首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
doi:10.1111/j.1741‐2358.2009.00321.x
Flexural properties of repaired heat‐polymerising acrylic resin after wetting with monomer and acetone Objectives: Repair strength can be improved by treating fractured surfaces of a denture. Background: This study investigated flexural properties of heat‐polymerised acrylic resin specimens repaired with auto‐polymerising and visible light curing (VLC) resins after the repair surfaces were wetted with monomers or acetone. Materials and Methods: Fifty‐four specimens (65 × 10 × 2.5 mm) were prepared and 48 of them were sectioned to simulate denture fracture. Butt‐joint designed repair surfaces were wetted with heat‐, auto‐polymerising monomers and acetone for 180 s and repaired with auto‐polymerising and VLC resins. After repairs, specimens were subjected to three‐point bending test and flexural strength, strain, fracture load, modulus of elasticity and deflection values were recorded. Data were analysed with Student t and LSD tests (p ≤ 0.05). Results: Overall flexural strength, strain, fracture load and deflection values of specimens repaired with VLC resin were significantly higher than the specimens repaired with auto‐polymerising resin for all types of wetting agent (p < 0.05). Within the wetting agents, heat‐ and auto‐polymerising monomers produced the best mechanical properties, while wetting with acetone did not provide superior effect over both monomers. Conclusion: In clinical use, wetting the repair surfaces may result in stronger repairs. The use of bonding agent in VLC resin repairs in combination with wetting agent results in improved flexural properties.  相似文献   

2.
doi: 10.1111/j.1741‐2358.2011.00454.x Influence of surface treatments on the flexural strength of denture base repair Objective: The purpose of this study was to evaluate the flexural strength of repairs made with autopolymerising acrylic resin after different treatments of joint surfaces. Material and Methods: Fifty rectangular specimens were made with heat‐polymerised acrylic resin and 40 were repaired with autopolymerising acrylic resin following joint surface treatments: group 1 (intact specimens), group 2 (chemical treatment: wetting with methyl‐methacrylate for 180 s), group 3 (abraded with silicon carbide paper), group 4 (abraded and wetting with methyl‐methacrylate for 180 s) and group 5 (without surface treatment). The flexural strength was measured by a three‐point bending test using a universal testing machine with a 100 Kgf load cell in the centre of repair at 5 mm/min cross‐head speed. All data were analysed using one‐way anova and Tukey HSD test for multiple comparisons (p < 0.05). Results: Among repaired specimens, groups 2 and 4 had 66.53 ± 3.4 and 69.38 ± 1.8 MPa mean values and were similar. These groups had superior flexural strength than groups 3 and 5 that were similar and had 54.11 ± 3.4 and 51.24 ± 2.8 MPa mean values, respectively. Group 1 had a mean value of 108.30 ± 2.8 MPa being the highest result. Conclusion: It can be concluded that the treatment of the joint surfaces with methyl‐methacrylate increases the flexural strength of denture base repairs, although the strength is still lower than that observed for the intact denture base resin. Abrasion with sandpaper was not able to influence the flexural strength of repaired denture bases.  相似文献   

3.
doi: 10.1111/j.1741‐2358.2011.00604.x
Effect of the addition of silanated silica on the mechanical properties of microwave heat‐cured acrylic resin Objectives: The purpose of this study was to evaluate fthe flexural strength and Vickers hardness of a microwave energy heat‐cured acrylic resin by adding different concentrations of silane surface‐treated nanoparticle silica. Methods: Acrylic resin specimens with dimensions of 65 × 10 × 2.5 mm were formed and divided into five experimental groups (n = 10) according to the silica concentration added to the acrylic resin mass (weight %) prior to polymerisation : G1, without silica; G2, 0.1% silica; G3, 0.5% silica; G4, 1.0% silica; and G5, 5.0% silica. The specimens were submitted to a three‐point flexural strength test and to the Vickers hardness test (HVN). The data obtained were statistically analysed by anova and the Tukey test (α = 0.05). Results: Regarding flexural strength, G5 differed from the other experimental groups (G1, G2, G3 and G4) presenting the lowest mean, while G4 presented a significantly higher mean, with the exception of group G3. Regarding Vickers hardness, a decrease in values was observed, in which G1 presented the highest hardness compared with the other experimental groups. Conclusion: Incorporating surface‐treated silica resulted in direct benefits in the flexural strength of the acrylic resin activated by microwave energy; however, similar results were not achieved for hardness.  相似文献   

4.
doi:10.1111/j.1741‐2358.2009.00336.x
Effect of the physical properties of acrylic resin of overnight immersion in sodium hypochlorite solution Objectives: This study evaluated colour stability, surface roughness and flexural strength of microwave‐polymerised acrylic resin after overnight immersion in sodium hypochlorite, simulating 180 days use. Materials and methods: Forty disc‐shaped (15 mm × 4 mm) and 40 rectangular specimens (65 mm × 10 mm × 3 mm) were prepared from microwave‐polymerised acrylic resin. The specimens were immersed in 0.5, 1% sodium hypochlorite, Clorox/Calgon and distilled water. Colour measurements (ΔE) were determined by a portable colorimeter. A surface analyser was used to measure roughness (μm). The flexural strength (MPa) was measured using a three‐point bending test in a universal testing machine. Data were evaluated by one‐way anova , followed by Student–Newman–Keuls test (α = 0.05). Results: Statistical analysis found significantly higher colour changes (SNK, p < 0.001) for the 1% sodium hypochlorite, but mean ΔE value quantified by National Bureau of Standards was classified as slight. When comparing the surface roughness, no statistical significance was found among the solutions (anova , p = 0.637). The 1% sodium hypochlorite presented significantly lower flexural strength compared with the control group (SNK, p = 0.034). Conclusion: It was concluded that immersion in 1% sodium hypochlorite solutions for 8 h does influence the colour stability and flexural strength of microwave‐polymerised acrylic resin, during the simulated period of 180 days.  相似文献   

5.
Background: The fracture between acrylic denture base material and artificial teeth is a common clinical occurrence in dental prosthodontic practice. Objective: To evaluate the bond strength between acrylic resins and resin denture teeth when submitted by two protocols of monomer liquid application on the tooth surface and using different polymerisation methods. Material and methods: Microwave‐polymerised (Onda‐Cryl), heat‐polymerised (Clássico) and autopolymerising (Jet) acrylic resins and a brand of resin denture teeth (Biotone) were used. The acrylic resins were polymerised according to the cycles: (A) microwave – fast cycle, Onda‐Cryl; (B) microwave – long cycle, Onda‐Cryl; (C) microwave – manufacturer’s cycle, Onda‐Cryl; (T) water bath – long cycle, Clássico and (Q) bench polymerisation cycle, Jet. Thirty specimens were prepared for each polymerisation method; 10 were packed with acrylic resin after 60 s of monomer liquid application on the tooth surface, 10 after 180 s and 10 without any monomer liquid application. For the purpose of the study, a shear test was used. anova and Tukey tests were performed to identify significant differences (α = 0.05). Results: The highest bond strength values were found for monomer surface treatments, regardless of the polymerisation cycles. The highest significant values were found for cycles B (15.4 ± 1.8 MPa), C (11.9 ± 4.9 MPa) and T (15.4 ± 2.6 MPa) for non‐treated and 60 s methylmethacrylate treated groups. Comparing the monomer liquid treatment, they did not differ significantly (p > 0.05), except for cycle A (p < 0.05). Conclusion: Chemical treatment using monomer on the tooth surface prior to the acrylic resin packing improved the bond strength between resin denture tooth and acrylic resin, regardless of monomer liquid treatment protocols. The microwavable resin, polymerised by fast cycle and autopolymerising resin should be avoided for processing denture and denture repairs, respectively.  相似文献   

6.
doi: 10.1111/j.1741‐2358.2011.00474.x
Effect of thermocycling on the flexural and impact strength of urethane‐based and high‐impact denture base resins Objective: Mechanical properties of the acrylic resins used for denture fabrication may be influenced by water and temperature. Thus, the aim of this study was to evaluate the effect of thermocycling on the flexural and impact strength of a high‐impact (Lucitone 199) and a urethane‐based denture material (Eclipse). Materials and methods: Flexural strength (64 × 10 × 3.3 mm) and impact strength (60 × 6 × 4 mm) specimens were made following the manufacturers’ instructions and assigned to two groups (n = 10): control (C) – not thermocycled – and T – thermocycled (5000 cycles between 5 and 55°C). Specimens were submitted to three‐point bending and Charpy impact tests. Results: Flexural strength (MPa) and impact strength (kJ/m2) data were analysed with two‐way anova (p = 0.05). The flexural strength of material Eclipse (C, 136.5; T, 130.7) was significantly higher than that of resin Lucitone 550 (C, 99.4; T, 90.1). Material Eclipse exhibited significantly higher impact strength (C, 6.9; T, 5.3) than the resin Lucitone 550 (C, 3.5; T, 3.0). For both materials, a significant decrease in flexural and impact strengths was observed when the specimens were thermocycled. Conclusion: Flexural and impact strengths were higher for Eclipse than for Lucitone 550, in both groups. Thermocycling decreased the flexural and impact strengths of Eclipse and Lucitone 550.  相似文献   

7.
doi: 10.1111/j.1741‐2358.2011.00515.x Flexural and bond strengths of relined denture polymers assessed by four‐point bending tests and Weibull analysis Objectives: The aim of this study was to (1) investigate the flexural strengths of three denture resins i.e. heat, photopolymerised and microwaved and how it was affected by relining with auto‐ and visible light–polymerised hard reliners, (2) investigate the bond strengths between denture resins and hard reliners and (3) interpret the results of both tests by utilising Weibull analysis. Materials and methods: Specimens (65 × 10 × 2.5 mm) from denture resins, relined and bonded combinations were tested using a four‐point bending test in a universal testing machine and a crosshead speed of 5 mm/min. Ten specimens for each bulk resin and denture resin–reliner combination for a total of 150 were tested. Results: Statistical analysis indicated significant differences between bulk materials (p < 0.001) and between reliners (p < 0.001) for flexural and bond strength tests. Conclusion: It was concluded that (1) the four‐point flexural strength was different between the denture base materials, (2) flexure strength between bulk and relined or between relined with autopolymerised and photopolymerised bases was different, (3) flexural strength among relined denture bases was different and (4) bond strengths among relined denture bases were different.  相似文献   

8.
Background: It has been suggested that microwave irradiation and prosthesis immersion in hot water after its polymerization may improve mechanical and viscoelastic properties of acrylic resins. Purpose: This study was proposed to verify the influence of microwave post‐polymerization (PP) treatment over the flexural strength of thermo‐polymerizing acrylic resin specimens (QC‐20) relined or not with two different composition hard chairside auto‐polymerizing reliners [Kooliner (K) and New Truliner (NT)]. Materials and Methods: For this study, 50 specimens of 64 × 10 × 3.3 mm were polymerized and distributed into five groups. G1 (control) specimens without relining and PP; G2 specimens relined with K, without PP; G3 specimens relined with NT, without PP; G4 specimens relined with K, with PP (microwave irradiation with 650 W for 5 min); G5 specimens relined with NT, with PP. Tests were performed on a universal testing machine Instron 4411 with compression speed of 5 mm/min. Results: Specimens of K without PP did not show statistically different results (p < 0.05) when compared with control. However, when submitted to PP these specimens showed a significant increase in flexural strength. Specimens of NT showed the lowest flexural strength of all groups, with or without PP when compared with control and K groups. Conclusion: Microwave PP (650 W for 5 min) proved to be an effective method of improving the flexural strength of K relined prosthesis. However, it did not seem to affect NT specimens.  相似文献   

9.
Native hagfish intermediate filament proteins have impressive mechanical properties. However, using these native fibres for any application is impractical, necessitating their recombinant production. In the only literature report on the proteins (denoted α and ɣ), heterologous expression levels, using E. coli, were low and no attempts were made to optimize expression, explore wet-spinning, or spin the two proteins individually into fibres. Reported here is the high production (~8 g l−1 of dry protein) of the hagfish intermediate filament proteins, with yields orders of magnitude higher (325–1000×) than previous reports. The proteins were spun into fibres individually and in their native-like 1:1 ratio. For all fibres, the hallmark α-helix to β-sheet conversion occurred after draw-processing. The native-like 1:1 ratio fibres achieved the highest average tensile strength in this study at nearly 200 MPa with an elastic modulus of 5.7 GPa, representing the highest tensile strength reported for these proteins without chemical cross-linking. Interestingly, the recombinant α protein achieved nearly the same mechanical properties when spun as a homopolymeric fibre. These results suggest that varying the two protein ratios beyond the natural 1:1 ratio will allow a high degree of tunability. With robust heterologous expression and purification established, optimizing fibre spinning will be accelerated compared to difficult to produce proteins such as spider silks.  相似文献   

10.
doi: 10.1111/j.1741‐2358.2011.00570.x Effect of disinfection and storage on the flexural strength of ocular prosthetic acrylic resins Objective: To evaluate the influence of chemical disinfection and storage duration on the flexural strength of acrylic resins commonly used to make ocular prostheses. Methods: A total of 260 samples were manufactured with N1 resin and colourless resin. Both resins were thermopolymerised using a microwave oven. Samples were stored and periodically disinfected and were divided into groups: control (no disinfection) (I), neutral soap (II), Opti‐free (III), Efferdent (IV), 1% hypochlorite (V) or 4% chlorhexidine (VI). The flexural strength was measured before and after 60 and 120 days of storage. Data were analysed by anova and Tukey test (0.05). Results: The flexural strength of the N1 resin was higher than that for the colourless resin. There was a significant difference in the flexural strength before and after 60 and 120 days of storage with disinfection, regardless of the resin and disinfectant. Group I in the initial period exhibited greater flexural strength, with significant difference only in group VI after 120 days. Conclusion: It can be concluded that the flexural strength only changed after 120 days of storage for samples disinfected with chlorhexidine. However, all flexural strength values obtained herein were acceptable clinical limits for the acrylic resins.  相似文献   

11.
Muscle morphology was investigated in newly hatched barramundi Lates calcarifer larvae incubated at set temperatures (26, 29 and 31° C) prior to hatching. Three days after hatching (the start of exogenous feeding), larvae from the 26 and 31° C treatments were each divided into two groups and reared at that temperature or transferred over the period of several hours to 29° C (control temperature). Incubation temperature significantly affected muscle cellularity in the developing embryo, with larvae incubated at 26° C (mean ±s .e . 223·3 ± 7·9) having on average 14·4% more inner muscle fibres than those incubated at 31° C (195·2 ± 8·8) and 4·8% more than those incubated at 29° C (213·5 ± 4·7). Conversely, inner muscle fibre cross‐sectional area significantly increased at the warm incubation temperature in L. calcarifer, so that the total cross‐sectional muscle area was not different between treatment groups. The total cross‐sectional area of superficial muscle fibres and the proportion of superficial to total fibre cross‐sectional area in just hatched L. calcarifer were also affected by incubation temperature, with incubation at the cool temperature (26° C) increasing both the total cross‐sectional area and proportion of superficial muscle fibres. By 9 days post‐hatch, the aforementioned differences were no longer significant. Similarly, there was no difference in total superficial fibre cross‐sectional area between any treatment groups of L. calcarifer, whereas incubation temperature still significantly affected the proportion of superficial to total muscle fibre cross‐sectional area. Larvae hatched and grown at 31° C had a significantly reduced percentage of superficial muscle cross‐sectional area (mean ±s .e . 5·11 ± 0·66%) compared with those incubated and grown at 29° C (8·04 ± 0·77%) and 26° C (9·32 ± 0·56%) and those incubated at 26° C and transferred to 29° C (7·52 ± 0·53%), and incubated at 31° C and transferred to 29° C (6·28 ± 0·69%). These results indicate that changes in muscle cellularity induced by raising or lowering the incubation temperature of L. calcarifer display varying degrees of persistence over developmental time. The significance of these findings to the culture of L. calcarifer is discussed.  相似文献   

12.
A composite hip prosthesis (CHP) made from poly(ether-imide) reinforced with carbon and glass fibres was manufactured and characterized. The main objective of the study was to evaluate the effect of fibre organization on the mechanical properties of the composite femoral implant and compare with the bone. A stacking sequence of drop-off plies of carbon/glass fibres reinforcing poly(ether-imide) (PEI) constitutes a symmetrical and balanced CHP. The hip was manufactured according to the finite element modelling (FEM) design and using the compression moulding and water-jet technologies. The measured stress-strain data according to tensile, flexural and torsional tests showed agreement with the numerical calculation. Young's modulus and the strength in tension are uniform along the stem axis (40 GPa and 600 MPa, respectively) while the elastic modulus in bending varies from 10 to 60 GPa in the tip-head direction. The composite stem showed a linear load-displacement relation up to 4500 N without breaking. Mechanical behaviour of the CHP is compared to that of a canine femur. Comparison with metal prostheses has also been undertaken. CHPs control stress-strain distributions, and hence the mechanical signals to bone, through a material-structure design.  相似文献   

13.
Srijan Aggarwal 《Biofouling》2013,29(4):479-486
Recently, a micro-cantilever method was introduced for measuring the ultimate tensile strength of intact bacterial biofilms. Herein, is reported the analysis of the video files from the testing of a 4-day-old Staphylococcus epidermidis biofilm to determine the elastic modulus, toughness, and failure strain. Elastic modulus (1270±280 Pa) was within the range of previously reported values (17–6000 Pa). The high failure strains (240±16%) indicate the substantial ductility of bacterial biofilms. In addition, the toughness of the biofilm sample was determined from the area under the stress–strain plot (2.8±0.44 kJ m?3). Thus, it was demonstrated that the micro-cantilever test video files can be used for the determination of other mechanical property parameters besides ultimate tensile strength.  相似文献   

14.
doi:10.1111/j.1741‐2358.2009.00292.x
Effect of reline material and denture base surface treatment on the impact strength of a denture base acrylic resin Objective: In this study, the effect of relining and surface treatment on the impact strength (IS) of a heat‐polymerising denture base acrylic resin (Lucitone 550‐L) was evaluated. Materials and methods: Rectangular bars of L were made (60 × 6 × 2 mm) and relined (2 mm) with the relining resins Ufi Gel Hard (UH) and Tokuso Rebase Fast (TR). Specimens relined with L and intact L, TR and UH specimens were also made (60 × 6 × 4 mm), for comparison. Before relining, the L surface was left untreated or wetted with methyl methacrylate monomer and/or the bonding agents (BA) supplied by manufacturers of the reline resins. V‐notches were machined at the midpoint of the length of all specimens. The notches were made either across the width (Nw) or across the thickness of the specimens (Nth). The Charpy impact test was performed using a 0.5‐J pendulum, which had been specially designed and constructed. Data were analysed separately for each notch position using one‐way analysis of variance and Tukey honestly significant difference posthoc test (p = 0.05). Results: The IS of L was similar to that of L/L. For the Nw notch, treating the denture base L with TR BA and relining with TR reline material produced the highest IS. Conclusion: The IS of specimens made from heat polymerising acrylic resin Lucitone 550 was increased after relining using the hard chairside reline resin TR with its proprietary BA.  相似文献   

15.
The aim of this study was to create a new porous calcium phosphate implant for use as a synthetic bone graft substitute. Porous bioceramic was fabricated using a foam-casting method. By using polyurethane foam and a slurry containing hydroxyapatite-dicalcium phosphate powder, water, and additives, a highly porous structure (66 ± 5%) was created. The porous specimens possess an elastic modulus of 330 ± 32 MPa and a compressive strength of 10.3 ± 1.7 MPa. The X-ray diffraction patterns show hydroxyapatite and beta-pyrophosphate phases after sintering. A rabbit model was developed to evaluate the compressive strength and elastic modulus of cancellous bone defects treated with these porous synthetic implants. The compressive mechanical properties became weaker until the second month post implantation. After the second month, these properties increased slightly and remained higher than control values. New bone formed on the outside surface and on the macropore walls of the specimens, as osteoids and osteoclasts were evident two months postoperatively. Considering these properties, these synthetic porous calcium phosphate implants could be applicable as cancellous bone substitutes.  相似文献   

16.
The vascular supply of red, intermediate and white fibres in the axial muscle of axolotl (Ambystoma mexicanum Shaw) was visualized with Indian ink-injections and quantified with morphometrical methods on semithin sections. Red fibres were surrounded by 1.4 ± 0.6 capillaries (mean + SD), the intermediate fibres by 1.2 ± 0.9 capillaries and white fibres by 0.3 ± 0.6 capillaries. The mean vascularized surface area per unit volume of fibre was 0.0159, and 0.0068 and 0.0007 (μm2/μm3) for red, intermediate and white fibres, respectively. A unit volume of mitochondria within each type of fibre was supplied by 0.15, 0.17 and 0.08 μm2 vascularized surface for red, intermediate and white fibres, respectively. This indicates that there exist a good balance between oxygen demand represented by mitochondrial content and oxygen supply represented by the vascularized surface.  相似文献   

17.
The different types of fibres of the collagenous and elastic systems can be demonstrated specifically in tissue sections by comparing the typical ultrastructural picture of each of the fibre types with studies using selective staining techniques for light microscopy. A practicalmodus operandi, which includes the recommended staining procedures and interpretation of the results, is presented. Micrographs and tables are provided to summarize the differential procedures. Reticulin fibres display a distinct argyrophilia when studied by means of silver impregnation techniques, and show up as a thin meshwork of weakly birefringent, greenish fibres when examined with the aid of the Picrosirius-polarization method. In addition, electron-microscopic studies showed that reticulin fibres are composed of a small number of thin collagen fibrils, contrasting with the very many thicker fibrils that could be localized ultrastructurally to the sites where non-argyrophilic, coarse collagen fibres had been characterized by the histochemical methods used. The three different fibre types of the elastic system belong to a continuous series: oxytalan—elaunin—elastic (all of the fibre types comprising collections of microfibrils with, in the given sequence, increasing amounts of elastin). The three distinct types of elastic system fibres have different staining characteristics and ultrastructural patterns. Ultrastructurally, a characteristic elastic fibre consists of two morphologically different components: a centrally located solid cylinder of amorphous and homogeneous elastin surrounded by tubular microfibrils. An oxytalan fibre is composed of a bundle of microfibrils, identical to the elastic fibre microfibrils, without amorphous material. In elaunin fibres, dispersed amorphous material (elastin) is intermingled among the microfibrils.  相似文献   

18.
Objective: The purpose of this in vitro study was to evaluate the antimicrobial activity of acrylic resins containing different percentages of silver and zinc zeolite, and to assess whether the addition of zeolite alters the flexural and impact strength of the resins. Background: The characteristics of acrylic resins support microorganism development that can threaten the health of the dentures user. Material and methods: A microwave‐polymerised (Onda‐Cryl) and two heat‐polymerised (QC20 and Lucitone 550) acrylic resins were used. The materials were handled according to the manufacturers’ instructions. Fifty rectangular‐shaped specimens (8 × 10 × 4mm) were fabricated from each resin and assigned to 5 groups (n = 10) according to their percentage of Irgaguard B5000 silver–zinc zeolite (0%– control, 2.5%, 5.0%, 7.5% and 10%). Flexural strength and Izod impact strength were evaluated. The antimicrobial activity against two strains of Candida albicans and two strains of Streptococcus mutans was assessed by agar diffusion method. Data were analysed statistically by one‐way anova and Tukey’s test at 5% significance level. Results: The addition of 2.5% of Irgaguard B5000 to the materials resulted in antimicrobial activity against all strains. Flexural strength decreased significantly with the addition of 2.5% (QC20 and Lucitone 550) and 5.0% (Onda‐Cryl) of Irgaguard B5000. The impact strength decreased significantly with the addition of 2.5% (Lucitone 550) and 5.0% (QC20 and Onda‐Cryl) of zeolite. Conclusion: The addition of silver–zinc zeolite to acrylic resins yields antimicrobial activity, but may affect negatively the mechanical properties, depending on the percentage of zeolite.  相似文献   

19.
doi:10.1111/j.1741‐2358.2009.00333.x
Effect of microwave treatment on the shear bond strength of different types of commercial teeth to acrylic resin Objective: The purpose of this study was to verify the effect of microwave treatment on the shear bond strength of commercial types of teeth to acrylic resin, when the glossy ridge laps were unmodified (groups 1 and 5), bur abraded (groups 2 and 6), bur grooved (groups 3 and 7) or etched by monomer (groups 4 and 8). Background: Controversial findings have shown that mechanical or chemical changes in ridge‐lap surface of the tooth increase or decrease the bond strength between tooth and acrylic resin, and the microwave disinfection may cause different changes on this bond strength. Materials and methods: Eighty specimens (n = 10) were made with the acrylic resin bonded to tooth glossy ridge lap, polymerised in water at 74°C for 9 h, and deflasked after flask cooling. Specimens of the groups 5, 6, 7 and 8 were individually immersed in 150 ml of water and submitted to microwave treatment in an oven at 650 W for 3 min. Control specimens (groups 1, 2, 3 and 4) were not microwave treated. Shear bond strength test was performed in an Instron machine with a cross‐speed of 1 mm/min. Collected data were submitted to anova and Tukey’s test (α = 0.05). Results: Microwave treatment decreased the shear bond strength values of the tooth/resin bond. In the microwaved and non‐microwaved procedures, mechanical retention improved the shear bond strength when compared with the control and monomer treatments. Conclusion: Shear bond strength of the tooth/resin bond was influenced by the microwave treatment and different commercial teeth association, and was lower for the Biotone tooth.  相似文献   

20.
Optical fibres have received considerable attention as high-density sensor arrays suitable for both in vitro and in vivo measurements of biomolecules and biological processes in living organisms and/or nano-environments. The fibre surface was chemically modified by exposure to a selective etchant that preferentially erodes the fibre cores relative to the surrounding cladding material, thus producing a regular pattern of cylindrical wells of approximately 2.5 μm in diameter and 2.5 μm deep. The surface hydrophobicity of the etched and non-etched optical fibres was analysed using the sessile pico-drop method. The surface topography was characterised by atomic force microscopy (AFM), while the surface chemistry was probed by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Six taxonomically different bacterial strains showed a consistent preference for attachment to the nano-scale smoother (R q = 273 nm), non-etched fibre surfaces (water contact angle, θ = 106° ± 4°). In comparison, the surfaces of the etched optical fibres (water contact angle, θ = 96° ± 10°) were not found to be amenable to bacterial attachment. Bacterial attachment on the non-etched optical fibre substrata varied among different strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号