首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Floristic variation is high in the Neotropics, but little is known about the factors shaping this variation at the mesoscale. We examined floristic composition and its relationship with environmental factors across 220 1‐ha permanent plots in tropical lowland Bolivia. For each plot, abundance of 100 species (93 tree and 7 palm species ≥10 cm diam) was obtained. Climatic data, related to rainfall seasonality and temperature, were interpolated from all available weather stations in the region, and soil properties, related to texture and fertility, were obtained for each plot. Floristic variation was strongly associated with differences in water availability and temperature, and therefore the climatic gradient shaped floristic variation more strongly than the edaphic gradient. Detrended correspondence analysis ordination divided lowland Bolivia primarily into two major groups (Southern Chiquitano region vs. the Amazon region) and a multiple response permutation procedure distinguished five floristic regions. Overall, the tested environmental variables differed significantly among the five regions. Using indicator species analysis, we distinguished 82 strong indicator species, which had significant environmental preferences for one floristic region. These species can be used as indicators of environmental conditions or to determine which floristic region a certain forest belongs. Given the predicted decreases in rainfall and increases in temperature for tropical lowland forests, our gradient approach suggests that species composition may shift drastically with climate change. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

2.
ABSTRACT We quantified breeding bird abundance, diversity, and indicator species in riparian and upland dry forests along 6 third- to fourth-order streams on the east slope of the Cascade Range, Washington, USA. Upland dry forest on southerly aspects was dominated by open ponderosa pine (Pinus ponderosa) and dry Douglas-fir (Pseudotsuga menziesii) plant associations. Upland mesic forest on northerly aspects was dominated by closed-canopy Douglas-fir or dry grand fir (Abies grandis) plant associations. Riparian overstory vegetation was dominated by black cottonwood (Populus trichocarpa) plant associations with a prominent hardwood tree and shrub component. We quantified bird assemblages, diversity, and abundance from parallel point transects on riparian and adjacent dry and mesic upslope forests. We detected 80 bird species from >12,000 point-transect observations during 1998–1999. Eighteen species accounted for 75% of all detections. Species richness and evenness were similar in all 3 forest types, with approximately 35 species and high evenness (0.85) in each forest type. Bird species assemblages differed among dry, mesic, and riparian forest types, with the greatest differences between riparian and both dry and mesic upland forests. Riparian forest had the greatest number (9) of strong characteristic, or indictor, species among the 3 forest types. Upland mesic forest was characterized by 7 indicator species. Upland dry forest had 4 indicator species. Our results indicate that current standards and guidelines for riparian buffers zones would allow for avian refuge and corridor functions along these streams. Forest managers could use our indicator species to predict and monitor shifts in upland forest species composition from thinning and prescribed burning practices that are used to reduce fuels in uplands and to reduce continuity of fire effects between riparian and upland zones.  相似文献   

3.
Many studies analyzing the relative contribution of soil properties versus distance‐related processes on plant species composition have focused on lowland tropical forests. Very few have investigated two forest types simultaneously, to contrast ecological processes that assemble the communities. This study analyses—at the landscape scale—the relative contribution of soil and distance on lowland and submontane tropical forests, which co‐occur in two reserves of the Azuero peninsula (Panama). Floristic inventories and soil sampling were conducted in 81 0.1‐ha plots clustered in 27 sites, and data were analyzed using Mantel tests, variance partitioning and non‐metric multidimensional scaling. The largest differences in floristic composition occurred between reserves in both forest types. Soil variation and geographic distance were important determinants of floristic composition, but their effects were highly correlated; together they explained 7–25 percent and 46–50 percent of the variation in lowland and submontane forests, respectively. Soil variables that had the best correlations with floristic composition were iron, zinc, and silt content in lowland, and calcium, copper, iron, potassium, magnesium, phosphorus, zinc, and sand content in submontane forests. The studied forests showed a high beta diversity that seems to be related primarily with soils and, secondarily, with dispersal limitation and stochastic events. The results reveal a response of tree assemblages to environmental gradients, which are particularly conspicuous in Panama. The effects of limited dispersal seem to be more important in submontane than in lowland forests, probably as a result of higher isolation.  相似文献   

4.
We studied the ecological distribution of pteridophytes (ferns and fern allies) along eight 8-km transects covering 12.7 ha in Peruvian Amazonia. Subunits of 200 m2 of the transects have previously been classified into four different forest types, and here we document and quantify the floristic differences among these forest types. Pteridophytes have been suggested as an indicator group to classify rain forest habitats, but this requires that the ecological preferences of the species are well documented and consistent across geographic regions. Here we analyzed in detail the distribution and diversity patterns of 130 species across the four rain forest types. Relative species abundance and species diversity were similar among some of the forest types and differed among others, but the species composition differed markedly. Our results largely confirmed the earlier interpretation of the edaphic preferences of the pteridophyte species in western Amazonia. This supports the proposition that deterministic processes have an important role in influencing the floristic composition of Amazonian forests.  相似文献   

5.
The ancient landscape of the South - West Australian Floristic Region (SWAFR) is characterized by exceptional floristic diversity, attributed to a complex mosaic of nutrient - impoverished soils. Between - soil type differences in nutrient availability are expected to affect floristic assemblage patterns in the SWAFR. We compared patterns of floristic diversity between open - forest samples from three soil types in the high - rainfall zone of the SWAFR. The importance of environmental and spatial factors for species compositional turnover within soil types were evaluated within canonical correspondence analyses using variation partitioning. Patterns of phylogenetic diversity and dispersion were contrasted between soil types and related to differences in soil nutrient availability. Between - quadrat shared phylogenetic branch length for individual life form categories was correlated with explanatory variables using Mantel tests. Species and phylogenetic diversity increased with a decline in soil nutrients and basal area. Nutrient - poorer soils were differentiated by higher species density and phylogenetic diversity, and larger phylogenetic distances between species. Species turnover was best explained by environmental factors when soil nutrient concentrations and basal area were low. Coastal and inland quadrats from the most fertile soil type were distinguished by significantly differing patterns of phylogenetic diversity. Inland quadrats were characterized by strong relationships between phylogenetic diversity and environment, while phylogenetic patterns remained largely unaccounted for by explanatory variables within coastal quadrats. Phylogenetic diversity was more strongly related with environment within upland landform types for nutrient-poor soils. We highlight the complex relationships between climatic and edaphic factors within the SWAFR, and propose that the occurrence of refugial habitat for plant phylogenetic diversity is dynamically linked with these interactions. Climate change susceptibility was estimated to be especially high for inland locations within the high - rainfall zone. Despite the strong relationship between floristic diversity and soil fertility, holistic conservation approaches are required to conserve the mosaic of soil types regardless of soil nutrient status.  相似文献   

6.
The floristic composition and diversity of tropical dry deciduous and gallery forests were studied in Chacocente Wildlife Refuge, located on the Pacific coast in Nicaragua during 1994 and 2000. Density, dominance and frequency as well as species and family important values were computed to characterize the floristic composition. A variety of diversity measures were also calculated to examine heterogeneity in each forest community. A total of 29 families, 49 genera and 59 species were represented in 2 ha dry deciduous forest. In the gallery forest, the number of families, genera and species recorded in 2000 inventory was 33, 48 and 58, respectively and slightly higher than the 1994 inventory. The number of stems ⩽ 10 cm dbh varied from 451 to 489 per hectare in the deciduous forest, and from 283 to 298 per hectare in the gallery forest. The basal area was much larger for species in the gallery than dry deciduous forest. Fabaceae, sub family Papilionoideae, was the most specious family in the deciduous forest while Meliaceae was the dominant family in the gallery forest. Similarity in species composition and abundance between deciduous and gallery forests was low. In terms of species diversity, the gallery forest was found more diverse than the deciduous forest using Fisher's diversity index. Both forest communities were characterized by a typical inverse J shape. Therefore, emphasis should be given to the protection of rare species, i.e. as the forests are still under continued human pressure, an immediate action should be taken to conserve the remaining flora.  相似文献   

7.
Aim We examined the relative influence of geographical location, habitat structure (physiognomy), and dominant plant species composition (floristics) on avian habitat relationships over a large spatial extent. Although it has been predicted that avian distributions are more likely to covary with physiognomy than with floristics at coarse scales, we sought to determine, more specifically, whether there remained a significant association between gradients in assemblages of bird species and dominant plant species within a general biome type, after statistically controlling for structural variation and geographical location of sampling sites. Location Our sample consisted of a subset of North American Breeding Bird Census survey sites that covered most of the range of eastern forests, from Florida to Nova Scotia, and west to Minnesota and North Dakota (up to c. 2500 km between sites). Methods We restricted our analyses to the single year (1981) that provided the largest sample of sites (47) for which vegetation data were available within ± 2 years of the avian surveys. We examined the relationship between avian community composition and tree species composition over this series of forested plots. Data were divided into four sets: (1) bird species abundances, (2) tree species abundances, (3) physiognomic or structural variables and (4) geographical location (latitude and longitude). We performed separate detrended correspondence analysis ordinations of birds and trees, before and after statistically partialling out covariation associated with structural variables and geographical location. To gauge the relationship between the two sets of species we correlated site scores resulting from separate ordinations. We also compared continental‐scale patterns of variation in bird and tree assemblages to understand possible mechanisms controlling species distribution at that scale. Results Both bird and tree communities yielded strong gradients, with first‐axis eigenvalues from 0.75 to 0.97. All gradients were relatively long (> 4.0), implying complete turnover in species composition. However, geographical location accounted for < 10% of the total variation associated with any ordination. Prior to partialling out covariation resulting from location and physiognomy, bird species ordinations were strongly correlated with tree species ordinations. The strength of association was reduced after partialling, but one bird and one tree axis remained significantly correlated. There was a significant species–area effect for birds, but not for trees. Main conclusions There was a significant relationship between bird species assemblages and tree species assemblages in the eastern forests of North America. Even after partialling out covariation associated with spatial location and forest physiognomy, there remained a significant correlation between major axes from bird and tree ordinations, consistent with the hypothesis that floristic variation is likely to be important in organizing assemblages of birds within a general biome type, albeit over a much larger spatial extent than originally predicted. Forest tree species ordinations differed from bird species ordinations in several ways: trees had a higher rate of turnover along underlying environmental gradients; trees appeared more patchily distributed than birds at this scale; and tree species were more spaced out along the underlying ecological gradients, with less overlap. By understanding the relationship between bird assemblages and forest floristics, we might better understand how avian communities are likely to change if tree species distributions are altered as a result of climatic changes.  相似文献   

8.
We examined seasonal patterns of spatial variation in understory bird assemblages across a mosaic of upland and floodplain forests in central Amazonia, where variation in flooding patterns and floodwater nutrient load shapes a marked spatial heterogeneity in forest structure and composition. Despite great differences in productivity due to flooding by either nutrient-rich “white waters” (várzea) or nutrient-poor “black waters” (igapó), bird assemblages in the two floodplain forest types were relatively similar, showing lower abundances than adjacent upland forests (terra firme) and sharing a set of species that were absent or scarce elsewhere. Species that breed in pensile nests overhanging water were abundant in floodplain forests, whereas species that feed on the ground were generally scarce. Flooding affected assemblage dynamics in floodplain forests, with some influx of ground-dwelling species such as ant-following birds from adjacent upland during the low-water season, and the occupation by riverine and aquatic species such as kingfishers during floods. Spatial configuration influenced the seasonal pattern of assemblage structuring, with movements from terra firme occurring primarily to adjacent igapó forests. No such influx was detected in várzea forests that were farther from terra firme and isolated by wide river channels. Results support the view that habitat heterogeneity created by flooding strongly contributes to maintain diverse vertebrate assemblages in Amazonia forest landscapes, even in the case of largely sedentary species such as understory forest birds. Including both upland and floodplain forests in Amazonia reserves may thus be essential to preserve bird diversity at the landscape scale.  相似文献   

9.
Forests worldwide are experiencing rapid environmental change due to human activity. We aimed to increase understanding of anthropogenic impacts on community composition and species interactions. In a natural experiment, we asked whether subsistence human land use has altered the community composition of a Neotropical rain forest on the island of Tobago, in the West Indies. We surveyed fruiting plants and birds in three adjacent habitat types that varied in level of disturbance, and used multivariate analyses to determine whether changes in the plant community were associated with differences in avifauna composition. The three forest habitats had similar plant and bird diversities, yet markedly different species compositions and abundances. Primary forest had the most diverse plant community, while disturbed habitats had a more homogeneous plant composition. Primary and disturbed forest had distinct community compositions, with canopy cover and the relative abundance of plant types explaining 83 percent of the variation in bird species assemblages. Seemingly moderate human disturbance has led to substantial changes in the plant and bird assemblages of Tobago's rain forest, outside of a protected reserve. Our study highlights the direct links between human disturbance and the structure of rain forests, underscoring the impact of even moderate activity on community composition.  相似文献   

10.
Terrestrial plant communities of adjacent upland and floodplain forest of the Amazonian lowland differ from each other in species richness and composition. Epiphytes are generally not considered as being affected by flooding, but we found considerable variation in the communities of epiphytic Araceae of flooded and unflooded forest. Contrary to findings from tree or ground herb communities, no depletion in overall species richness was observed among epiphytic aroids of the floodplains. Abundance and number of epiphytic aroid species per phorophyte were significantly higher than in upland forest, and the species composition varied conspicuously between the two forest types. We suggest that these differences are due to elevated humidity and better soil quality on the floodplains and reject the assumption that flooding has no effect on the epiphytic community.  相似文献   

11.
The heterogeneity of xerophytic vegetation developing on limestone outcrops immersed in a tropical deciduous forest matrix was studied in Nizanda (S México). The study units comprised three clearly distinct communities based on their physiognomy and substrate, representing a gradient of edaphic aridity: (1) xerophytic scrub (XS); (2) tropical deciduous forest on rock (TDFr); and (3) tropical deciduous forest on deeper soil (TDFs). Structural and floristic variables were gathered in nine 100 m2 plots by community. In the 0.27 ha sampled 211 plant species were recorded. Total floristic richness by community decreased with increasing edaphic aridity: 159 species in TDFs, 107 in TDFr, and 36 in XS. Although significant differences were observed between the three communities for only four structural variables (total and upper stratum species densities, and relative monocotyledon density and cover), other variables confirmed the differences between the two forest communities and the XS (total and upper stratum cover, density, and basal area). TDFr and XS also differed from TDFs with respect to lower stratum species density, and absolute monocotyledon density and cover. The results showed the importance of monocotyledons and the prevalence of clonality in TDFr and XS. A comparison between limestone outcrop and inselberg vegetation indicated a virtual absence of therophytes, graminoid herbs, cryptogamic crusts, and desiccation-tolerant and carnivorous plants in the former, whereas the prevalence of monocotyledon mats, and xerophytic and succulent plants is the most striking similarity between these rocky environments. Xerophytic vegetation of limestone outcrops in Nizanda may be seen as analogous of relictual communities that existed during a northbound migration of Neotropical flora, towards the arid zones of North America.  相似文献   

12.
We assessed the relationship between habitat heterogeneity and bird species richness and composition within wetlands of the floodplain of the Middle Paraná River, Argentina. Given the high habitat heterogeneity in these wetland systems, we sought to determine whether (i) there was a positive relationship between bird species richness and habitat heterogeneity; (ii) whether bird species richness was associated with certain types of individual habitat types; (iii) whether there was a pattern of species nestedness and turnover between sites as a function of habitat heterogeneity and composition, respectively; and (iv) whether individual species exhibited associations with habitat heterogeneity. Point counts were used to survey birds at 60 sites. We estimated the area of eight habitat types found within a 200‐m radius from the centre of each site and calculated number and Pielou's evenness of habitat types. These indices, together with area proportion of each habitat type, were used as explanatory factors of bird species richness in linear regression models. Habitat heterogeneity per se rather than area of individual habitat types was a more important predictor of species richness in these fluvial wetlands. Sites with more habitat types supported more bird species. Results showed that individual bird species were associated with different habitat types and, therefore, sites that contained more habitat types contained more species. Number of habitat types accounted for species nestedness between sites whereas composition of habitat types accounted for species turnover between sites. Results suggest that selection of heterogeneous sites by individual species could help explain the positive heterogeneity–species richness relationship. Our findings highlight the importance of habitat heterogeneity per se resulting from flood disturbances in maintaining bird richness in fluvial systems.  相似文献   

13.
Environmental correlates of avian diversity in lowland Panama rain forests   总被引:1,自引:0,他引:1  
Aim The composition of communities is known to be influenced by biogeographical history, but also by local environmental conditions. Yet few studies have evaluated the relative importance of the direct and indirect effects of multiple factors on species diversity in rich Neotropical forests. Our study aims to assess drivers of change in local bird species richness in lowland tropical rain forests. Location Thirty‐two physiographic subregions along the corridor of the Panama Canal, Panama. Methods We mapped the distributions of all forest‐dwelling bird species and quantified the environmental characteristics of all subregions, including mean annual rainfall, topographic complexity, elevational variability, forest age and forest area. Plant species richness, believed to be correlated with structural complexity, was estimated by interpolation through kriging for subregions where data were unavailable. Results The study region has a strong rainfall gradient across a short distance (65 km), which is also accompanied by steep gradients in plant and bird species diversity. Path analysis showed that precipitation strongly affected plant species diversity, which in turn affected avian diversity. Forest age and topography affected bird diversity independently of plant diversity. Forest area and its proportion occurring in the largest two fragments of each subregion (habitat configuration) were also positive correlates of bird species richness. Main conclusions Our results suggest that plant species richness, known to be influenced in part by biogeographical history and geology, also affects bird species assemblages locally. We provide support for the hypothesis that bird species richness increases with structural complexity of the habitat. Our analysis of the distributions of the region's most disturbance‐sensitive bird species showed that subregions with more rainfall, more complex topography and older forests harboured not only richer communities but also more sensitive species; while subregions with the opposite characteristics usually lacked large fractions of the regional forest bird community and hosted only common, widely distributed species. Results also emphasize the importance of preserving forest diversity from habitat loss and fragmentation, and confirm that larger, continuous forest tracts are necessary to maintain the rich avian diversity in the region.  相似文献   

14.
Abstract. Our main objective was to use comparative floristic and structural criteria in order to understand the differences in assemblages brought about by the meeting of arid and dry‐tropical environments. We sampled 33 vegetation plots and recorded all perennial species. The data were subjected to multivariate analysis, including Principal Component Analysis (PCA). The floristic variation detected by the PCA was strongly related to altitude and rainfall. The gradient detected by the ordination procedure had Tropical deciduous forest (TDF) and Sonoran Desert (SD) at opposite extremes and Cape sarcocaulescent shrubland (CSCS) in an intermediate position. The numerical classification algorithm detected six distinct groups of species with clearly identifiable field distributions. Vegetation structure also differed significantly between the regions. SD had the lowest species‐richness (α‐diversity) and inter‐site similarity in the CSCS was highest, indicating that this environment is relatively uniform and has low species turnover (β‐diversity). It is concluded that the CSCS is distinctly different from the sarcocaulescent shrublands of the more northern plant communities of the peninsula, where Sonoran Desert floristic affinities prevail. The floristic composition of the CSCS is rich in dry‐tropical affinities, its species richness is higher, it is homogeneous in its species content and turnover and is more dense with a taller canopy than the northern desert scrubs. It is proposed that the boundary line separating the Cape sediments of granitic origin from the basalt‐derived sediments of the northern‐lying Sierra de la Giganta should be used as an easily identifiable landscape trait to delimitate this unique community.  相似文献   

15.
We documented the floristic composition of pteridophytes (ferns and fern allies) and Melastomataceae in Yasuní National Park, Amazonian Ecuador. Our main questions were: (1) Are the density of individuals, species richness, and/or species diversity (measured with Shannon's H′) of the two plant groups related to edaphic differences? and (2) How many of the pteridophyte and Melastomataceae species are non–randomly distributed in relation to a soil base content gradient within terra firme (non–inundated forest). To answer these questions, we sampled 27 line transects of 500 × 5 m distributed in an area of ca 20 × 25 km. The study area included a permanent 50 ha plot established to monitor forest dynamics; thus, our results also provide information on landscape–scale floristic variability to which results from within the plot can be compared. A total of 45,608 individuals and 140 species of pteridophytes, and 4893 individuals and 89 species of the Melastomataceae, were counted in the transects. Both with pteridophytes and with Melastomataceae, a clear negative correlation was found between the amount of extractable bases in the soil and the number of plant individuals encountered in a transect. With Melastomataceae, species richness and species diversity also were negatively correlated with soil base content, but with pteridophytes they were not. More than 50 percent of the common species of both pteridophytes and Melastomataceae were nonrandomly distributed along the soil cation content gradient within terra firme. We conclude that while the species richness patterns observed in one plant group are not indicative of similar patterns in other plant groups, it seems likely that a substantial (but unknown) proportion of species belonging to other plant groups will be found to show distribution patterns that reflect edaphic preferences within terra firme forests.  相似文献   

16.
Despite the importance of rivers in Amazonian biogeography, avian distribution patterns in river‐created habitats (i.e., floodplain forests) have been sparsely addressed. Here, we explore geographic variation in floodplain forest avifaunas, specifically regarding one of the most striking aspects of the Amazon: the diversity of river “colors” (i.e., types, based on the color of the water). We sampled the avifauna at 30 sites, located in 17 different rivers (nine black‐ and eight whitewater), in the Rio Negro basin, northwestern Brazil. Our sampling comprised ten 15‐min point‐counts per site, distributed every 500–1000 m along the river. We recorded a total of 352 bird species, many of which occurred in both river types. Although bird species richness was similar among rivers, we found significant differences in species composition. Nearly 14 percent of the species were significantly associated with one or the other river type. Most floodplain forest specialists occurred predominantly in whitewater rivers, whereas species that are typically associated with white‐sand habitats occurred in blackwater. Despite significant distinctions between river types, occurrence patterns and levels of habitat association differed among indicator species and may vary in the same species throughout its global distribution. There were also “intermediate” avifauna in some of our sites, suggesting that continuous parameters characterizing river types structure species turnover. The water color‐based classification of Amazonian rivers represents a simple and powerful predictor of the floodplain forest avifauna, offering a stimulating starting point for understanding patterns of floodplain bird distributions and for prioritizing conservation efforts in these overlooked habitats. Abstract in Portuguese is available with online material.  相似文献   

17.

Aim

One of the oldest and most powerful ways for ecologists to explain distinct biological communities is to invoke underlying environmental differences. But in hyper-diverse systems, which often display high species richness and low species abundance, these sorts of community comparisons are especially challenging. The classic view for Amazonian birds posits that riverine barriers and habitat specialization determine local and regional community composition. We test the tacit, complementary assumption that similar bird communities should therefore permeate uniform habitat between major rivers, regardless of distance.

Location

Upland (terra firme) rainforests of central Amazonia.

Methods

We conducted intensive whole-community surveys of birds in three pairs of 100-ha plots, separated by 40–60 km. We then used dissimilarity indices, cluster analysis, and ordination to characterize differences among the six avian communities.

Results

In all, we detected 244 forest-dependent birds, with an average of 190 species (78%) per plot. Species turnover was negligible, no unique indicator species were found among plot pairs, and all documented species were already known from a complete inventory at one of the three sites.

Main Conclusions

Our study corroborates the classic biogeographical pattern and suggests that turnover contributes little to regional avian diversity within upland forests. Using a grain size of 100 ha, this implies that upland birds perceive the environment as uniform, at least over distances of ~60 km. Therefore, to maximize both local species richness and population persistence, our findings support the conservation of very large tracts of upland rainforest. Our analyses also revealed that the avifauna at Reserva Ducke, encroached by urban sprawl from the city of Manaus, shows the hallmarks of a disturbed community, with fewer vulnerable insectivores. This defaunation signals that even an enormous preserve (10 × 10 km) in lowland Amazonia is not insulated from anthropogenic degradation within the surrounding landscape.  相似文献   

18.
Ectomycorrhizal fungi constitute an important component of forest ecosystems that enhances plant nutrition and resistance against stresses. Diversity of ectomycorrhizal (EcM) fungi is, however, affected by host plant diversity and soil heterogeneity. This study provides information about the influence of host plants and soil resources on the diversity of ectomycorrhizal fungal fruiting bodies from rainforests of the Democratic Republic of the Congo. Based on the presence of fungal fruiting bodies, significant differences in the number of ectomycorrhizal fungi species existed between forest stand types (p < 0.001). The most ectomycorrhizal species‐rich forest was the Gilbertiodendron dewevrei‐dominated forest (61 species). Of all 93 species of ectomycorrhizal fungi, 19 demonstrated a significant indicator value for particular forest stand types. Of all analysed edaphic factors, the percentage of silt particles was the most important parameter influencing EcM fungi host plant tree distribution. Both host trees and edaphic factors strongly affected the distribution and diversity of EcM fungi. EcM fungi may have developed differently their ability to successfully colonise root systems in relation to the availability of nutrients.  相似文献   

19.
Tropical dry forests in New Caledonia   总被引:1,自引:1,他引:0  
Tropical dry forest is the most endangered major vegetation type in the New Caledonia biodiversity hotspot. Vegetation surveys following a transect method used by Gentry were undertaken in two tropical dry forest sites, Ouen-Toro and Pindai, in order to compare species richness, floristic composition, and structure. Pindai contained significantly higher species richness than Ouen-Toro, although there was little difference in forest structure. Tropical dry forest sites in New Caledonia were compared to seven other biodiversity hotspots with tropical dry forest where Gentry's transect method was employed. New Caledonia and other tropical dry forests on islands contain significantly lower species richness than mainland tropical dry forests in biodiversity hotspots. However, New Caledonia contained the highest number of threatened species based on IUCN global conservation categories. Tropical dry forest in New Caledonia appears to be the world's most endangered tropical dry forest based on the extent of forest, number of reserves, and threatened species. Management of tropical dry forests on private and community lands is absolutely imperative to the long-term persistence of this ecosystem.  相似文献   

20.
In many tropical lowland rain forests, topographic variation increases environmental heterogeneity, thus contributing to the extraordinary biodiversity of tropical lowland forests. While a growing number of studies have addressed effects of topographic differences on tropical insect communities at regional scales (e.g., along extensive elevational gradients), surprisingly little is known about topographic effects at smaller spatial scales. The present study investigates moth assemblages in a topographically heterogeneous lowland rain forest landscape, at distances of less than a few hundred meters, in the Golfo Dulce region (SW Costa Rica). Three moth lineages—Erebidae–Arctiinae (tiger and lichen moths), the bombycoid complex, and Geometridae (inchworm moths)—were examined by means of automatic light traps in three different forest types: creek forest, slope forest, and ridge forest. Altogether, 6,543 individuals of 419 species were observed. Moth assemblages differed significantly between the three forest types regarding species richness, total abundance, and species composition. Moth richness and abundance increased more than fourfold and eightfold from creek over slope to ridge forest sites. All three taxonomic units showed identical biodiversity patterns, notwithstanding their strong differences in multiple eco-morphological traits. An indicator species analysis revealed that most species identified as characteristic were associated either with the ridge forest alone or with ridge plus slope forests, but very few with the creek forest. Despite their mobility, local moth assemblages are highly differentially filtered from the same regional species pool. Hence, variation in environmental factors significantly affects assemblages of tropical moth species at small spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号