首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Some have suggested that the periodic outbreaks of the forest tent caterpillar. Malacosoma disstria are triggered by weather the temperature at the time of early larval feeding, and overwintering temperatures To assess the role of these factors, defoliation maps, compiled annually from flight surveys for the province of Ontario. were compared to similarly scaled temperature records An analysis of the year to year variation shows no relationship between the pattern of increases or declines in defoliation and either temperatures during early larval development, or overwintering temperatures Four periods of defoliation by forest tent caterpillars were observed in Ontario over 41 yr. but at individual sites extensive defoliation did not occur for each of the outbreak periods Defoliation was less severe in regions with low overwintering temperatures, but was not related to the average number of degree days m the early spring Outbreaks were most common in areas where deciduous forests were extensive, and the mean overwintering temperatures were above −40°C While these weather variables do not apparently explain the details of population dynamics of forest tent caterpillars, extreme weather conditions might synchronize populations  相似文献   

2.
1 The present study assessed the relationship between clonally variable rates of defoliation in trembling aspen (Populus tremuloides Michx.) and two potential resistance traits: defensive chemistry and leaf phenology. 2 In 2001, coincident with a major outbreak of the forest tent caterpillar (Malacosoma disstria Hubner) in the northcentral U.S.A., we monitored defoliation rates, phytochemical composition, and foliar development in 30 clones of trembling aspen. Leaf chemistry was also assessed in re‐flushed leaves and 2 years post‐outbreak. 3 Early in the season, differences in defoliation among clones were substantial but, by mid‐June, all clones were completely defoliated. Leaf nitrogen, condensed tannins, and phenolic glycosides varied among clones but did not relate to defoliation levels. Budbreak phenology differed by 3 weeks among clones and clones that broke bud early or late relative to forest tent caterpillar eclosion experienced reduced rates of defoliation. 4 Defoliation led to increased tannins and slight decreases in phenolic glycoside concentrations in damaged leaf remnants, but to moderately decreased tannins and a six‐fold increase in phenolic glycosides in reflushed leaves. This shift in chemical composition may significantly affect late season herbivores. 5 These results suggest that aspen chemical resistance mechanisms are ineffective during intense episodic eruptions of outbreak folivores such as the forest tent caterpillar. Variable budbreak phenology may lead to differential susceptibility during less intense outbreak years and, at peak forest tent caterpillar population densities, mechanisms affording tolerance are probably more important than chemical defences.  相似文献   

3.
Jens Roland 《Oecologia》1993,93(1):25-30
I examined historical data (1950–1984) on the duration of outbreaks of the forest tent caterpillar (Malacosoma disstria) in northern Ontario, Canada. Outbreak duration was compared to host tree species dominance and forest structure over large areas of boreal forest partially cleared for agriculture. Abundance of the principal host tree species Populus tremuloides had no consistent effect on duration of outbreak within forest districts, and was negatively correlated with duration of outbreaks among the eight forest districts examined. The amount of forest edge per km2 was the best, and most consistent, predictor of the duration of tent caterpillar outbreaks both within individual forest districts and among forest districts. Because forest tent caterpillar populations are driven largely by the impact of parasitoids and pathogens, results here suggest that large-scale increase in forest fragmentation affects the interaction between these natural enemies and forest tent caterpillar. Increased clearing and fragmentation of boreal forests, by agriculture and forestry, may be exacerbating outbreaks of this forest defoliator.  相似文献   

4.
Abstract. 1. Cyclic population dynamics of forest caterpillars are often associated with epizootics of nucleopolyhedrovirus, but it is not known how these viruses persist between generations or through the fluctuations in host population density. 2. To explore the question of virus persistence at different phases of the population cycle, the nucleopolyhedroviruses of two species of tent caterpillar that co‐occur in British Columbia, Canada, Malacosoma californicum pluviale (western tent caterpillar) and Malacosoma disstria (forest tent caterpillar), were characterised. The cross‐infectivity of the viruses in these two host species was investigated to determine whether there might be a route for virus persistence via the alternative host species. Any virus produced in the cross‐infections was characterised to confirm true cross‐infection or to ascertain whether cross‐inoculation triggered latent virus persisting within the population. 3. The virus associated with forest tent caterpillars (MadiNPV) did not infect western tent caterpillars from low‐density populations, nor did it trigger a latent virus infection; however, inoculation of forest tent caterpillars from high‐density populations with virus from western tent caterpillars (McplNPV) resulted in viral infection, but without a dose–response relationship. 4. Analysis of DNA profiles of virus resulting from cross‐infection of the forest tent caterpillar with McplNPV, revealed that 88% of these infections were caused by MadiNPV rather than McplNPV; however the virus from all 44 infected individuals was identical and differed in DNA profile from the stock MadiNPV used for cross‐infection. This suggests strongly that forest tent caterpillars from high‐density field populations harbour a latent, persistent, or sublethal form of MadiNPV that was triggered by exposure to nucleopolyhedrovirus from the western tent caterpillar. 5. Virus was not activated in western tent caterpillars collected over 2 years of late population decline and the first year of population increase.  相似文献   

5.
We examined the effects of CO2 and defoliation on tree chemistry and performance of the forest tent caterpillar, Malacosoma disstria. Quaking aspen (Populus tremuloides) and sugar maple (Acer saccharum) trees were grown in open-top chambers under ambient or elevated concentrations of CO2. During the second year of growth, half of the trees were exposed to free-feeding forest tent caterpillars, while the remaining trees served as nondefoliated controls. Foliage was collected weekly for phytochemical analysis. Insect performance was evaluated on foliage from each of the treatments. At the sampling date coincident with insect bioassays, levels of foliar nitrogen and starch were lower and higher, respectively, in high CO2 foliage, and this trend persisted throughout the study. CO2-mediated increases in secondary compounds were observed for condensed tannins in aspen and gallotannins in maple. Defoliation reduced levels of water and nitrogen in aspen but had no effect on primary metabolites in maple. Similarly, defoliation induced accumulations of secondary compounds in aspen but not in maple. Larvae fed foliage from the enriched CO2 or defoliated treatments exhibited reduced growth and food processing efficiencies, relative to larvae on ambient CO2 or nondefoliated diets, but the patterns were host species-specific. Overall, CO2 and defoliation appeared to exert independent effects on foliar chemistry and forest tent caterpillar performance.  相似文献   

6.
This study examined the effects of carbon dioxide (CO2)-, ozone (O3)-, and genotype-mediated changes in quaking aspen (Populus tremuloides) chemistry on performance of the forest tent caterpillar (Malacosoma disstria) and its dipteran parasitoid (Compsilura concinnata) at the Aspen Free-Air CO2 Enrichment (FACE) site. Parasitized and non-parasitized forest tent caterpillars were reared on two aspen genotypes under elevated levels of CO2 and O3, alone and in combination. Foliage was collected for determination of the chemical composition of leaves fed upon by forest tent caterpillars during the period of endoparasitoid larval development. Elevated CO2 decreased nitrogen levels but had no effect on concentrations of carbon-based compounds. In contrast, elevated O3 decreased nitrogen and phenolic glycoside levels, but increased concentrations of starch and condensed tannins. Foliar chemistry also differed between aspen genotypes. CO2, O3, genotype, and their interactions altered forest tent caterpillar performance, and differentially so between sexes. In general, enriched CO2 had little effect on forest tent caterpillar performance under ambient O3, but reduced performance (for insects on one aspen genotype) under elevated O3. Conversely, elevated O3 improved forest tent caterpillar performance under ambient, but not elevated, CO2. Parasitoid larval survivorship decreased under elevated O3, depending upon levels of CO2 and aspen genotype. Additionally, larval performance and masses of mature female parasitoids differed between aspen genotypes. These results suggest that host-parasitoid interactions in forest systems may be altered by atmospheric conditions anticipated for the future, and that the degree of change may be influenced by plant genotype.  相似文献   

7.
To simulate the effects of forest tent caterpillar (FTC) defoliation on trembling aspen growth and mortality, an artificial defoliation experiment was performed over three years in young aspen stands of northwestern Quebec. Defoliation plots of 15 × 15 m were established on three sites, together with associated control stands of pure trembling aspen. In 2007, root collar diameters were measured and positions of all trees were mapped prior defoliation. Severe FTC defoliation was simulated for three successive years (2007–2009) by manually removing all leaves from all but 7–10% of the trees present in the defoliation plots. Yearly surveys of growth and mortality were conducted until 2010 to evaluate defoliation effects on defoliated as well as surrounding undefoliated trees. In absence of other factors, growth and mortality of trembling aspen decreased and increased, respectively, after defoliation. Our study further revealed that small diameter trees died after one year of artificial defoliation, while larger-diameter trees died after repeated defoliations. Distributions of tree mortality tended to be aggregated at small scales (<5 m), corroborating gap patterns observed in mature stands following FTC outbreaks. This experiment revealed that trembling aspen mortality can be directly attributed solely to defoliation. Repeated defoliations during FTC outbreaks have the potential to profoundly modify stand productivity and structure by reducing tree growth and increasing tree mortality in the absence of predisposing factors.  相似文献   

8.
Self‐organization can generate synchronized group activity without external triggering cues, and schedules of self‐organized collective activity can vary with environmental conditions. This plasticity can improve group members’ ability to meet their requirements in different environments. In colonial caterpillars, synchronized colony foraging schedules have been postulated to depend either on avoidance of visual predators or on temperature effects on ectotherm physiology. We examine the foraging schedule of forest tent caterpillars (Malacosoma disstria) under different constant conditions to distinguish between these hypotheses. Plasticity in the foraging schedule was tested by keeping colonies under different constant regimes of light and temperature. Digital video and tracking software were used to record the colony's alternation between quiescent and active bouts. The duration and frequency of bouts was compared between treatments. The schedule of synchronized colony activity was not affected by lighting, but it accelerated at higher temperature, because of a decrease in the duration of both active and quiescent bouts. Forest tent caterpillars’ foraging schedule thus depends on the time required to accomplish the tasks of food finding (active bouts) and food processing (quiescent bouts). As caterpillars are ectotherms, locomotion and digestion rates increase at higher temperature and both tasks are accomplished faster. The forest tent caterpillar and the congeneric eastern tent caterpillar (M. americanum) both exhibit self‐organized synchronized collective foraging, but environmental modulation of foraging schedule differs between these species, according to differences in social organization and thermal ecology. Eastern tent caterpillars maintain a fixed foraging schedule under varying temperatures and use the tent to maintain high metabolic rates. In the forest tent caterpillar, flexibility of the foraging schedule in accordance with changes in metabolism lessens the constraints imposed by collective foraging. Synchronous foraging, where entire social groups travel together to and from feeding sites, is thought to have several fitness advantages including improved food finding, recruitment to profitable food sources, anti‐predator defense and group thermoregulation between foraging expeditions.  相似文献   

9.
Individual quaking aspen trees vary greatly in foliar chemistry and susceptibility to defoliation by gypsy moths and forest tent caterpillars. To relate performance of these insects to differences in foliar chemistry, we reared larvac from egg hatch to pupation on leaves from different aspen trees and analyzed leaf samples for water, nitrogen, total nonstructural carbohydrates, phenolic glycosides, and condensed tannins. Larval performance varied markedly among trees. Pupal weights of both species were strongly and inversely related to phenolic glycoside concentrations. In addition, gypsy moth performance was positively related to condensed tannin concentrations, whereas forest tent caterpillar pupal weights were positively associated with leaf nitrogen concentrations. A subsequent study with larvae fed aspen leaves supplemented with the phenolic glycoside tremulacin confirmed that the compound reduces larval performance. Larvae exhibited increased stadium durations and decreased relative growth rates and food conversion efficiencies as dietary levels of tremulacin increased. Differences in performance were more pronounced for gypsy moths than for forest tent caterpillars. These results suggest that intraspecific variation in defensive chemistry may strongly mediate interactions between aspen, gypsy moths and forest tent caterpillars in the Great Lakes region, and may account for differential defoliation of aspen by these two insect species.  相似文献   

10.
In addition to damaging trees, the eastern tent caterpillar is implicated in early fetal loss and late‐term abortion in horses. In a field study, we evaluated the potential biological control of the caterpillar using eastern tent caterpillar nuclear polyhedrosis virus (ETNPV), a naturally occurring virus that is nearly species‐specific. Egg masses were hatched and second instar larvae were fed virus‐inoculated foliage to propagate the virus in vivo. Then, a viral pesticide was formulated at concentrations of 104, 106 and 108 polyhedral inclusion bodies per ml. The pesticide was applied to foliage on which second, third and fourth instar caterpillars were feeding. When the majority of surviving larvae reached the sixth instar, colonies were collected and the surviving caterpillars counted. Mean numbers of surviving caterpillars per treatment were compared via 95% bootstrap confidence intervals. The data indicate second instar caterpillars were highly susceptible to the virus, but only at the highest concentration tested. Third instar caterpillars were also somewhat susceptible to high virus concentrations, while fourth instar caterpillars were fairly resistant. Our data provide the strongest evidence to date that ETNPV can be propagated, harvested and refined for formulation as a biological control agent for eastern tent caterpillar. Its use on this insect may be merited in circumstances where landowners and managers need to protect trees and horses.  相似文献   

11.
The beech caterpillar, Syntypistis punctatella (Motschulsky) (Lepidoptera: Notodontidae), often causes extensive defoliation of beech forests in Japan. Outbreaks have often occurred synchronously among different areas at intervals of 8–11 years. Synchrony of outbreaks was considered to be caused by synchrony of weather. Populations of this insect exhibit periodical dynamics in both outbreak and nonoutbreak areas. Factors that might influence the population dynamics of the beech caterpillar were classified from the point of view of the natural bioregulation com-plex, which includes a coleopteran predator, Calosoma maximowiczi, avian predators, parasitoids, entomopathogenic fungi, and delayed induced defensive response (DIR) of beech trees. Because such periodic population dynamics are believed to be caused by one or more delayed density-dependent factors, delayed density-dependent mortality has been identified as a likely source of population cycles. The DIR and pathogenic diseases showed a high order of density dependence. An infectious pathogen, Cordyceps militaris, was considered to be the most plausible agent responsible for periodic dynamics of the beech caterpillar population because insect diseases were effective in cases in which the S. punctatella population started to decrease without reaching outbreak densities, but DIR was not. Conspicuous defoliation caused by this insect tends to occur at certain elevations, where forests are composed of pure stands of beech trees. I propose three different hypotheses to explain this phenomenon: the diversity–stability hypothesis, the resource concentration hypothesis, and the altitudinal soil nutrient hypothesis. Received: November 20, 1999 / Accepted: August 3, 2000  相似文献   

12.
1. The fecundity of the forest tent caterpillar varies considerably across its geographic range. Field data indicate that populations in the southern United States (Gulf States) produce nearly twice as many eggs as females from Canada or the Lake States, with little or no difference in the size of adult females. 2. In controlled rearing experiments, female forest tent caterpillar from the southern United States (Louisiana) had much larger clutch sizes than same sized females from northern populations in Michigan or Manitoba, Canada. Increased fecundity in Louisiana females was achieved through a significant reduction in egg size and a concomitant increase in the allocation of resources to egg production. 3. Comparison of 10 forest tent caterpillar populations spanning a 27° latitudinal gradient, validated the results of detailed comparisons among the three populations above by confirming the strong negative correlation between latitude and clutch size. 4. Neonate forest tent caterpillars from Manitoba were significantly larger than larvae from either Michigan or Louisiana. Michigan larvae were intermediate in size. It is postulated that large neonates are advantageous in thermally limiting environments. More than three times as many degree‐days are available to Louisiana neonates during the first 2 weeks after hatching. A consistently favourable climate during the vulnerable post‐hatching period may have allowed the evolution of larger clutches at the expense of neonate size in southern populations.  相似文献   

13.
Folivorous insect responses to elevated CO2-grown tree species may be complicated by phytochemical changes as leaves age. For example, young expanding leaves in tree species may be less affected by enriched CO2-alterations in leaf phytochemistry than older mature leaves due to shorter exposure times to elevated CO2 atmospheres. This, in turn, could result in different effects on early vs. late instar larvae of herbivorous insects. To address this, seedlings of white oak (Quercus alba L.), grown in open-top chambers under ambient and elevated CO2, were fed to two important early spring feeding herbivores; gypsy moth (Lymantria dispar L.), and forest tent caterpillar (Malacosoma disstria Hübner). Young, expanding leaves were presented to early instar larvae, and older fully expanded or mature leaves to late instar larvae. Young leaves had significantly lower leaf nitrogen content and significantly higher total nonstructural carbohydrate:nitrogen ratio as plant CO2 concentration rose, while nonstructural carbohydrates and total carbon-based phenolics were unaffected by plant CO2 treatment. These phytochemical changes contributed to a significant reduction in the growth rate of early instar gypsy moth larvae, while growth rates of forest tent caterpillar were unaffected. The differences in insect responses were attributed to an increase in the nitrogen utilization efficiency (NUE) of early instar forest tent caterpillar larvae feeding on elevated CO2-grown leaves, while early instar gypsy moth larval NUE remained unchanged among the treatments. Later instar larvae of both insect species experienced larger reductions in foliage quality on elevated CO2-grown leaves than earlier instars, as the carbohydrate:nitrogen ratio of leaves substantially increased. Despite this, neither insect species exhibited changes in growth or consumption rates between CO2 treatments in the later instar. An increase in NUE was apparently responsible for offsetting reduced foliar nitrogen for the late instar larvae of both species.  相似文献   

14.
Summary Interactions between quaking aspen (Populus tremuloides) and the forest tent caterpillar (Malacosoma disstria) are likely to be influenced by leaf protein and phenolic glycoside levels, and insect detoxication activity. We investigated the direct and interactive effects of dietary protein and phenolic glycosides on larval performance and midgut enzyme activity of forest tent caterpillars. We conducted bioassays with six artificial diets, using both first and fourth stadium larvae. Four of the diets comprised a 2×2 factorial design-two levels of protein, each with and without phenolic glycosides. Additionally, we assayed high protein diets containing S,S,S-tributylphosphorotrithioate (DEF, an esterase inhibitor) and DEF plus phenolic glycosides. Enzyme solutions were prepared from midguts of sixth instars and assayed for -glucosidase, esterase and glutathione transferase activities. First instar mortality and development times were higher for larvae on diets low in protein or containing phenolic glycosides. Effects of phenolic glycosides were especially pronounced at low protein levels and when administered with DEF. Fourth instar development times were prolonged, and growth rates reduced, in response to consumption of low protein diets. Effects of phenolic glycosides on growth were less pronounced, although the effect for larvae on the low protein diet was nearly significant. Activity of each of the enzyme systems was reduced in larvae reared on low protein diets, and esterase activity was induced in larvae fed phenolic glycosides. Our results suggest that larval performance may be strongly affected by levels of protein and phenolic glycosides commonly occurring in aspen foliage, and that these factors may play a role in differential defoliation of aspen by forest tent caterpillars.  相似文献   

15.
In an attempt to explain the physiological mechanisms for the differential susceptibility of insects to the chitin synthesis inhibitor, diflubenzuron, chitin content, chitin synthesis, and retention of ingested 14C-diflubenzuron in two forest Lepidoptera were investigated. The spruce budworm, Choristoneura fumiferana, a refractory species, had less chitin and retained less of the ingested material than the forest tent caterpillar, Malacosoma disstria, a species highly sensitive to diflubenzuron. No difference in the chitin synthesis pattern during the 6th stadium was observed in the two species. It is concluded that the primary reasons for the increased susceptibility of the forest tent caterpillar to this compound was the increased retention of ingested diflubenzuron and, to a lesser extent, the increased chitin content.  相似文献   

16.
The circumstances and potential for insects to damage perennial bioenergy crops is not well understood in the United States. In this study, we evaluated the spillover and herbivory of eastern tent caterpillars (Malacosoma americanum) from host trees onto short rotation coppice (SRC) willow bioenergy crops (Salix sp.). Host trees were all in the Rosaceae family and included Prunus americana, Prunus virginiana and Malus sp. Willow showed greater leaf herbivory with increasing proximity to a defoliated host tree, suggesting that tent caterpillars spilled‐over to willow after denuding their host. More tent caterpillar herbivory was associated with greater mortality of willow. This study suggests that landscape context and spatial position of host trees is important to the early establishment of a willow bioenergy crop.  相似文献   

17.
Processes governing tree interspecific interactions, such as facilitation and competition, may vary in strength over time. This study tried to unveil them by performing dendrometrical analyses on black spruce Picea mariana, trembling aspen Populus tremuloides and jack pine Pinus banksiana trees from pure and mixed mature boreal forest stands in the Clay Belt of northwestern Quebec and on the tills of northwestern Ontario. We cored 1430 trees and cut 120 for stem analysis across all stand composition types, tree species and study regions. Aspen annual growth rate was initially higher when mixed with conifers, but then progressively decreased over time compared to pure aspen stands, while jack pine growth rate did not differ with black spruce presence throughout all stages of stand development. When mixed with aspen, black spruce showed a contrary response to aspen, i.e. an initial loss in growth but a positive gain later. On the richer clay soil of the Quebec Clay Belt region, however, both aspen and spruce responses in mixed stands reversed between 37 and 54 years. Overall, our results demonstrate that interspecific interactions were present and tended to change with stand development and among species. Our results also suggest that the nature of interspecific interactions may differ with soil nutrient availability.  相似文献   

18.
19.
Biocontrol of caterpillars by ants is highly variable, and we investigate how the strength of the trophic relationship between ants and an important outbreaking forest pest depends on phenological synchrony and on social foraging. We test the hypothesis that early spring foraging by ants, coupled with eusocial recruitment behavior, could undermine the caterpillar's strategies to achieve either enemy-free space or predator satiation.We use a series of field surveys and experiments in trembling aspen stands (Populus tremuloides) in the boreal forest of eastern Canada to assess the role of ants in early-instar mortality of the outbreaking, gregarious forest tent caterpillar (Malacosoma disstria). We also investigate individual-level mechanisms related to phenology and social behavior that underlie the effectiveness of ants as biocontrol on caterpillars. Our results show that ants climb trees early in the spring and harvest young forest tent caterpillars, suggesting that early phenology does not provide an entirely enemy-free space for caterpillars. Our findings further show that recruitment-based social foraging enables ants to deplete groups of gregarious prey, suggesting that these eusocial insects are particularly effective at generating predation pressure on gregarious herbivores since they do not satiate easily. Finally, a manipulative predator exclusion experiment confirms that ant predation is a significant mortality source for early-instar forest tent caterpillars. Taken together, these results suggest that phenology and sociality could modulate the role of ants as effective caterpillar predators and thus showcase the importance of considering natural history and behavioral traits when studying trophic interactions and their role in population dynamics.  相似文献   

20.
Abstract.  1. Stage-specific survival and recruitment of spruce budworm were measured by frequent sampling of foliage in four outbreak populations over a 15-year period in Ontario and Quebec, Canada.
2. Patterns of change in population density during the outbreak collapse phase were closely linked to changes in survival of the late immature stages, and were determined largely by the impact of natural enemies.
3. Host-plant feedback also contributed significantly to survival patterns throughout the outbreak: annual defoliation influenced survival of fourth and fifth instars and fecundity while cumulative defoliation influenced survival of the very early larval stages (first and second) via impacts on stand condition.
4. Inclusion of this host-plant feedback reveals spruce budworm population dynamics as a function of density-related trophic interactions that vary in their order and strength of influence over time. This view re-introduces the importance of forest interactions as a component of dynamics of the spruce budworm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号