenase activity but could oxidize estradiol 17-beta at an appreciable rate. This activity accounts for about 40 per cent of the total 17-beta-estradiol dehydrogenase of the crude bacterial extract. Affinity labelling of pure 3-alpha-hydroxysteroid dehydrogenase was carried out using 5-beta-pregnane 3,20-dione-12-alpha-iodoacetate and 5-alpha-androstane 3-one-17-beta-bromoacetate. With both reagents, inactivation was obtained only in the presence of coenzyme, the substrate protected against inactivation and the enzyme was fully inhibited with covalent binding of 1 mole of reagent per mole of subunit suggesting an active site directed inhibition. Histidine and methionine were identified as the labelled aminoacid residues.  相似文献   

13.
V L Davidson  L H Jones 《Biochemistry》1991,30(7):1924-1928
Cyclopropylamine acted as a mechanism-based inhibitor of the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans. The protein-bound quinone cofactor of this enzyme was rapidly reduced by addition of a stoichiometric amount of cyclopropylamine, but this compound did not serve as a substrate for the enzyme in the steady-state kinetic assay. Time-dependent inactivation of the enzyme by cyclopropylamine was observed only in the presence of a reoxidant. Saturation behavior was observed, and values of KI of 3.9 microM and K(inact) of 1.7 min-1 were determined. Enzyme inactivation was irreversible, as no restoration of activity was evident after gel filtration of methylamine dehydrogenase which had been incubated with cyclopropylamine in the presence of a reoxidant. The inactivated enzyme exhibited an altered absorption spectrum. Electrophoretic analysis of inactivated methylamine dehydrogenase indicated that covalent cross-linking of the alpha and beta subunits of this alpha 2 beta 2 oligomeric enzyme had occurred and that the quinone cofactor had been modified. A mechanism for this inhibition is proposed which is based upon the data presented and is consistent with the available structural information on methylamine dehydrogenase.  相似文献   

14.
C T Grubmeyer  W R Gray 《Biochemistry》1986,25(17):4778-4784
Salmonella typhimurium L-histidinol dehydrogenase (EC 1.1.1.23), a four-electron dehydrogenase, was inactivated by an active-site-directed modification reagent, 7-chloro-4-nitro-2,1,3-benzoxadiazole (NBD-Cl). The inactivation followed pseudo-first-order kinetics and was prevented by low concentrations of the substrate L-histidinol or by the competitive inhibitors histamine and imidazole. The observed rate saturation kinetics for inactivation suggest that NBD-Cl binds to the enzyme noncovalently before covalent inactivation occurs. The UV spectrum of the inactivated enzyme showed a peak at 420 nm, indicative of sulfhydryl modification. Stoichiometry experiments indicated that full inactivation was correlated with modification of 1.5 sulfhydryl groups per subunit of enzyme. By use of a substrate protection scheme, it was shown that 0.5 sulfhydryl per enzyme subunit was neither protected against NBD-Cl modification by L-histidinol nor essential for activity. Modification of the additional 1.0 sulfhydryl caused complete loss of enzyme activity and was prevented by L-histidinol. Pepsin digestion of NBD-modified enzyme was used to prepare labeled peptides under conditions that prevented migration of the NBD group. HPLC purification of the peptides was monitored at 420 nm, which is highly selective for NBD-labeled cysteine residues. By amino acid sequencing of the major peptides, it was shown that the reagent modified primarily Cys-116 and Cys-377 and that the presence of L-histidinol gave significant protection of Cys-116. The presence of a cysteine residue in the histidinol binding site is consistent with models in which formation and subsequent oxidation of a thiohemiacetal occurs as an intermediate step in the overall reaction.  相似文献   

15.
Incubation of the pyruvate dehydrogenase component isolated from the pigeon breast muscle pyruvate dehydrogenase complex with Mg2+, thiamine pyrophosphate and low concentrations of pyruvic acid in the absence of electron acceptors results in irreversible time-dependent inactivation of the enzyme. The rate of the enzyme inactivation is markedly decreased in the presence of high concentrations of pyruvate; in this case acetoin and acetolactate are detected in the reaction mixture. The enzyme activity is stabilized when the artificial electron acceptor, 2,6-dichlorophenolindophenol, is present in the reaction mixture. The substrate-mediated inactivation of the enzyme is accompanied by incorporation of the 2-[14C]-substrate fragment and labelled thiamine pyrophosphate into the protein fraction. The enzyme reactivation by neutral hydroxylamine and the protective effect of dithiothreitol suggest that the SH-group(s) may be involved in the substrate-mediated inactivation of pyruvate dehydrogenase.  相似文献   

16.
The modification of SH-groups in the native isocitrate dehydrogenase accessible to 5,5-dithiobis (2-nitrobenzoic acid) (DTNB) is accompanied by the enzyme inactivation. Isocitrate rather than NADP and MnCl2 protects two SH-groups of the enzyme from modification by DTNB and attendant inactivation. The isocitrate dehydrogenase inactivation by DTNB obeys pseudofirst-order reaction kinetics. The number of DTNB-titrated sulphydryl groups does not change after the isocitrate dehydrogenase denaturation by sodium dodecyl sulphate. In the presence of manganese ions isocitrate and to a lesser extent NADP protect isocitrate dehydrogenase from the inactivation induced by 2,3-butanedione, a specific modifier of arginine residues. It has also been shown that the methylene blue-sensitized photoinactivation of the enzyme associated with the photooxidation of histidine residues decreases in the presence of NADP. These data provide evidence for an essential role of the SH-groups, arginine residues and, probably, histidine in the functioning of NADP-dependent isocitrate dehydrogenase from adrenal cortex.  相似文献   

17.
The selective inactivation of alcohol dehydrogenase by the inactivator found in the microsomal fraction of rice (Oryza sativa) seedlings growing in air (Shimomura, S. & Beevers, H. (1983) Plant Physiol. 71, 736-741; 742-746) was further studied. This inactivation was found to be essentially dependent on the presence of free fatty acids. The specificity for fatty acids and the inhibitory effects of imidazole, 2-hydroxyfatty acids and dithiothreitol on the inactivation were all consistent with the properties of the fatty acid alpha-oxidation system in plants. Both O2 consumption and decarboxylation of fatty acid due to alpha-oxidation were also demonstrated in rice microsomes. When purified rice alcohol dehydrogenase was added to the alpha-oxidation system in rice microsomes, the decarboxylation of fatty acid was inhibited, and the cysteinyl residues of alcohol dehydrogenase were oxidized. The oxidation of two cysteinyl residues per monomer resulted in the complete inactivation of the enzyme. The activity of the inactivator in the isolated microsomes was gradually lost during storage and was rapidly lost upon heating. The inactivation of alcohol dehydrogenase was observed even when the enzyme was separated from microsomes by a dialysis membrane. These results indicate that the inactivation of alcohol dehydrogenase is closely related to fatty acid alpha-oxidation. We postulate that an intermediate of alpha-oxidation is the inactivator.  相似文献   

18.
A series of N-alkylmaleimides varying in chainlength from N-methyl- to N-octylmaleimide inclusive was shown to effectively inactivate sheep liver sorbitol dehydrogenase at pH 7.5 and 25 degrees C. The apparent second-order rate constants for inactivation increased with increasing chainlength of the N-alkylmaleimide used. Positive chainlength effects were also indicated by the Kd values for the N-ethyl and N-heptyl derivatives obtained from studies of the saturation kinetics observed for inactivation of the enzyme at high concentrations of these maleimides. The complete inactivation of sorbitol dehydrogenase was demonstrated to occur through the selective covalent modification of one cysteine residue per subunit of enzyme. The stoichiometry of enzyme inactivation was supported on the one hand by fluorescence titration with fluorescein mercuric acetate of the native and the inactivated enzyme, and, on the other hand, by the simultaneous inactivation of the enzyme with selective modification of one sulfhydryl per subunit by N-[p-(2-benzoxazolyl)phenyl]maleimide. Protection of the enzyme from N-alkylmaleimide inactivation was observed with the binding of NADH, whereas both NAD and sorbitol were ineffective as protecting ligands. Diazotized 3-aminopyridine adenine dinucleotide, in contrast to previous studies of this reagent with yeast alcohol dehydrogenase and rabbit muscle glycerophosphate dehydrogenase, did not function as a site-labeling reagent for sorbitol dehydrogenase.  相似文献   

19.
The rate constants for inactivation of lactate dehydrogenase and alcohol dehydrogenase in solution at 65 degrees C (pH 7,5) are 0,72 and 0,013 min-1, respectively. The enzyme incorporation into acrylamide gels results in immobilized enzymes, whose residual activity is 18--25% of the original one. In 6,7% gels the rate of thermal inactivation for lactate dehydrogenase is decreased nearly 10-fold, whereas the inactivation rate for alcohol dehydrogenase is increased 4,6-fold as compared to the soluble enzymes. In 14% and 40% gels the inactivation constants for lactate dehydrogenase are 6,3.10(-3) and 5,9.10(-4) min-1, respectively. In 60% gels the thermal inactivation of lactate dehydrogenase is decelerated 3600-fold as compared to the native enzyme. The enthalpy and enthropy for the inactivation of the native enzyme are equal to 62,8 kcal/mole and 116,9 cal/(mole.grad.) for the native enzyme and those of gel-incorporated (6,7%) enzyme -- 38,7 kcal/mole and 42 cal/(mole.grad.), respectively. The thermal stability of alcohol dehydrogenase in 60% gels is increased 12-fold. To prevent gel swelling, methacrylic acid and allylamine were added to the matrix, with subsequent treatment by dicyclohexylcarbodiimide. The enzyme activity of the modified gels is 2,7--3% of that for the 6,7% gels. The stability of lactate dehydrogenase in such gels is significantly increased. A mechanism of stabilization of the subunit enzymes in highly concentrated gels is discussed.  相似文献   

20.
Sorbitol dehydrogenase (EC 1.1.1.14) was isolated from bovine brain and purified 3,000-fold to apparent homogeneity, as judged by polyacrylamide gel electrophoresis. The purified enzyme had a specific activity of 36 units/mg of protein; a molecular weight of 39,000 for each of the four identical subunits and 155,000 for the intact enzyme were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel exclusion chromatography, respectively. The presence of one Zn2+ per subunit was confirmed by atom absorption spectroscopy; inactivation of the enzyme by metal-chelating agents points to the essential role that Zn2+ plays in the catalytically competent enzyme. The enzyme is also inactivated by thiol-blocking reagents; with respect to inactivation by sodium pyrophosphate, sorbitol dehydrogenase is different from closely related alcohol dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号