首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature‐dependent tulip petal opening and closing movement was previously suggested to be regulated by reversible phosphorylation of a plasma membrane aquaporin ( Azad et al., 2004a ). Stomatal apertures of petals were investigated during petal opening at 20°C and closing at 5°C. In completely open petals, the proportion of open stomata in outer and inner surfaces of the same petal was 27 ± 6% and 65 ± 3%, respectively. During the course of petal closing, stomatal apertures in both surfaces reversed, and in completely closed petals, the proportion of open stomata in outer and inner surfaces of the same petal was 74 ± 3% and 29 ± 6%, respectively, indicating an inverse relationship between stomatal aperture in outer and inner surfaces of the petal during petal opening and closing. Both petal opening and stomatal closure in the outer surface of the petal was inhibited by a Ca2+ channel blocker and a Ca2+ chelator, whereas the inner surface stomata remained unaffected. On the other hand, sodium nitroprusside, a nitric oxide donor, had no effect on stomatal aperture of the outer surface but influenced the inner surface stomatal aperture during petal opening and closing, suggesting different signalling pathways for regulation of temperature‐dependent stomatal changes in the two surfaces of tulip petals. Stomata were found to be differentially distributed in the bottom, middle and upper parts of tulip petals. During petal closing, water transpiration was observed by measuring the loss of 3H2O. Transpiration of 3H2O by petals was fivefold greater in the first 10 min than that found after 30 min, and the transpiration rate was shown to be associated with stomatal distribution and aperture. Thus, the stomata of outer and inner surfaces of the petal are involved in the accumulation and transpiration of water during petal opening.  相似文献   

2.
  • Elevated atmospheric input of nitrogen (N) is currently affecting plant biodiversity and ecosystem functioning. The growth and survival of numerous plant species is known to respond strongly to N fertilisation. Yet, few studies have assessed the effects of N deposition on seed quality and reproductive performance, which is an important life‐history stage of plants.
  • Here we address this knowledge gap by assessing the effects of atmospheric N deposition on seed quality of the ancient forest herb Anemone nemorosa using two complementary approaches.
  • By taking advantage of the wide spatiotemporal variation in N deposition rates in pan‐European temperate and boreal forests over 2 years, we detected positive effects of N deposition on the N concentration (percentage N per unit seed mass, increased from 2.8% to 4.1%) and N content (total N mass per seed more than doubled) of A. nemorosa seeds. In a complementary experiment, we applied ammonium nitrate to aboveground plant tissues and the soil surface to determine whether dissolved N sources in precipitation could be incorporated into seeds. Although the addition of N to leaves and the soil surface had no effect, a concentrated N solution applied to petals during anthesis resulted in increased seed mass, seed N concentration and N content.
  • Our results demonstrate that N deposition on the petals enhances bioaccumulation of N in the seeds of A. nemorosa. Enhanced atmospheric inputs of N can thus not only affect growth and population dynamics via root or canopy uptake, but can also influence seed quality and reproduction via intake through the inflorescences.
  相似文献   

3.
Concentrations and natural isotope abundance of total sulfur and nitrogen as well as sulfate and nitrate concentrations were measured in needles of different age classes and in soil samples of different horizons from a healthy and a declining Norway spruce (Picea abies (L.) Karst.) forest in the Fichtelgebirge (NE Bavaria, Germany), in order to study the fate of atmospheric depositions of sulfur and nitrogen compounds. The mean δ15N of the needles ranged between −3.7 and −2.1 ‰ and for δ34S a range between −0.4 and +0.9 ‰ was observed. δ34S and sulfur concentrations in the needles of both stands increased continuously with needle age and thus, were closely correlated. The δ15N values of the needles showed an initial decrease followed by an increase with needle age. The healthy stand showed more negative δ15N values in old needles than the declining stand. Nitrogen concentrations decreased with needle age. For soil samples at both sites the mean δ15N and δ34S values increased from −3 ‰ (δ15N) or +0.9 ‰ (δ34S) in the uppermost organic layer to about +4 ‰ (δ15N) or +4.5 ‰ (δ34S) in the mineral soil. This depth-dependent increase in abundance of 15N and 34S was accompanied by a decrease in total nitrogen and sulfur concentrations in the soil. δ15N values and nitrogen concentrations were closely correlated (slope −0.0061 ‰ δ15N per μmol eq N gdw −1), and δ34S values were linearly correlated with sulfur concentrations (slope −0.0576 ‰ δ34S per μmol eq S gdw −1). It follows that in the same soil samples sulfur concentrations were linearly correlated with the nitrogen concentrations (slope 0.0527), and δ34S values were linearly correlated with δ15N values (slope 0.459). A correlation of the sulfur and nitrogen isotope abundances on a Δ basis (which considers the different relative frequencies of 15N and 34S), however, revealed an isotope fractionation that was higher by a factor of 5 for sulfur than for nitrogen (slope 5.292). These correlations indicate a long term synchronous mineralization of organic nitrogen and sulfur compounds in the soil accompanied by element-specific isotope fractionations. Based on different sulfur isotope abundance of the soil (δ34S=0.9 ‰ for total sulfur of the organic layer was assumed to be equivalent to about −1.0 ‰ for soil sulfate) and of the atmospheric SO2 deposition (δ34S=2.0 ‰ at the healthy site and 2.3 ‰ at the declining site) the contribution of atmospheric SO2 to total sulfur of the needles was estimated. This contribution increased from about 20 % in current-year needles to more than 50 % in 3-year-old needles. The proportion of sulfur from atmospheric deposition was equivalent to the age dependent sulfate accumulation in the needles. In contrast to the accumulation of atmospheric sulfur compounds nitrogen compounds from atmospheric deposition were metabolized and were used for growth. The implications of both responses to atmospheric deposition are discussed.  相似文献   

4.
A validated HPLC-DAD-ESI-MSn method for the analysis of non-anthocyanin flavonoids was applied to nine different tissues of twelve lotus genotypes of Nelumbo nucifera and N. lutea, together with an optimized anthocyanin extraction and separation protocol for lotus petals. A total of five anthocyanins and twenty non-anthocyanin flavonoids was identified and quantified. Flavonoid contents and compositions varied with cultivar and tissue and were used as a basis to divide tissues into three groups characterized by kaempferol and quercetin derivatives. Influences on flower petal coloration were investigated by principal components analyses. High contents of kaempferol glycosides were detected in the petals of N. nucifera while high quercetin glycoside concentrations occurred in N. lutea. Based on these results, biosynthetic pathways leading to specific compounds in lotus tissues are deduced through metabolomic analysis of different genotypes and tissues and correlations among flavonoid compounds.  相似文献   

5.
Elevated atmospheric carbon dioxide concentrations [CO2] is projected to increase forest production, which could increase ecosystem carbon (C) storage. This study contributes to our broad goal of understanding the causes and consequences of increased fine‐root production and mortality under elevated [CO2] by examining potential gross nitrogen (N) cycling rates throughout the soil profile. Our study was conducted in a CO2‐enriched sweetgum (Liquidambar styraciflua L.) plantation in Oak Ridge, TN, USA. We used 15N isotope pool dilution methodology to measure potential gross N cycling rates in laboratory incubations of soil from four depth increments to 60 cm. Our objectives were twofold: (1) to determine whether N is available for root acquisition in deeper soil and (2) to determine whether elevated [CO2], which has increased inputs of labile C resulting from greater fine‐root mortality at depth, has altered N cycling rates. Although gross N fluxes declined with soil depth, we found that N is potentially available for roots to access, especially below 15 cm depth where rates of microbial consumption of mineral N were reduced relative to production. Overall, up to 60% of potential gross N mineralization and 100% of potential net N mineralization occurred below 15 cm depth at this site. This finding was supported by in situ measurements from ion‐exchange resins, where total inorganic N availability at 55 cm depth was equal to or greater than N availability at 15 cm depth. While it is likely that trees grown under elevated [CO2] are accessing a larger pool of inorganic N by mining deeper soil, we found no effect of elevated [CO2] on potential gross or net N cycling rates. Thus, increased root exploration of the soil volume under elevated [CO2] may be more important than changes in potential gross N cycling rates in sustaining forest responses to rising atmospheric CO2.  相似文献   

6.
Whether nitrogen (N) availability will limit plant growth and removal of atmospheric CO2 by the terrestrial biosphere this century is controversial. Studies have suggested that N could progressively limit plant growth, as trees and soils accumulate N in slowly cycling biomass pools in response to increases in carbon sequestration. However, a question remains over whether longer-term (decadal to century) feedbacks between climate, CO2 and plant N uptake could emerge to reduce ecosystem-level N limitations. The symbioses between plants and microbes can help plants to acquire N from the soil or from the atmosphere via biological N2 fixation—the pathway through which N can be rapidly brought into ecosystems and thereby partially or completely alleviate N limitation on plant productivity. Here we present measurements of plant N isotope composition (δ15N) in a peat core that dates to 15,000 cal. year BP to ascertain ecosystem-level N cycling responses to rising atmospheric CO2 concentrations. We find that pre-industrial increases in global atmospheric CO2 concentrations corresponded with a decrease in the δ15N of both Sphagnum moss and Ericaceae when constrained for climatic factors. A modern experiment demonstrates that the δ15N of Sphagnum decreases with increasing N2-fixation rates. These findings suggest that plant-microbe symbioses that facilitate N acquisition are, over the long term, enhanced under rising atmospheric CO2 concentrations, highlighting an ecosystem-level feedback mechanism whereby N constraints on terrestrial carbon storage can be overcome.  相似文献   

7.
Biochar is produced as a by-product of the low temperature pyrolysis of biomass during bioenergy extraction and its incorporation into soil is of global interest as a potential carbon sequestration tool. Biochar influences soil nitrogen transformations and its capacity to take up ammonia is well recognized. Anthropogenic emissions of ammonia need to be mitigated due to negative environmental impacts and economic losses. Here we use an isotope of nitrogen to show that ammonia-N adsorbed by biochar is stable in ambient air, but readily bioavailable when placed in the soil. When biochars, containing adsorbed 15N labelled ammonia, were incorporated into soil the 15N recovery by roots averaged 6.8% but ranged from 26.1% to 10.9% in leaf tissue due to differing biochar properties with plant 15N recovery greater when acidic biochars were used to capture ammonia. Recovery of 15N as total soil nitrogen (organic+inorganic) ranged from 45% to 29% of 15N applied. We provide a proof of concept for a synergistic mitigation option where anthropogenic ammonia emissions could be captured using biochar, and made bioavailable in soils, thus leading to nitrogen capture by crops, while simultaneously sequestering carbon in soils.  相似文献   

8.
P. J. Goodman 《Plant and Soil》1988,112(2):247-254
The stable isotope15N is particularly valuable in the field for measuring N fixation by isotope dilution. At the same time other soil-plant processes can be studied, including15N recovery, and nitrogen transfer between clover and grass. Three contrasting sites and soils were used in the present work: a lowland soil, an upland soil, and an upland peat. Nitrogen fixation varied from 12 gm–2 on lowland soil to 2.7 gm–2 on upland peat. Most N transfer occurred on upland soil (4.2 gm–2) which, added to nitrogen fixed, made a total of 8.7 gm2 input during summer 1985.15N recovery for the whole experiment was small, around 25%.Measurement of dead and dying leaves, stubble and roots, suggests that plant organ death is the first stage in N transfer from white clover to ryegrass, through the decomposer cycle. Decomposition was fastest on lowland soils, slowest on peat. On lowland soil this decomposer nitrogen is apparently subverted before transfer, probably by soil microbes.Variations in natural abundance of15N in plants were found in the two species on the different soils. These might be used to measure nitrogen fixation without adding isotope, but the need for many replicates and repeat samples would limit throughput.  相似文献   

9.
Foliar nitrogen isotope (δ15N) composition patterns have been linked to soil N, mycorrhizal fractionation, and within-plant fractionations. However, few studies have examined the potential importance of the direct foliar uptake of gaseous reactive N on foliar δ15N. Using an experimental set-up in which the rate of mycorrhizal infection was reduced using a fungicide, we examined the influence of mycorrhizae on foliar δ15N in potted red maple (Acer rubrum) seedlings along a regional N deposition gradient in New York State. Mycorrhizal associations altered foliar δ15N values in red maple seedlings from 0.06 to 0.74 ‰ across sites. At the same sites, we explored the predictive roles of direct foliar N uptake, soil δ15N, and mycorrhizae on foliar δ15N in adult stands of A. rubrum, American beech (Fagus grandifolia), black birch (Betula lenta), and red oak (Quercus rubra). Multiple regression analysis indicated that ambient atmospheric nitrogen dioxide (NO2) concentration explained 0, 69, 23, and 45 % of the variation in foliar δ15N in American beech, red maple, red oak, and black birch, respectively, after accounting for the influence of soil δ15N. There was no correlation between foliar δ13C and foliar %N with increasing atmospheric NO2 concentration in most species. Our findings suggest that total canopy uptake, and likely direct foliar N uptake, of pollution-derived atmospheric N deposition may significantly impact foliar δ15N in several dominant species occurring in temperate forest ecosystems.  相似文献   

10.
Natural 15N abundance values were measured in needles, twigs, wood, soil, bulk precipitation, throughfall and soil water in a Douglas fir (Pseudotsuga menziesii (Mirb.) and a Scots pine (Pinus sylvestris L.) stand receiving high loads of nitrogen in throughfall (>50 kg N ha−1 year−1). In the Douglas fir stand δ15N values of the vegetation ranged between −5.7 and −4.2‰ with little variation between different compartments. The vegetation of the Scots pine stand was less depleted in 15N and varied from −3.3 to −1.2‰δ15N. At both sites δ15N values increased with soil depth, from −5.7‰ and −1.2‰ in the organic layer to +4.1‰ and +4.7‰ at 70 cm soil depth in the Douglas fir and Scots pine stand, respectively. The δ15N values of inorganic nitrogen in bulk precipitation showed a seasonal variation with a mean in NH4 +-N of −0.6‰ at the Douglas fir stand and +10.8‰ at the Scots pine stand. In soil water below the organic layer NH4 +-N was enriched and NO3 -N depleted in 15N, which was interpreted as being caused by isotope fractionation accompanying high nitrification rates in the organic layers. Mean δ15N values of NH4 + and NO3 were very similar in the drainage water at 90 cm soil depth at both sites (−7.1 to −3.8‰). A dynamic N cycling model was used to test the sensitivity of the natural abundance values for the amount of N deposition, the 15N ratio of atmospheric N deposited and for the intrinsic isotope discrimination factors associated with N transformation processes. Simulated δ15N values for the N saturated ecosystems appeared particularly sensitive to the 15N ratio of atmospheric N inputs and discrimination factors during nitrification and mineralization. The N-saturated coniferous forest ecosystems studied were not characterized by elevated natural 15N abundance values. The results indicated that the natural 15N abundance values can only be used as indicators for the stage of nitrogen saturation of an ecosystem if the δ15N values of the deposited N and isotope fractionation factors are taken into consideration. Combining dynamic isotope models and natural 15N abundance values seems a promising technique for interpreting natural 15N abundance values found in these forest ecosystems. Received: 5 May 1996 / Accepted: 10 April 1997  相似文献   

11.
To utilise wisely the manure resource, a better understanding of the processes that control the breakdown of organic N to inorganic N (mineralization) is required. 15N isotope dilution techniques should allow estimates of plant N uptake and gross mineralization from organic manures under non-N limiting conditions to be made. In natural systems the study of organic nitrogen breakdown to inorganic nitrogen, mineralization, is confounded by the processes of nitrification, nitrate leaching, gaseous N losses and plant N uptake. The 15N isotope dilution approach allows measurement of gross mineralization independently of these processes. Greenhouse experiments were conducted to determine plant N uptake from organic manures under non-N limiting conditions using the soil pre-labelling isotope dilution approach. The soil was pre-labelled with 15N and maize plants were then grown on the control treatments (no organic amendment) or on the manure treatments. The principle is thus that the control crop has a 15N abundance which reflects the 15N status of the soil and the treatment crop has a 15N enrichment diluted by the contribution of mineralized unlabelled manure N. Using this technique, it was estimated that maize plants derived 17 and 34% of their N from sewage sludge and turkey manure, respectively. The soil pre-labelling isotope dilution approach allowed yield-independent estimation of nitrogen derived from manures under non-N limiting conditions. Estimates of gross N mineralization were made to determine the breakdown of manure under field conditions. Results suggested that there was a rapid mineralization of turkey manure N in the initial weeks after application, in the order of 50 kg N ha?1, which tailed off in the following weeks. The technique suggested that the soil used in the study had an extremely low basal mineralization rate, and a high nitrification rate.  相似文献   

12.
Abstract Stable isotope ratios of terrestrial ecosystem nitrogen (N) pools reflect internal processes and input–output balances. Disturbance generally increases N cycling and loss, yet few studies have examined ecosystem δ15N over a disturbance-recovery sequence. We used a chronosequence approach to examine N distribution and δ15N during forest regrowth after agricultural abandonment. Site ages ranged from 10 to 115 years, with similar soils, climate, land-use history, and overstory vegetation (white pine Pinus strobus). Foliar N and δ15N decreased as stands aged, consistent with a progressive tightening of the N cycle during forest regrowth on agricultural lands. Over time, foliar δ15N became more negative, indicating increased fractionation along the mineralization–mycorrhizal–plant uptake pathway. Total ecosystem N was constant across the chronosequence, but substantial internal N redistribution occurred from the mineral soil to plants and litter over 115 years (>25% of ecosystem N or 1,610 kg ha−1). Temporal trends in soil δ15N generally reflected a redistribution of depleted N from the mineral soil to the developing O horizon. Although plants and soil δ15N are coupled over millennial time scales of ecosystem development, our observed divergence between plants and soil suggests that they can be uncoupled during the disturbance-regrowth sequence. The approximate 2‰ decrease in ecosystem δ15N over the century scale suggests significant incorporation of atmospheric N, which was not detected by traditional ecosystem N accounting. Consideration of temporal trends and disturbance legacies can improve our understanding of the influence of broader factors such as climate or N deposition on ecosystem N balances and δ15N. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
The foliar stable N isotope ratio (δ15N) can provide integrated information on ecosystem N cycling. Here we present the δ15N of plant and soil in four remote typical tropical rainforests (one primary and three secondary) of southern China. We aimed to examine if (1) foliar δ15N in the study forests is negative, as observed in other tropical and subtropical sites in eastern Asia; (2) variation in δ15N among different species is smaller compared to that in many N-limited temperate and boreal ecosystems; and (3) the primary forest is more N rich than the younger secondary forests and therefore is more 15N enriched. Our results show that foliar δ15N ranged from ?5.1 to 1.3 ‰ for 39 collected plant species with different growth strategies and mycorrhizal types, and that for 35 species it was negative. Soil NO3 ? had low δ15N (?11.4 to ?3.2 ‰) and plant NO3 ? uptake could not explain the negative foliar δ15N values (NH4 + was dominant in the soil inorganic-N fraction). We suggest that negative values might be caused by isotope fractionation during soil NH4 + uptake and mycorrhizal N transfer, and by direct uptake of atmospheric NH3/NH4 +. The variation in foliar δ15N among species (by about 6 ‰) was smaller than in many N-limited ecosystems, which is typically about or over 10 ‰. The primary forest had a larger N capital in plants than the secondary forests. Foliar δ15N and the enrichment factor (foliar δ15N minus soil δ15N) were higher in the primary forest than in the secondary forests, albeit differences were small, while there was no consistent pattern in soil δ15N between primary and secondary forests.  相似文献   

14.
Temperate forest 15N isotope trace experiments find nitrogen (N) addition‐driven carbon (C) uptake is modest as little additional N is acquired by trees; however, several correlations of ambient N deposition against forest productivity imply a greater effect of atmospheric nitrogen deposition than these studies. We asked whether N deposition experiments adequately represent all processes found in ambient conditions. In particular, experiments typically apply 15N to directly to forest floors, assuming uptake of nitrogen intercepted by canopies (CNU) is minimal. Additionally, conventional 15N additions typically trace mineral 15N additions rather than litter N recycling and may increase total N inputs above ambient levels. To test the importance of CNU and recycled N to tree nutrition, we conducted a mesocosm experiment, applying 54 g N/15N ha?1 yr?1 to Sitka spruce saplings. We compared tree and soil 15N recovery among treatments where enrichment was due to either (1) a 15N‐enriched litter layer, or mineral 15N additions to (2) the soil or (3) the canopy. We found that 60% of 15N applied to the canopy was recovered above ground (in needles, stem and branches) while only 21% of 15N applied to the soil was found in these pools. 15N recovery from litter was low and highly variable. 15N partitioning among biomass pools and age classes also differed among treatments, with twice as much 15N found in woody biomass when deposited on the canopy than soil. Stoichiometrically calculated N effect on C uptake from 15N applied to the soil, scaled to real‐world conditions, was 43 kg C kg N?1, similar to manipulation studies. The effect from the canopy treatment was 114 kg C kg N?1. Canopy treatments may be critical to accurately represent N deposition in the field and may address the discrepancy between manipulative and correlative studies.  相似文献   

15.
Abstract The natural abundance of the stable isotope 15N was measured in different vegetation components and in the soil of a northern Australian savanna. Most of the vegetation was found to be 15N-depleted compared to atmospheric N2. Herbaceous legumes, perennial grasses, tree legumes, non-legume trees and annual grasses exhibited mean δ15N of ? 1.7, ? 0.8, ? 0.7, 0.0 and + 0.3‰, respectively. These results are in good agreement with previous studies. Legumes exhibit slightly negative values, indicating that they are likely to be nitrogen-fixing plants. Non-legume plants have a δ15N close to zero, which could equally result from non-symbiotic fixation, soil organic matter mineralization, or fresh root litter mineralization. In contrast, soil organic matter was 15N-enriched. Values of δ15N increased with depth and were + 2.5, + 5.2 and +6.1‰ in the 0–10, 10–20 and 20–40cm layers, respectively. Soil organic matter δ15N shows a typical profile of mature soils.  相似文献   

16.
Foliage from a mature stand of Scots pine (Pinus sylvestris L.) receiving increasing doses of ammonium nitrate and urea nitrogen was assayed during the five subsequent growing seasons for total N concentration and 15N abundance. The aim of the study was to examine the potential of the 15N technique to provide estimates on fertilizer N recovery and its fate in the ecosystem. The 15N abundance in the foliage increased in proportion to the dose of fertilizer application. This was generally owing to the fact that the 15N of the fertilizer N was significantly higher than that in the soil inorganic-N pool, as well as in the needle biomass of the Scots pine trees on the nonfertilized plots. Due to 15N isotope discrimination occurring during N transformations in soil the relationship was however not very close. Calculations based on the principle of isotope dilution yielded only rough and, in some cases, even misleading estimates of the fraction of the fertilizer-derived nitrogen (Ndff) in the needles. This was especially the case for the urea-N, which undergoes significant isotopic fractionation during the process of ammonia volatilization and possibly microbial NH4 + assimilation in soil. Over five growing seasons, foliar total N concentration peaked at the end of the second season while the 15N abundance continued to increase. Although large methodological errors may be involved when interpreting natural 15N abundance, the measurement of 15N seems to provide semi-quantitative information about fertilizer N accumulation and transformation processes in coniferous ecosystems. A better understanding of the tree and soil processes causing isotopic fractionation is a prerequisite for correct interpretation of 15N data.  相似文献   

17.
To demonstrate the contribution of atmospheric ammonium to soil acidification in acid forest soils, a field study with13N-ammonium as tracer was performed in an oak-birch forest soil. Monitoring and analysis of soil solutions from various depths on the13N-ammonium and15N-nitrate contents, showed that about 54% of the applied15N-ammonium was oxidized to nitrate in the forest floor. Over a period of one year about 20% of the15N remained as organic nitrogen in this layer. The percentage15N enrichment in ammonium and nitrate were in the same range in all the forest floor percolates, indicating that even in extremely acid forest soils (pH < 4) nitrate formation from ammonium can occur. Clearly, atmospheric ammonium can contribute to soil acidification even at low soil pH.  相似文献   

18.
Summary The 15N/14N ratios of plant and soil samples from Northern California ecosystems were determined by mass spectrometry. The 15N abundance of 176 plant foliar samples averaged 0.0008 atom % 15N excess relative to atmospheric N2 and ranged from-0.0028 to 0.0064 atom % 15N excess relative to atmospheric N2. Foliage from reported N2-fixing species had significantly lower mean 15N abundance (relative to atmospheric N2 and total soil N) and significantly higher N concentration (% N dry wt.) than did presumed non-N2-fixing plants growing on the same sites. The mean difference between N2-fixing species and other plants was 0.0007 atom % 15N. N2-fixing species had lower 15N abundance than the other plants on most sites examined despite large differences between sites in vegetation, soil, and climate. The mean 15N abundance of N2-fixing plants varied little between sites and was close to that of atmospheric N2. The 15N abundance of presumed non-N2-fixing species was highest at coastal sites and may reflect an input of marine spray N having relatively high 15N abundance. The 15N abundance of N2-fixing species was not related to growth form but was for other plants. Annual herbaceous plants had highest 15N abundance followed in decreasing order by perennial herbs, shrubs, and trees. Several terrestrial ferns (Pteridaceae) had 15N abundances comparable to N2-fixing legumes suggesting N2-fixation by these ferns. On sites where the 15N abundance of soil N differs from that of the atmosphere, N2-fixing plants can be identified by the natural 15N abundance of their foliage. This approach can be useful in detecting and perhaps measuring N2-fixation on sites where direct recovery of nodules is not possible.  相似文献   

19.
During the last century, the global biogeochemical cycles of carbon (C) and nitrogen (N) have been drastically altered by human activities. A century of land‐clearing and biomass burning, followed by fossil fuel combustion have increased the concentration of atmospheric CO2 by approximately 20%, and since the mid‐1900s, the use of agricultural fertilizers has been the primary driver of an approximate 90% increase in bioavailable N. Geochemical records obtained through stable isotope analysis of terrestrial and marine biota effectively illustrate rising anthropogenic C inputs. However, there are fewer records of anthropogenic N, despite the enormous magnitude of change and the known negative effects of N on ecosystem health. We used stable isotope values from independent octocorals (gorgonians) sampled across the Western Atlantic over the last 143 years to document human perturbations of the marine C and N pools. Here, we demonstrate that in sea plumes δ13C values and in both sea plumes and sea fans δ15N values declined significantly from 1862 to 2005. Sea plume δ 13C values were negatively correlated with increasing atmospheric CO2 concentrations and corroborate known rates of change resulting from global fossil fuel combustion, known as the Suess effect. We suggest that widespread input of agricultural fertilizers to near‐shore coastal waters is the dominant driver for the decreasing δ 15N trend, though multiple anthropogenic sources are likely affecting this trend. Given the interest in using δ 15N as an indicator for N pollution in aquatic systems, we highlight the risk of underestimating contributions of pollutants as a result of source mixing as demonstrated by a simple isotope‐mixing model. We conclude that signals of major human‐induced perturbations of the C and N pools are detectable in specimens collected over wide geographic scales, and that archived materials are invaluable for establishing baselines against which we can assess environmental change.  相似文献   

20.
Stable isotope natural abundance measurements integrate across several biogeochemical processes in ecosystem N and C dynamics. Here, we report trends in natural isotope abundance (δ13C and δ15N in plant and soil) along a climosequence of 33 Nothofagus forest stands located within Patagonia, Southern Argentina. We measured 28 different abiotic variables (both climatic variables and soil properties) to characterize environmental conditions at each of the 33 sites. Foliar δ13C values ranged from ?35.4‰ to ?27.7‰, and correlated positively with foliar δ15N values, ranging from ?3.7‰ to 5.2‰. Soil δ13C and δ15N values reflected the isotopic trends of the foliar tissues and ranged from ?29.8‰ to ?25.3‰, and ?4.8‰ to 6.4‰, respectively, with no significant differences between Nothofagus species (Nothofagus pumilio, Nothofagus antarctica, Nothofagus betuloides). Principal component analysis and multiple regressions suggested that mainly water availability variables (mean annual precipitation), but not soil properties, explained between 42% and 79% of the variations in foliar and soil δ13C and δ15N natural abundance, which declined with increased moisture supply. We conclude that a decline in water use efficiency at wetter sites promotes both the depletion of heavy C and N isotopes in soil and plant biomass. Soil δ13C values were higher than those of the plant tissues and this difference increased as annual precipitation increased. No such differences were apparent when δ15N values in soil and plant were compared, which indicates that climatic differences contributed more to the overall C balance than to the overall N balance in these forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号