首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We studied the role of cholesterol in regulated protein secretion in neuroendocrine cells by manipulating the cholesterol content of AtT-20 cells. Depletion of cellular cholesterol levels caused a reversible block of immature secretory granule biogenesis at the level of the trans -Golgi-network, whereas increased cholesterol levels promoted immature secretory granule formation. Cholesterol depletion also blocked the formation of constitutive secretory vesicles, but did not inhibit the transport between the endoplasmic reticulum and the Golgi complex. Our results indicate that the assembly of cholesterol-based lipid microdomains is required for the biogenesis of both regulated and constitutive secretory vesicles from the trans -Golgi-network in neuroendocrine cells.  相似文献   

2.
We have studied by electron microscopy and immunocytochemistry the formation of secretory granules containing adrenocorticotropic hormone (ACTH) in murine pituitary cells of the AtT20 line. The first compartment in which condensed secretory protein appears is a complex reticular network at the extreme trans side of the Golgi stacks beyond the TPPase-positive cisternae. Condensed secretory protein accumulates in dilated regions of this trans Golgi network. Examination of en face and serial sections revealed that "condensing vacuoles" are in fact dilations of the trans Golgi network and not detached vacuoles. Only after presumptive secretory granules have reached an advanced stage of morphological maturation do they detach from the trans Golgi network. Frequently both the dilations of the trans Golgi network containing condensing secretory protein and the detached immature granules in the peri-Golgi region have surface coats which were identified as clathrin by immunocytochemistry. Moreover both are the site of budding (or fusion) of coated vesicles, some of which contain condensed secretory protein. The mature granules below the plasma membrane do not, however, have surface coats. Immunoperoxidase labeling with an antiserum specific for ACTH and its precursor polypeptide confirmed that many of the coated vesicles associated with the trans Golgi network contain ACTH. The involvement of the trans Golgi network and coated vesicles in the formation of secretory granules is discussed.  相似文献   

3.
Chromogranin A is a member of the granin family of acidic secretory glycoproteins that is found in secretory granules of many endocrine cells including neuroendocrine tumour cells. This hormone serves as a model system for autonomous hormone secretion by the so called functional neuroendocrine tumours of the gastrointestinal tract. The precise regulation of chromogranin secretion at the level of the Golgi apparatus is a subject of intense research. The protein kinase D (PKD) family of serine threonine kinases has so far been implicated in the regulation of constitutive secretion in epithelial cells. Here we examined whether PKD2 expression and activity could also play a role in the release of secretory granules from the trans Golgi network (TGN) in neuroendocrine tumour cells and hence be a target to block autonomous secretion by these tumours. Our data show that expression and catalytic activity of PKD2 are required for the release of chromogranin A containing secretory vesicles. Inhibition of PKD2 activity or siRNA knockdown of PKD2 resulted in a marked perinuclear retention of chromogranin A immunofluorescence in the trans Golgi network and led to a marked reduction in basal as well as phorbol ester stimulated secretion of chromogranin A into the supernatant of cells. Thus, PKD2 controls the release of secretory granules in neuroendocrine tumour cells at the level of the Golgi apparatus and could hence serve as a novel target to block hormone secretion in functional neuroendocrine tumours.  相似文献   

4.
Summary In nongrowing secretory cells of plants, large quantities of membrane are transferred from the Golgi apparatus to the plasma membrane without a corresponding increase in cell surface area or accumulation of internal membranes. Movement and/or redistribution of membrane occurs also in trans Golgi apparatus cisternae which disappear after being sloughed from the dictyosome, and in secretory vesicles which lose much of their membrane in transit to the cell surface. These processes have been visualized in freeze-substituted corn rootcap cells and a structural basis for membrane loss during trafficking is seen. It involves three forms of coated membranes associated with the trans parts of the Golgi apparatus, with cisternae and secretory vesicles, and with plasma membranes. The coated regions of the plasma membrane were predominantly located at sites of recent fusion of secretory vesicles suggesting a vesicular mechanism of membrane removal. The two other forms of coated vesicles were associated with the trans cisternae, with secretory vesicles, and with a post Golgi apparatus tubular/vesicular network not unlike the TGN of animal cells. However, the trans Golgi network in plants, unlike that in animals, appears to derive directly from the trans cisternae and then vesiculate. The magnitude of the coated membrane-mediated contribution of the endocytic pathway to the formation of the TGN in rootcap cells is unknown. Continued formation of new Golgi apparatus cisternae would be required to maintain the relatively constant form of the Golgi apparatus and TGN, as is observed during periods of active secretion.  相似文献   

5.
ECL cells are numerous in the rat stomach. They produce and store histamine and chromogranin-A (CGA)-derived peptides such as pancreastatin and respond to gastrin with secretion of these products. Numerous electron-lucent vesicles of varying size and a few small, dense-cored granules are found in the cytoplasm. Using confocal and electron microscopy, we examined these organelles and their metamorphosis as they underwent intracellular transport from the Golgi area to the cell periphery. ECL-cell histamine was found to occur in both cytosol and secretory vesicles. Histidine decarboxylase, the histamine-forming enzyme, was in the cytosol, while pancreastatin (and possibly other peptide products) was confined to the dense cores of granules and secretory vesicles. Dense-cored granules and small, clear microvesicles were more numerous in the Golgi area than in the docking zone, i.e. close to the plasma membrane. Secretory vesicles were numerous in both Golgi area and docking zone, where they were sometimes seen to be attached to the plasma membrane. Upon acute gastrin stimulation, histamine was mobilized and the compartment size (volume density) of secretory vesicles in the docking zone was decreased, while the compartment size of microvesicles was increased. Based on these findings, we propose the following life cycle of secretory organelles in ECL cells: small, electron-lucent microvesicles (pro-granules) bud off the trans Golgi network, carrying proteins and secretory peptide precursors (such as CGA and an anticipated prohormone). They are transformed into dense-cored granules (approximate profile diameter 100 nm) while still in the trans Golgi area. Pro-granules and granules accumulate histamine, which leads to their metamorphosis into dense-cored secretory vesicles. In the Golgi area the secretory vesicles have an approximate profile diameter of 150 nm. By the time they reach their destination in the docking zone, their profile diameter is between 200 and 500 nm. Exocytosis is coupled with endocytosis (membrane retrieval), and microvesicles in the docking zone are likely to represent membrane retrieval vesicles (endocytotic vesicles).  相似文献   

6.
The distribution of three proteins discharged by regulated exocytosis--growth hormone (GH), prolactin (PRL), and secretogranin II (SgII)--was investigated by double immunolabeling of ultrathin frozen sections in the acidophilic cells of the bovine pituitary. In mammotrophs, heavy PRL labeling was observed over secretory granule matrices (including the immature matrices at the trans Golgi surface) and also over Golgi cisternae. In contrast, in somatotrophs heavy GH labeling was restricted to the granule matrices; vesicles and tubules at the trans Golgi region showed some and the Golgi cisternae only sparse labeling. All somatotrophs and mammotrophs were heavily positive for GH and PRL, respectively, and were found to contain small amounts of the other hormone as well, which, however, was almost completely absent from granules, and was more concentrated in the Golgi complex, admixed with the predominant hormone. Mixed somatomammotrophs (approximately 26% of the acidophilic cells) were heavily positive for both GH and PRL. Although admixed within Golgi cisternae, the two hormones were stored separately within distinct granule types. A third type of granule was found to contain SgII. Spillage of small amounts of each of the three secretory proteins into granules containing predominantly another protein was common, but true intermixing (i.e., coexistence within single granules of comparable amounts of two proteins) was very rare. It is concluded that in the regulated pathway of acidophilic pituitary, cell mechanisms exist that cause sorting of the three secretory proteins investigated. Such mechanisms operate beyond the Golgi cisternae, possibly at the sites where condensation of secretion products into granule matrices takes place.  相似文献   

7.
Proteins are sorted and packaged into regulated secretory granules at the trans Golgi network but how such granules form is poorly understood. We are studying Muclin, the major sulfated protein of the mouse pancreatic acinar cell, and what its role may be in zymogen granule formation. Muclin behaves as a peripheral membrane protein localized to the lumen of the zymogen granule but the cDNA for this protein predicts it is a type I membrane protein with a short, 16-amino-acid, cytosolic tail (C-Tail). Using domain-specific antibodies, we demonstrate that Muclin is derived from a precursor, pro-Muclin, which is cleaved to produce Muclin and an approximately 80-kDa membrane glycoprotein (p80). Incubation of pulse-labeled cells at < or = 22 degrees C to block exit from the trans Golgi network also blocks cleavage of pro-Muclin but not sulfation, a trans Golgi network event, suggesting that cleavage occurs in a post-Golgi compartment. After cleavage the two products of pro-Muclin diverge with Muclin remaining in the regulated secretory pathway and p80 trafficking to the apical plasma membrane, presumably via the constitutive-like pathway. When transfected into exocrine AR42J cells, Muclin labeling is perinuclear and in large sub-plasma membrane puncta. Transiently transfected AR42J cells have greater immunolabeling for amylase than nontransfected cells, suggesting a role for Muclin in cargo accumulation in the regulated secretory pathway. A construct with the C-Tail deleted targets to small diffusely-distributed puncta and without the large sub-plasma membrane structures. Thus, the C-Tail is required for proper Muclin targeting. When transfected into neuroendocrine AtT-20 cells Muclin is not colocalized with ACTH in cell processes, and it appears to be constitutively trafficked to the plasma membrane, suggesting that Muclin has exocrine-specific information. We present a working model for pro-Muclin as a Golgi cargo receptor for exocrine secretory granule formation at the trans Golgi network.  相似文献   

8.
The formation of dense core secretory granules is a multistage process beginning in the trans Golgi network and continuing during a period of granule maturation. Direct interactions between proteins in the membrane and those in the forming dense core may be important for sorting during this process, as well as for organizing membrane proteins in mature granules. We have isolated two mutants in dense core granule formation in the ciliate Tetrahymena thermophila, an organism in which this pathway is genetically accessible. The mutants lie in two distinct genes but have similar phenotypes, marked by accumulation of a set of granule cargo markers in intracellular vesicles resembling immature secretory granules. Sorting to these vesicles appears specific, since they do not contain detectable levels of an extraneous secretory marker. The mutants were initially identified on the basis of aberrant proprotein processing, but also showed defects in the docking of the immature granules. These defects, in core assembly and docking, were similarly conditional with respect to growth conditions, and therefore are likely to be tightly linked. In starved cells, the processing defect was less severe, and the immature granules could dock but still did not undergo stimulated exocytosis. We identified a lumenal protein that localizes to the docking-competent end of wildtype granules, but which is delocalized in the mutants. Our results suggest that dense cores have functionally distinct domains that may be important for organizing membrane proteins involved in docking and fusion.  相似文献   

9.
Insulin increases the exocytosis of many soluble and membrane proteins in adipocytes. This may reflect a general effect of insulin on protein export from the trans Golgi network. To test this hypothesis, we have compared the trafficking of the secreted serine protease adipsin and the integral membrane proteins GLUT4 and transferrin receptors in 3T3-L1 adipocytes. We show that adipsin is secreted from the trans Golgi network to the endosomal system, as ablation of endosomes using transferrin-HRP conjugates strongly inhibited adipsin secretion. Phospholipase D has been implicated in export from the trans Golgi network, and we show that insulin stimulates phospholipase D activity in these cells. Inhibition of phospholipase D action with butan-1-ol blocked adipsin secretion and resulted in accumulation of adipsin in trans Golgi network-derived vesicles. In contrast, butan-1-ol did not affect the insulin-stimulated movement of transferrin receptors to the plasma membrane, whereas this was abrogated following endosome ablation. GLUT4 trafficking to the cell surface does not utilise this pathway, as insulin-stimulated GLUT4 translocation is still observed after endosome ablation or inhibition of phospholipase D activity. Immunolabelling revealed that adipsin and GLUT4 are predominantly localised to distinct intracellular compartments. These data suggest that insulin stimulates the activity of the constitutive secretory pathway in adipocytes possibly by increasing the budding step at the TGN by a phospholipase D-dependent mechanism. This may have relevance for the secretion of other soluble molecules from these cells. This is not the pathway employed to deliver GLUT4 to the plasma membrane, arguing that insulin stimulates multiple pathways to the cell surface in adipocytes.  相似文献   

10.
Type 2 diabetes is caused by defects in both insulin sensitivity and insulin secretion. Glucose triggers insulin secretion by causing exocytosis of insulin granules from pancreatic β‐cells. High circulating cholesterol levels and a diminished capacity of serum to remove cholesterol from β‐cells are observed in diabetic individuals. Both of these effects can lead to cholesterol accumulation in β‐cells and contribute to β‐cell dysfunction. However, the molecular mechanisms by which cholesterol accumulation impairs β‐cell function remain largely unknown. Here, we used total internal reflection fluorescence microscopy to address, at the single‐granule level, the role of cholesterol in regulating fusion pore dynamics during insulin exocytosis. We focused particularly on the effects of cholesterol overload, which is relevant to type 2 diabetes. We show that excess cholesterol reduced the number of glucose‐stimulated fusion events, and modulated the proportion of full fusion and kiss‐and‐run fusion events. Analysis of single exocytic events revealed distinct fusion kinetics, with more clustered and compound exocytosis observed in cholesterol‐overloaded β‐cells. We provide evidence for the involvement of the GTPase dynamin, which is regulated in part by cholesterol‐induced phosphatidylinositol 4,5‐bisphosphate enrichment in the plasma membrane, in the switch between full fusion and kiss‐and‐run fusion. Characterization of insulin exocytosis offers insights into the role that elevated cholesterol may play in the development of type 2 diabetes.  相似文献   

11.
In the region of the base of the intestinal crypts undifferentiated goblet cells display a configuration and constellation of organelles and membrane structures that are indicative of their importance for function. These images at this stage of development deliver a scenario of the mechanism of secretory granule production: aggregates of protein vesicles from the "transitional elements" (PALADE) of the granular endoplasmic reticulum are, so to speak, rolled up on the trans side of the Golgi apparatus by inversion of peripheral membrane segments of the innermost Golgi lamellae, thereby forming corpuscles. The origin of the capsulated vacuoles, which contain vesicles as single elements or as conglomerates, is well established. Their capsule consists of a trilaminar external and external and internal membrane; between them lies condensed material of the Golgi apparatus. In the opinion of the present author, the development of the ensheathed vacuoles represents a basic, more general mechanism. In contrast, the further steps of synthesis, for the formation of secretory granules, are more heterogeneous. Condensation of the vesicles and the inner capsular membrane results in the formation of a prosecretory granule, which in the basic element in the process of secretory granule production. The prosecretory granules develop singly or by fusion with other granules to give primary secretory granules. The complexity of this mechanism of secretory granule formation, however, becomes evident when considering the apposition of capsulated vacuoles and prosecretory--primary--secondary secretory granules, of prosecretory and primary secretory granules as well as prosecretory granules and secondary secretory granules. Generally, primary granules show a tendency to become secondary secretory granules or to fuse with them. During maturation of the goblet cells the secretory granules fuse to form larger mucous bodies in the theca by fusion of the laminae of the membranes; a final product, there is a homogeneous mucous mass devoid of membranes.  相似文献   

12.
Somatotrophs from male rat anterior pituitary were used to investigate the formation of secretory granules. When enzymatically dispersed cells were incubated with cationized ferritin (CF) for 15 min, CF labeled immature secretory granules, but not mature granules of somatotrophs. Most immature granules labeled by CF transformed to the mature types within 120 min. This indicates that the fusion of endocytic vesicles with the immature granules occurs during the maturation process of secretory granules. The internalized CF was distributed not only in the immature secretory granules, but also in the peripheral region of trans Golgi cisternae or GERL. Enzyme cytochemistry revealed that acid phosphatase-positive cisternae (GERL) were the main site for secretory granule formation, and was devoid of thiamine pyrophosphatase (TPPase) activity. A small number of secretory granules were also present in the peripheral regions of TPPase-positive Golgi cisternae. The granule-forming sites, however, lacked TPPase activity, while the remaining region of the same cisterna showed the positive enzyme activity. This indicates that the granule-forming region at the periphery of Golgi cisterna is different from the remaining part of the same cisterna in terms of cytochemical properties. This probably results from the insertion of endocytic vesicle membrane, since the same granule-forming sites preferentially fused with CF-labeled small vesicles which lacked cytochemical TPPase activity. Taken together. Our results suggest that the membrane of secretory granules is modified during the granule formation, at least partly by the fusion of endocytic small vesicles with Golgi cisternae (or GERL), and with immature secretory granules.  相似文献   

13.
Proximal spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by deficiency of the ubiquitous Survival of Motor Neuron (SMN) protein. SMN has been shown to be transported in granules along the axon and moved through cytoskeletal elements. However, the role and nature of SMN granules are still not well characterized. Here, using immunocytochemical methods and time-lapse studies we show that SMN granules colocalize with the Golgi apparatus in motor neuron-like NSC34 cells. Electron microscopy clearly revealed that SMN granules are transported into the Golgi stack and aggregate in the trans-Golgi apparatus. SMN granules are characterized as either coated or un-coated and behave like regulated secretory granules. Treatment of cells with monensin to disrupt Golgi-mediated granule secretion decreased SMN expression in neurites and caused growth cone defects similar to those seen in SMN knockdown cells. Knockdown of Cop-α, the protein that coats vesicles transporting proteins between the Golgi compartments, caused SMN granule accumulation in the Golgi apparatus. In addition to the well-studied role of SMN in small nuclear ribonucleoprotein (SnRNP) assembly, this work links SMN granules with the Golgi network and thus sheds light on Golgi-mediated SMN granule transport.  相似文献   

14.
Toxoplasma gondii relies on protein secretion from specialized organelles for invasion of host cells and establishment of a parasitophorous vacuole. We identify T. gondii Rab6 as a regulator of protein transport between post-Golgi dense granule organelles and the Golgi. Toxoplasma Rab6 was localized to cisternal rims of the late Golgi and trans-Golgi network, associated transport vesicles, and microdomains of dense granule and endosomal membranes. Overexpression of wild-type Rab6 or GTP-activated Rab6(Q70L) rerouted soluble dense granule secretory proteins to the Golgi and endoplasmic reticulum and augmented the effect of brefeldin A on Golgi resorption to the endoplasmic reticulum. Parasites expressing a nucleotide-free (Rab6(N124I)) or a GDP-bound (Rab6(T25N)) mutant accumulated dense granule proteins in the Golgi and associated transport vesicles and displayed reduced secretion of GRA4 and a delay in glycosylation of GRA2. Activated Rab6 on Golgi membranes colocalized with centrin during mitosis, and parasite clones expressing Rab6 mutants displayed a partial shift in cytokinesis from endodyogeny (formation of two daughter cells) to endopolygeny (multiple daughter cells). We propose that Toxoplasma Rab6 regulates retrograde transport from post-Golgi secretory granules to the parasite Golgi.  相似文献   

15.
The surface epithelium of the bursa of Fabricius consists of interfollicular (IFE) and follicle‐associated epithelium (FAE). The IFE comprises (i) cylindrical‐shaped secretory cells (SC) and (ii) cuboidal basal cells (BCs). The FAE provides histological and two‐way functional connections between the bursal lumen and medulla of the follicle. We used a carbon solution and anti‐caveolin‐1 (Cav‐1) to study the endocytic activity of FAE. Carbon particles entered the intercellular space of FAE, but the carbon particles were not internalized by the FAE cells. Cav‐1 was not detectable in the FAE cells or the medulla of the bursal follicle. The absence of Cav‐1 indicates that no caveolin‐mediated endocytosis occurs in the FAE cells, B cells, bursal secretory dendritic cells (BSDC), or reticular epithelial cells. Surprisingly, a significant number of Cav‐1 positive cells can be found among the SC, which are designated SC II. Cav‐1 negative cell are called SC I, and they produce mucin for lubricating the bursal lumen and duct. Occasionally, BCs also express Cav‐1, which suggests that BC is a precursor of a SC. Transmission electron microscopy confirmed the existence of type I and II SC. The SC II are highly polarized and have an extensive trans‐Golgi network that is rich in different granules and vesicles. Western blot analysis of bursa lysates revealed a 21–23 kDa compound (caveolin) and Filipin fluorescence histochemistry provided evidence for intracellular cholesterol. High amount of cholesterol in the feces shows the cholesterol efflux from SC II. The presence of Cav‐1 and cholesterol in SC II indicates, that the bursa is a complex organ in addition to possessing immunological function contributes to the cholesterol homeostasis in the chickens.  相似文献   

16.
The direct identification of the intracellular site where proinsulin is proteolytically processed into insulin has been achieved by immunocytochemistry using an insulin-specific monoclonal antibody. Insulin immunoreactivity is absent from the Golgi stack of pancreatic B-cells and first becomes detectable in clathrin-coated secretory vesicles released from the trans Golgi pole. Clathrin-coated secretory vesicles transform into mature noncoated secretory granules which contain the highest concentration of insulin immunoreactive sites. Maturation of clathrin-coated secretory vesicles is accompanied by a progressive acidification of the vesicular milieu, as evidenced by a cytochemical probe that accumulates in acidic compartments whereupon it can be revealed by immunocytochemistry. Thus packaging of the prohormone in secretory vesicles, and acidification of this compartment, are critical steps in the proper proteolytic maturation of insulin.  相似文献   

17.
The vasopressin-producing neurons of the hypothalamo-neurohypophysial system are a particularly good model with which to consider the relationship between the Golgi apparatus nd GERL and their roles in secretory granule production because these neurons increase their synthesis and secretion of vasopressin in response to hyperosmotic stress. Enzyme cytochemical techniques for acid phosphatase (AcPase) and thiamine pyrophosphatase (TPPase) activities were used to distinguish GERL from the Golgi apparatus in cell bodies of the supraoptic nucleus from normal mice, mice hyperosmotically stressed by drinking 2% salt water, and mice allowed to recover for 5-10 d from hyperosmotic stress. In nonincubated preparations of control supraoptic perikarya, immature secretory granules at the trans face of the Golgi apparatus were frequently attached to a narrow, smooth membrane cisterna identified as GERL. Secretory granules were occasionally seen attached to Golgi saccules. TPPase activity was present in one or two of the trans Golgi saccules; AcPase activity appeared in GERL and attached immature secretory granules, rarely in the trans Golgi saccules, and in secondary lysosomes. As a result of hyperosmotic stress, the Golgi apparatus hypertrophied, and secretory granules formed from all Golgi saccules and GERL. Little or no AcPase activity could be demonstrated in GERL, whereas all Golgi saccules and GERL-like cisternae were TPPase positive. During recovery, AcPase activity in GERL returned to normal; however, the elevated TPPase activity and secretory granule formation seen in GERL-like cisternae and all Golgi saccules during hyperosmotic stress persisted. These results suggest that under normal conditions GERL is the predominant site for the secretory granule formation, but during hyperosmotic stress, the Golgi saccules assume increased importance in this function. The observed cytochemical modulations in Golgi saccules and GERL suggest that GERL is structurally and functionally related to the Golgi saccules.  相似文献   

18.
Sorting ourselves out: seeking consensus on trafficking in the beta-cell   总被引:2,自引:0,他引:2  
Biogenesis of the regulated secretory pathway in the pancreatic beta-cell involves packaging of products, notably proinsulin, into immature secretory granules derived from the trans -Golgi network. Proinsulin is converted to insulin and C-peptide as granules mature. Secretory proteins not entering granules are conveyed by transport intermediates directly to the plasma membrane for constitutive secretion. One of the co-authors, Peter Arvan, has proposed that in addition, small vesicles bud from granules to traffic to the endosomal system. From there, some proteins are secreted by a (post-granular) constitutive-like pathway. He argues that retention in granules is facilitated by condensation, rendering soluble products (notably C-peptide and proinsulin) more available for constitutive-like secretion. Thus he argues that prohormone conversion is potentially important in secretory granule biogenesis. The other co-author, Philippe Halban, argues that the post-granular secretory pathway is not of physiological relevance in primary beta-cells, and contests the importance of proinsulin conversion for retention in granules. Both, however, agree that trafficking from granules to endosomes is important, purging granules of unwanted newly synthesized proteins and allowing their traffic to other destinations. In this Traffic Interchange, the two co-authors attempt to reconcile their differences, leading to a common vision of proinsulin trafficking in primary and transformed cells.  相似文献   

19.
A novel compositional overlap between membranes of exocrine and endocrine granules, synaptic vesicles, and a liver Golgi fraction has been identified using a monoclonal antibody (SG7C12) raised against parotid secretion granule membranes. This antibody binds secretory carrier membrane proteins with apparent Mr 31,000, 33,000 and 35,000 (designated SCAMPs 31, 33, 35). The proteins are nonglycosylated integral membrane components, and the epitope recognized by SG7C12 is on the cytoplasmic side of the granule membrane. SCAMP 33 is found in all secretory carrier membranes studied so far while SCAMP 35 is found in exocrine and certain endocrine granules and liver Golgi membranes and SCAMP31 only in exocrine granules. They are not related to other similar-sized proteins that have been studied previously in relation to vesicular transport and secretion. Immunocytochemical staining shows that these SCAMPs are highly concentrated in the apical cytoplasm of exocrine cells. Antigens are present not only on exocrine granules and synaptic vesicles but also on other smooth membrane vesicles of exocrine and neural origin as revealed by immunolocalization in subcellular fractions and immunoadsorption to antibody-coated magnetic beads. The wide tissue distribution and localization to secretory carriers and related membranes suggest that SCAMPs 31-35 may be essential components in vesicle-mediated transport/secretion.  相似文献   

20.
The distribution of thiamine pyrophosphatase (TPPase) and acid phosphatase (AcPase) has been examined in resting parotid acinar cells as well as during decreased and increased secretory granule production. In resting acinar cells, TPPase activity was restricted to the trans Golgi saccules and AcPase activity was localized in GERL and immature secretory granules. Although secretory granule production is diminished during ethionine intoxication, no significant alteration in the distribution of either TPPase or AcPase was noted. However, marked changes in enzyme localization, especially of TPPase, occurred during accelerated secretory granule production. The alterations were essentially the same for all of the conditions studied (recovery from ethionine treatment, recovery from a protein depletion diet, secretory stimulation with isoproterenol, and postnatal maturation of the parotid gland). During maximal secretory granule production, TPPase activity was localized not only in the trans Golgi saccules, but also in GERL-like cisternae and immature secretory granules. The immature secretory granules were often in continuity with the GERL-like cisternae. At the same time that the TPPase activity was increased, the AcPase activity was frequently diminished. These modulations in enzyme activity provide evidence that GERL is derived from the trans Golgi saccule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号