首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Questions: Do the number, duration and magnitude of growth releases following formation of natural, fine‐scale canopy gaps differ among shade‐tolerant Thuja plicata, Tsuga heterophylla and Abies amabilis? What is the relative importance of tree‐level and gap‐level variables in predicting the magnitude and duration of releases? What does this tell us about mechanisms of tree species coexistence in such old‐growth forests? Location: Coastal British Columbia, Canada. Methods: We estimated the timing of formation of 20 gaps using dendroecological techniques and extracted increment cores from all three species growing around or within gaps. Using a species‐ and ecosystem‐specific release‐detection method, we determined the number of trees experiencing a release following gap formation. We quantified the duration and magnitude of individual releases and estimated the influence of tree‐level and gap‐level variables on these release attributes. Results: Eighty‐seven per cent (304 of 348) of all trees experienced a release following gap formation. T. heterophylla and A. amabilis experienced higher magnitude and longer duration releases than T. plicata. The effect of diameter on the duration of releases varied among species, with T. heterophylla and A. amabilis experiencing decreasing, and T. plicata experiencing increasing, duration of releases with increasing diameter. The effect of growth rate prior to a release on the magnitude of releases varied among trees of different diameters, with the slowest growing and smallest individuals of all species experiencing the most intensive releases. Conclusions: Our results provide detailed information on the number, duration and magnitude of growth releases of the above three species following gap formation. Differences in response to canopy gaps suggest differences in how these species ascend to the canopy strata. T. plicata may be less dependent on gaps to reach the canopy. Differing strategies for ascending to the canopy strata may be important in facilitating coexistence of these three species in old‐growth forests of coastal British Columbia.  相似文献   

2.
Insects and pathogens are widely recognized as contributing to increased tree vulnerability to the projected future increasing frequency of hot and dry conditions, but the role of parasitic plants is poorly understood even though they are common throughout temperate coniferous forests in the western United States. We investigated the influence of western hemlock dwarf mistletoe (Arceuthobium tsugense) on large (≥45.7 cm diameter) western hemlock (Tsuga heterophylla) growth and mortality in a 500 year old coniferous forest at the Wind River Experimental Forest, Washington State, United States. We used five repeated measurements from a long‐term tree record for 1,395 T. heterophylla individuals. Data were collected across a time gradient (1991–2014) capturing temperature increases and precipitation decreases. The dwarf mistletoe rating (DMR), a measure of infection intensity, varied among individuals. Our results indicated that warmer and drier conditions amplified dwarf mistletoe effects on T. heterophylla tree growth and mortality. We found that heavy infection (i.e., high DMR) resulted in reduced growth during all four measurement intervals, but during warm and dry intervals (a) growth declined across the entire population regardless of DMR level, and (b) both moderate and heavy infections resulted in greater growth declines compared to light infection levels. Mortality rates increased from cooler‐wetter to warmer‐drier measurement intervals, in part reflecting increasing mortality with decreasing tree growth. Mortality rates were positively related to DMR, but only during the warm and dry measurement intervals. These results imply that parasitic plants like dwarf mistletoe can amplify the impact of climatic stressors of trees, contributing to the vulnerability of forest landscapes to climate‐induced productivity losses and mortality events.  相似文献   

3.
Worldwide, extreme climatic events such as drought and heatwaves are associated with forest mortality. However, the precise drivers of tree mortality at individual and stand levels vary considerably, with substantial gaps in knowledge across studies in biomes and continents. In 2010–2011, a drought‐associated heatwave occurred in south‐western Australia and drove sudden and rapid forest canopy collapse. Working in the Northern Jarrah (Eucalyptus marginata) Forest, we quantified the response of key overstory (E. marginata, Corymbia calophylla) and midstory (Banksia grandis, Allocasuarina fraseriana) tree species to the extreme climate event. Using transects spanning a gradient of drought impacts (minimal (50–100 m), transitional (100–150 m) and severe (30–60 m)), tree species mortality in relation to stand characteristics (stand basal area and stem density) and edaphic factors (soil depth) was determined. We show differential mortality between the two overstory species and the two midstory species corresponding to the drought‐associated heatwave. The dominant overstory species, E. marginata, had significantly higher mortality (~19%) than C. calophylla (~7%) in the severe zone. The midstory species, B. grandis, demonstrated substantially higher mortality (~59%) than A. fraseriana (~4%) in the transitional zone. Banksia grandis exhibited a substantial shift in structure in response to the drought‐associated heatwave in relation to tree size, basal area and soil depth. This study illustrates the role of climate extremes in driving ecosystem change and highlights the critical need to identify and quantify the resulting impact to help predict future forest die‐off events and to underpin forest management and conservation.  相似文献   

4.
Forest structural reference conditions are widely used to understand how ecosystems have been altered and guide restoration and management objectives. We used six stem‐mapped permanent plots established in the early twentieth century to provide precise structural reference conditions for ponderosa pine forests of northern Arizona prior to Euro‐American settlement. Reference conditions for these plots in 1873–1874 included the following historical attributes: tree densities of 45–127 trees/ha, mean tree diameter at breast height (dbh) of 43.8 cm with a corresponding quadratic mean diameter range of 41.5–51.3 cm, and a stand basal area of 9.2–18.0 m2/ha. The reconstructed diameter distributions (for live ponderosa pine trees with dbh ≥9.14 cm) prior to fire exclusion varied in shape but generally displayed an irregular unimodal distribution. We suggest that management objectives for the structural restoration of ponderosa pine forests of northern Arizona emphasize: (1) conservation and retention of all pre‐settlement (>130 years) trees; (2) reduction of tree densities with a restoration objective ranging between 50 and 150 trees/ha having a large‐tree component between 25 and 50% of the total trees per hectare, respectively; (3) manipulation of the diameter distribution to achieve a unimodal or irregular, uneven‐aged shape (possibly targeting a balanced, uneven‐aged shape on cinder soil types) through the use of harvest and thinning practices that mimic gap disturbances (i.e., individual tree selection system); and (4) retention of 3–11 snags and logs per hectare resulting from natural mortality.  相似文献   

5.
Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought‐prone areas, tree populations located at the driest and southernmost distribution limits (rear‐edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear‐edges of the continuous distributions of these tree species. We used tree‐ring width data from a network of 110 forests in combination with the process‐based Vaganov–Shashkin‐Lite growth model and climate–growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear‐edge. By contrast, growth of high‐elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of ?10.7% and ?16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear‐edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear‐edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions.  相似文献   

6.

Questions

The exceptional occurrence of tall rain forest patches on foggy coastal mountaintops, surrounded by extensive xerophytic shrublands, suggests an important role of plant–plant interactions in the origin and persistence of these patches in semi‐arid Chile. We asked whether facilitation by shrubs can explain the growth and survival of rain forest tree species, and whether shrub effects depend on the identity of the shrub species itself, the drought tolerance of the tree species and the position of shrubs in regard to wind direction.

Location

Open area–shrubland–forest matrix, Fray Jorge Forest National Park, Chile.

Methods

We recorded survival after 12 years of a ~3600 tree saplings plantation (originally ~30‐cm tall individuals) of Aextoxicon punctatum, Myrceugenia correifolia and Drimys winteri placed outside forests, beneath the shrub Baccharis vernalis, and in open (shrub‐free) areas. We assessed the effects of neighbouring shrubs and soil humidity on survival and growth along a gradient related to the direction of fog movement.

Results

B. vernalis had a clear facilitative effect on tree establishment and survival since, after ~12 years, saplings only survived beneath the shrub canopy. Long‐term survival strongly depended on tree species identity, drought tolerance and position along the soil moisture gradient, with higher survival of A. punctatum (>35%) and M. correifolia (>14%) at sites on wind‐ and fog‐exposed shrubland areas. Sites occupied by the shrub Aristeguietia salvia were unsuitable for trees, presumably due to drier conditions than under B. vernalis.

Conclusions

Interactions between shrubs and fog‐dependent tree species in dry areas revealed a strong, long‐lasting facilitation effect on planted tree's survival and growth. Shrubs acted as benefactors, providing sites suitable for tree growth. Sapling mortality in the shrubland interior was caused by lower soil moisture, the consequence of lower fog loads in the air and thus insufficient facilitation. While B. vernalis was a key ecosystem engineer (nurse) and intercepted fog water that dripped to trees planted underneath, drier sites with A. salvia were unsuitable for trees. Consequently, nurse effects related to water input are strongly site and species specific, with facilitation by shrubs providing a plausible explanation for the initiation of forest patches in this semi‐arid landscape.  相似文献   

7.
While light limitation can inhibit bloom formation in dinoflagellates, the potential for high‐intensity photosynthetically active radiation (PAR) to inhibit blooms by causing stress or damage has not been well‐studied. We measured the effects of high‐intensity PAR on the bloom‐forming dinoflagellates Alexandrium fundyense and Heterocapsa rotundata. Various physiological parameters (photosynthetic efficiency Fv/Fm, cell permeability, dimethylsulfoniopropionate [DMSP], cell volume, and chlorophyll‐a content) were measured before and after exposure to high‐intensity natural sunlight in short‐term light stress experiments. In addition, photosynthesis‐irradiance (P‐E) responses were compared for cells grown at different light levels to assess the capacity for photophysiological acclimation in each species. Experiments revealed distinct species‐specific responses to high PAR. While high light decreased Fv/Fm in both species, A. fundyense showed little additional evidence of light stress in short‐term experiments, although increased membrane permeability and intracellular DMSP indicated a response to handling. P‐E responses further indicated a high light‐adapted species with Chl‐a inversely proportional to growth irradiance and no evidence of photoinhibition; reduced maximum per‐cell photosynthesis rates suggest a trade‐off between photoprotection and C fixation in high light‐acclimated cells. Heterocapsa rotundata cells, in contrast, swelled in response to high light and sometimes lysed in short‐term experiments, releasing DMSP. P‐E responses confirmed a low light‐adapted species with high photosynthetic efficiencies associated with trade‐offs in the form of substantial photoinhibition and a lack of plasticity in Chl‐a content. These contrasting responses illustrate that high light constrains dinoflagellate community composition through species‐specific stress effects, with consequences for bloom formation and ecological interactions within the plankton.  相似文献   

8.

Key message

Carbon isotope ratios in growth rings of a tropical tree species show that treefall gaps stimulate diameter growth mainly through changes in the availability of light and not water. The formation of treefall gaps in closed canopy forests usually entails considerable increases in light and nutrient availability for remaining trees, as well as altered plant water availability, and is considered to play a key role in tree demography. The effects of gaps on tree growth are highly variable and while usually stimulatory they may also include growth reductions. In most studies, the causes of changes in tree growth rates after gap formation remain unknown. We used changes in carbon isotope 13C discrimination (Δ13C) in annual growth rings to understand growth responses after gap formation of Peltogyne cf. heterophylla, in a moist forest of Northern Bolivia. We compared growth and Δ13C of the 7 years before and after gap formation. Forty-two trees of different sizes were studied, half of which grew close (<10 m) to single treefall gaps (gap trees), the other half more than 40 m away from gaps (controls). We found variable responses among gap trees in growth and Δ13C. Increased growth was mainly associated with decreased Δ13C, suggesting that the growth response was driven by increased light availability, possibly in combination with improved nutrient availability. Most trees showing zero or negative growth change after gap formation had increased Δ13C, suggesting that increased water stress did not play a role, but rather that light conditions had not changed much or nutrient availability was insufficient to support increased growth. Combining growth rates with Δ13C proved to be a valuable tool to identify the causes of temporal variation in tree growth.  相似文献   

9.
In perennial woody plants, the coordinated increase of stem height and diameter during juvenile growth improves competitiveness (i.e. access to light); however, the factors underlying variation in stem growth remain unknown in trees. Here, we used linkage‐linkage disequilibrium (linkage‐LD) mapping to decipher the genetic architecture underlying three growth traits during juvenile stem growth. We used two Populus populations: a linkage mapping population comprising a full‐sib family of 1,200 progeny and an association mapping panel comprising 435 unrelated individuals from nearly the entire natural range of Populus tomentosa. We mapped 311 quantitative trait loci (QTL) for three growth traits at 12 timepoints to 42 regions in 17 linkage groups. Of these, 28 regions encompassing 233 QTL were annotated as 27 segmental homology regions (SHRs). Using SNPs identified by whole‐genome re‐sequencing of the 435‐member association mapping panel, we identified significant SNPs ( 9.4 × 10?7) within 27 SHRs that affect stem growth at nine timepoints with diverse additive and dominance patterns, and these SNPs exhibited complex allelic epistasis over the juvenile growth period. Nineteen genes linked to potential causative alleles that have time‐specific or pleiotropic effects, and mostly overlapped with significant signatures of selection within SHRs between climatic regions represented by the association mapping panel. Five genes with potential time‐specific effects showed species‐specific temporal expression profiles during the juvenile stages of stem growth in five representative Populus species. Our observations revealed the importance of considering temporal genetic basis of complex traits, which will facilitate the molecular design of tree ideotypes.  相似文献   

10.
Knowledge of the latitudinal patterns in biotic interactions, and especially in herbivory, is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. We used sap‐feeding insects as a model group to test the hypotheses that the strength of plant–herbivore interactions in boreal forests decreases with latitude and that this latitudinal pattern is driven primarily by midsummer temperatures. We used a replicated sampling design and quantitatively collected and identified all sap‐feeding insects from four species of forest trees along five latitudinal gradients (750–1300 km in length, ten sites in each gradient) in northern Europe (59 to 70°N and 10 to 60°E) during 2008–2011. Similar decreases in diversity of sap‐feeding insects with latitude were observed in all gradients during all study years. The sap‐feeder load (i.e. insect biomass per unit of foliar biomass) decreased with latitude in typical summers, but increased in an exceptionally hot summer and was independent of latitude during a warm summer. Analysis of combined data from all sites and years revealed dome‐shaped relationships between the loads of sap‐feeders and midsummer temperatures, peaking at 17 °C in Picea abies, at 19.5 °C in Pinus sylvestris and Betula pubescens and at 22 °C in B. pendula. From these relationships, we predict that the losses of forest trees to sap‐feeders will increase by 0–45% of the current level in southern boreal forests and by 65–210% in subarctic forests with a 1 °C increase in summer temperatures. The observed relationships between temperatures and the loads of sap‐feeders differ between the coniferous and deciduous tree species. We conclude that climate warming will not only increase plant losses to sap‐feeding insects, especially in subarctic forests, but can also alter plant‐plant interactions, thereby affecting both the productivity and the structure of future forest ecosystems.  相似文献   

11.
Exposure of plants to UV‐C irradiation induces gene expression and cellular responses that are commonly associated with wounding and pathogen defence, and in some cases can lead to increased resistance against pathogen infection. We examined, at a physiological, molecular and biochemical level, the effects of and responses to, sub‐lethal UV‐C exposure on Arabidopsis plants when irradiated with increasing dosages of UV‐C radiation. Following UV‐C exposure plants had reduced leaf areas over time, with the severity of reduction increasing with dosage. Severe morphological changes that included leaf glazing, bronzing and curling were found to occur in plants treated with the 1000 J·m?2 dosage. Extensive damage to the mesophyll was observed, and cell death occurred in both a dosage‐ and time‐dependent manner. Analysis of H2O2 activity and the pathogen defence marker genes PR1 and PDF1.2 demonstrated induction of these defence‐related responses at each UV‐C dosage tested. Interestingly, in response to UV‐C irradiation the production of callose (β‐1,3‐glucan) was identified at all dosages examined. Together, these results show plant responses to UV‐C irradiation at much lower doses than have previously been reported, and that there is potential for the use of UV‐C as an inducer of plant defence.  相似文献   

12.
Abstract. 60 monospecific stands of Juniperus excelsa were sampled at four locations in Balouchistan. Density, basal area and height of individuals were recorded. Soils were analysed for selected physical and chemical characteristics and the degree of disturbance due to logging and burning was noted. The density of juniper trees (> 6 cm dbh) ranged from 56 to 332 stems / ha (average 174 stems / ha). Higher densities were recorded for relatively undisturbed stands and on west facing slopes. Density of seedlings and saplings (< 6 cm dbh) was strongly correlated with tree density and tree basal area. Among the edaphic variables CaC03 was correlated with juniper density and basal area. Diameter distributions within stands were mostly skewed and unimodal with gaps appearing in large size classes. The male to female ratio was close to 1. Cross-sections of 16 trees were used to determine age and growth rate. Number of rings in trees with 20 to 30 cm dbh ranged from 95 to 221 (x = 160 ± 38). Diameter and age were not related. Mean annual diameter increment ranged from 6 to 16 yr / cm x = 10 ± 3 yr / cm). It is concluded that size class gaps and low seedling / sapling densities are the consequence of anthropogenic disturbance.  相似文献   

13.
14.
In forests, the increase in atmospheric CO2 concentrations (Ca) has been related to enhanced tree growth and intrinsic water‐use efficiency (iWUE). However, in drought‐prone areas such as the Mediterranean Basin, it is not yet clear to what extent this “fertilizing” effect may compensate for drought‐induced growth reduction. We investigated tree growth and physiological responses at five Scots pine (Pinus sylvestris L.) and five sessile oak (Quercus petraea (Matt.) Liebl.) sites located at their southernmost distribution limits in Europe for the period 1960–2012 using annually resolved tree‐ring width and δ13C data to track ecophysiological processes. Results indicated that all 10 natural stands significantly increased their leaf intercellular CO2 concentration (Ci), and consequently iWUE. Different trends in the theoretical gas‐exchange scenarios as a response to increasing Ca were found: generally, Ci tended to increase proportionally to Ca, except for trees at the driest sites in which Ci remained constant. Ci from the oak sites displaying higher water availability tended to increase at a comparable rate to Ca. Multiple linear models fitted at site level to predict basal area increment (BAI) using iWUE and climatic variables better explained tree growth in pines (31.9%–71.4%) than in oak stands (15.8%–46.8%). iWUE was negatively linked to pine growth, whereas its effect on growth of oak differed across sites. Tree growth in the western and central oak stands was negatively related to iWUE, whereas BAI from the easternmost stand was positively associated with iWUE. Thus, some Q. petraea stands might have partially benefited from the “fertilizing” effect of rising Ca, whereas P. sylvestris stands due to their strict closure of stomata did not profit from increased iWUE and consequently showed in general growth reductions across sites. Additionally, the inter‐annual variability of BAI and iWUE displayed a geographical polarity in the Mediterranean.  相似文献   

15.
This study investigates the mechanism of action behind the long‐term responses (12–16 months) of two BRAF WT melanoma patients to the AKT inhibitor MK‐2206 in combination with paclitaxel and carboplatin. Although single agent MK‐2206 inhibited phospho‐AKT signaling, it did not impact in vitro melanoma growth or survival. The combination of MK‐2206 with paclitaxel and carboplatin was cytotoxic in long‐term colony formation and 3D spheroid assays, and induced autophagy. Autophagy was initially protective with autophagy inhibitors and deletion of ATG5 found to enhance cytotoxicity. Although prolonged autophagy induction (>6 days) led to caspase‐dependent apoptosis, drug resistant clones still emerged. Autophagy inhibition enhanced the cell death response through reactive oxygen species and could be reversed by anti‐oxidants. We demonstrate for the first time that AKT inhibition in combination with chemotherapy may have clinical activity in BRAF WT melanoma and show that an autophagy inhibitor may prevent resistance to these drugs.  相似文献   

16.
Drought‐induced tree mortality is occurring across all forested continents and is expected to increase worldwide during the coming century. Regional‐scale forest die‐off influences terrestrial albedo, carbon and water budgets, and land‐surface energy partitioning. Although increased temperatures during drought are widely identified as a critical contributor to exacerbated tree mortality associated with “global‐change‐type drought”, corresponding changes in vapor pressure deficit (D) have rarely been considered explicitly and have not been disaggregated from that of temperature per se. Here, we apply a detailed mechanistic soil–plant–atmosphere model to examine the impacts of drought, increased air temperature (+2°C or +5°C), and increased vapor pressure deficit (D; +1 kPa or +2.5 kPa), singly and in combination, on net primary productivity (NPP) and transpiration and forest responses, especially soil moisture content, leaf water potential, and stomatal conductance. We show that increased D exerts a larger detrimental effect on transpiration and NPP, than increased temperature alone, with or without the imposition of a 3‐month drought. Combined with drought, the effect of increased D on NPP was substantially larger than that of drought plus increased temperature. Thus, the number of days when NPP was zero across the 2‐year simulation was 13 or 14 days in the control and increased temperature scenarios, but increased to approximately 200 days when D was increased. Drought alone increased the number of days of zero NPP to 88, but drought plus increased temperature did not increase the number of days. In contrast, drought and increased D resulted in the number of days when NPP = 0 increasing to 235 (+1 kPa) or 304 days (+2.5 kPa). We conclude that correct identification of the causes of global change‐type mortality events requires explicit consideration of the influence of D as well as its interaction with drought and temperature.  相似文献   

17.
Although tropical forests have been rapidly converted into human‐modified landscapes, tree species response to forest edges remains poorly examined. In this study, we addressed four pioneer tree species to document demographic shifts experienced by this key ecological group and make inferences about pioneer response to forest edges. All individuals with dbh ≥ 1 cm of two short‐lived (Bellucia grossularioides and Cecropia sciadophylla) and two long‐lived species (Goupia glabra and Laetia procera) were sampled in 20 1‐ha forest edge plots and 20 1‐ha forest interior plots in Oiapoque and Manaus, Northeast and Central Amazon, respectively. As expected, pioneer stem density with dbh ≥ 1 cm increased by around 10–17‐fold along forest edges regardless of species, lifespan, and study site. Edge populations of long‐lived pioneers presented 84–94 percent of their individuals in sapling/subadult size classes, whereas edge populations of short‐lived pioneers showed 56–97 percent of their individuals in adult size classes. These demographic biases were associated with negative and positive net adult recruitment of long‐ and short‐lived pioneers, respectively. Our population‐level analyses support three general statements: (1) native pioneer tree species proliferate along forest edges (i.e., increased density), at least in terms of non‐reproductive individuals; (2) pioneer response to edge establishment is not homogeneous as species differ in terms of demographic structure and net adult recruitment; and (3) some pioneer species, particularly long‐lived ones, may experience population decline due to adult sensitivity to edge‐affected habitats.  相似文献   

18.
Tropical late‐successional tree species are at high risk of local extinction due to habitat loss and fragmentation. Population‐growth rates in fragmented populations are predicted to decline as a result of reduced fecundity, survival and growth. We examined the demographic effects of habitat fragmentation by comparing the population dynamics of the late‐successional tree Poulsenia armata (Moraceae) in southern Mexico between a continuous forest and several forest fragments using integral projection models (IPMs) during 2010–2012. Forest fragmentation did not lead to differences in population density and even resulted in a higher population‐growth rate (λ) in fragments compared to continuous forests. Habitat fragmentation had drastic effects on the dynamics of P. armata, causing the population structure to shift toward smaller sizes. Fragmented populations experienced a significant decrease in juvenile survival and growth compared to unaltered populations. Adult survival and growth made the greatest relative contributions to λ in both habitat types during 2011–2012. However, the relative importance of juvenile survival and growth to λ was highest in the fragmented forest in 2010–2011. Our Life Table Response Experiment analysis revealed that positive contributions of adult fecundity explained most of the variation of λ between both habitats and annual periods. Finally, P. armata has a relatively slow speed of recovery after disturbances, compromising persistence of fragmented populations. Developing a mechanistic understanding of how forest fragmentation affects plant population dynamics, as done here, will prove essential for the preservation of natural areas.  相似文献   

19.
The rise in atmospheric CO2 concentrations (Ca) has been related to tree growth enhancement and increasing intrinsic water‐use efficiency (iWUE). However, the extent that rising Ca has led to increased long‐term iWUE and whether climate could explain deviations from expected Ca‐induced growth enhancement are still poorly understood. The aim of this research was to use Ca and local climatic variability to explain changes during the 20th century in growth and tree ring and needle δ13C in declining and nondeclining Abies alba stands from the Spanish Pyrenees, near the southern distribution limit of this species. The temporal trends of iWUE were calculated under three theoretical scenarios for the regulation of plant‐gas exchange at increasing Ca. We tested different linear mixed‐effects models by multimodel selection criteria to predict basal area increment (BAI), a proxy of tree radial growth, using these scenarios and local temperature together with precipitation data as predictors. The theoretical scenario assuming the strongest response to Ca explained 66–81% of the iWUE variance and 28–56% of the observed BAI variance, whereas local climatic variables together explained less than 11–21% of the BAI variance. Our results are consistent with a drought‐induced limitation of the tree growth response to rising CO2 and a decreasing rate of iWUE improvement from the 1980s onward in declining A. alba stands subjected to lower water availability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号