首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Folate deaminase released from cells of Dictyostelium discoideum is heterogenous with respect to molecular weight and stability at 60°C. The most heat-stable component isoelectrofocuses in a broad band at approx. pH 6. The Km value of this component for folate is approx. 7 · 10?7 M and Mr approx. 40 000. The major portion if not all of the deaminase binds to immobilized concanavalin A and lentil lectin. Extracellular folate deaminase has a pH-optimum of approx. pH 6.0. This is higher than that of lysosomal enzymes, which are also glycoproteins released into the extracellular medium.  相似文献   

2.
1. Rat tissue homogenates convert dl-1-aminopropan-2-ol into aminoacetone. Liver homogenates have relatively high aminopropanol-dehydrogenase activity compared with kidney, heart, spleen and muscle preparations. 2. Maximum activity of liver homogenates is exhibited at pH9·8. The Km for aminopropanol is approx. 15mm, calculated for a single enantiomorph, and the maximum activity is approx. 9mμmoles of aminoacetone formed/mg. wet wt. of liver/hr.at 37°. Aminoacetone is also formed from l-threonine, but less rapidly. An unidentified amino ketone is formed from dl-4-amino-3-hydroxybutyrate, the Km for which is approx. 200mm at pH9·8. 3. Aminopropanol-dehydrogenase activity in homogenates is inhibited non-competitively by dl-3-hydroxybutyrate, the Ki being approx. 200mm. EDTA and other chelating agents are weakly inhibitory, and whereas potassium chloride activates slightly at low concentrations, inhibition occurs at 50–100mm. 4. It is concluded that aminopropanol-dehydrogenase is located in mitochondria, and in contrast with l-threonine dehydrogenase can be readily solubilized from mitochondrial preparations by ultrasonic treatment. 5. Soluble extracts of disintegrated mitochondria exhibit maximum aminopropanol-dehydrogenase activity at pH9·1 At this pH, Km values for the amino alcohol and NAD+ are approx. 200 and 1·3mm respectively. Under optimum conditions the maximum velocity is approx. 70mμmoles of aminoacetone formed/mg. of protein/hr. at 37°. Chelating agents and thiol reagents appear to have little effect on enzyme activity, but potassium chloride inhibits at all concentrations tested up to 80mm. dl-3-Hydroxybutyrate is only slightly inhibitory. 6. Dehydrogenase activities for l-threonine and dl-4-amino-3-hydroxybutyrate appear to be distinct from that for aminopropanol. 7. Intraperitoneal injection of aminopropanol into rats leads to excretion of aminoacetone in the urine. Aminoacetone excretion proportional to the amount of the amino alcohol administered, is complete within 24hr., but represents less than 0·1% of the dose given. 8. The possible metabolic role of amino alcohol dehydrogenases is discussed.  相似文献   

3.
4.
The reductant of ferricytochrome c2 in Rhodopseudomonas sphaeroides is a component, Z, which has an equilibrium oxidation-reduction reaction involving two electrons and two protons with a midpoint potential of 155 mV at pH 7. Under energy coupled conditions, the reduction of ferricytochrome c2 by ZH2 is obligatorily coupled to an apparently electrogenic reaction which is monitored by a red shift of the endogeneous carotenoids. Both ferricytochrome c2 reduction and the associated carotenoid bandshift are similarly affected by the concentrations of ZH2 and ferricytochrome c2, pH, temperature the inhibitors diphenylamine and antimycin, and the presence of ubiquinone. The second-order rate constant for ferricytochrome c2 reduction at pH 7.0 and at 24°C was 2 · 109 M?1 · s?1, but this varied with pH, being 5.1 · 108 M?1 · s?1 at pH 5.2 and 4.3 · 109 M?1 · s?1 at pH 9.3. At pH 7 the reaction had an activation energy of 10.3 kcal/mol.  相似文献   

5.
(1) In the pH range between 5.0 and 8.0, the rate constants for the reaction of ferrocytochrome c with both the high- and low-affinity sites on cytochrome aa3 increase by a factor of approx. 2 per pH unit. (2) The pre-steady-state reaction between ferrocytochrome c and cytochrome aa3 did not cause a change in the pH of an unbuffered medium. Furthermore, it was found that this reaction and the steady-state reaction are equally fast in H2O and 2H2O. From these results it was concluded that no protons are directly involved in a rate-determining reaction step. (3) Arrhenius plots show that the reaction between ferrocytochrome c and cytochrome aa3 requires a higher enthalpy of activation at temperatures below 20°C (15–16 kcal/mol) as compared to that at higher temperature (9 kcal/mol). We found no effect of ionic strength on the activation enthalpy of the pre-steady-state reaction, nor on that of the steady-state reaction. This suggests that ionic strength does not change the character of these reactions, but merely affects the electrostatic interaction between both cytochromes.  相似文献   

6.
6-Chloromethylbenzo[a]pyrene (6-CMBP) labeled with 13C in the chloromethyl group was used as a model for those carcinogens which form essentially free carbocations. Using 13C-NMR to identify products, the selectivity with which this electrophile modifies nucleosides was investigated. At pH 7, guanosine and deoxyguanosine are the most nucleophilic nucleosides toward the carbocation generated by solvolysis of 6-CMBP. Attack at N-7 predominates over attack at N-2. At higher pH, the nucleophilicity of guanosine and deoxyguanosines increases markedly. In addition, the site of modification changes to N-1 with secondary modification at O-6. The pH dependence of the rate of this reaction implicates a group with pK-value approx. 8.7 which was assigned to the hydrogen on N-1. The presence of a methyl group on the N-7 position of guanosine lowers this pK-value to approx. 7.2. Consequently, N7-methylguanosine shows the high nucleophilicity at physiological pH that guanosine has at high pH. These observations lead to the suggestion of a one base: two-site model for chemical carcinogenesis.  相似文献   

7.
A.J. Clark  N.P.J. Cotton  J.B. Jackson 《BBA》1983,723(3):440-453
(1) Under conditions in which membrane potential (Δψ) was the sole contributor to the proton-motive force, the steady-state rate of ATP synthesis in chromatophores increased disproportionately when Δψ was increased: the rate had an approximately sixth-power dependence on Δψ. (2) Simultaneous measurements showed that the dissipative ionic current (JDIS) across the chromatophore membrane had a related dependence on Δψ, i.e., the membrane conductance increased markedly as Δψ increased. (3) For comparable Δψ values, JDIS was greater in phosphorylating than in non-phosphorylating chromatophores. For comparable actinic light intensities, Δψ was smaller in phosphorylating than in non-phosphorylating chromatophores. (4) At either low pH or in the presence of venturicidin, oligomycin or dicyclohexylcarbodiimide to inhibit ATP synthesis, JDIS was substantially depressed, particularly at high Δψ. Even under these conditions the membrane conductance was dependent on Δψ. (5) Also in intact cells, JDIS was depressed in the presence of venturicidin. Points 1–5 are interpreted in terms of a Δψ -driven H+ flux through the F0 channel of the ATPase synthase. The high-power dependence of the F0 conductance on Δψ determines the dependence of the rate of ATP synthesis on Δψ. The Δψ -dependent conductance of F0 dominates the electrical properties of the membrane. In chromatophores the ionic current accompanying ATP synthesis was more than 50% of the total membrane ionic current at maximal Δψ. (6) The rate of cyclic electron transport was calculated from JDIS. This led to an estimate of 0.77 ± 0.22 for the ATP2e? ratio and of 3.5 ± 1.3 for the H+ATP ratio. (7) Severe inhibition of the electron-transport rate by decreasing the light intensity led to an almost proportionate decrease in the rate of ATP synthesis. The chromatophores were able to maintain proportionality by confining electron-transport phosphorylation to a narrow range of Δψ. This is a consequence of the remarkable conductance properties of the membrane.  相似文献   

8.
The mitochondria isolated from the ciliate protozoon Tetrahymena pyriformis carry an oxidative phosphorylation with P/O ratio of 2 for succinate oxidation and P/O ratio of 3 for the oxidation of the NAD-linked substrates. The respiration is more than 90% inhibited with 1 mM cyanide while antimycin A and rotenone inhibit at concentrations of 1000-fold higher than those effective in mammalian mitochondria.Using a combination of spectral studies and potentiometric titrations, the components of the respiratory chain were identified and characterized with respect to the values of their half-reduction potentials. In the cytochrome bc1 region of the chain a cytochrome c was present with an Em7.2 of 0.225 V and two components with absorption maxima at 560 nm and the half-reduction potential values of ?0.065 and ?0.15 V at pH 7.2. The cytochrome with the more positive half-reduction potential was identified as the analogue of the cytochrome(s) b present in mitochondria of higher organisms, while the cytochrome with the more negative half-reduction potential was tentatively identified as cytochrome o. In addition ubiquinone was present at a concentration of approx. 4 nmol per mg mitochondrial protein.In the spectral region where cytochromes a absorb at least three cytochromes were found. A cytochrome with an absorption maximum at 593 nm and a midpoint potential of ?0.085 V at pH 7.2 was identified as cytochrome a1. The absorption change at 615–640 nm, attributed usually to cytochrome a2 was resolved into two components with Em7.2 values of 0.245 and 0.345 V. It is concluded that the terminal oxidase in Tetrahymena pyriformis mitochondria is cytochrome a2 which in its two-component structure resembles cytochrome aa3.  相似文献   

9.
Phosphoenolpyruvate carboxylase (PEPC) was purified 40-fold from soybean (Glycine max L. Merr.) nodules to a specific activity of 5.2 units per milligram per protein and an estimated purity of 28%. Native and subunit molecular masses were determined to be 440 and 100 kilodaltons, respectively, indicating that the enzyme is a homotetramer. The response of enzyme activity to phosphoenolpyruvate (PEP) concentration and to various effectors was influenced by assay pH and glycerol addition to the assay. At pH 7 in the absence of glycerol, the Km (PEP) was about twofold greater than at pH 7 in the presence of glycerol or at pH 8. At pH 7 or pH 8 the Km (MgPEP) was found to be significantly lower than the respective Km (PEP) values. Glucose-6-phosphate, fructose-6-phosphate, glucose-1-phosphate, and dihydroxyacetone phosphate activated PEPC at pH 7 in the absence of glycerol, but had no effect under the other assay conditions. Malate, aspartate, glutamate, citrate, and 2-oxoglutarate were potent inhibitors of PEPC at pH 7 in the absence of glycerol, but their effectiveness was decreased by raising the pH to 8 and/or by adding glycerol. In contrast, 3-phosphoglycerate and 2-phosphoglycerate were less effective inhibitors at pH 7 in the absence of glycerol than under the other assay conditions. Inorganic phosphate (up to 20 millimolar) was an activator at pH 7 in the absence of glycerol but an inhibitor under the other assay conditions. The possible significance of metabolite regulation of PEPC is discussed in relation to the proposed functions of this enzyme in legume nodule metabolism.  相似文献   

10.
The distribution of cyclic-AMP phosphodiesterase was investigated in subcellular fractions prepared from homogenates of rat liver or isolated hepatocytes. When measured at 1 mM or 1 μM substrate concentration, approx. 35% or 50%, respectively, of enzyme activity was particulate. The soluble activity appeared to be predominantly a ‘high Km’ form, whereas the particulate activity had both ‘high Km’ and ‘low Km’ components. The recovery of cyclic-AMP phosphodiesterase was measured using 1 μM substrate concentration, in plasma membrane-containing fractions prepared either by centrifugation or by the use of specific immunoadsorbents. The recovery of phosphodiesterase was lower than that of marker enzymes for plasma membrane, and comparable with the recovery of markers for intracellular membranes. It was concluded that regulation of both ‘high Km’ and ‘low Km’ phosphodiesterase could potentially make a significant contribution to the control of cyclic AMP concentration, even at μM levels, in the liver. The ‘low Km’ enzyme, for which activation by hormones has been previously described, appears to be located predominantly in intracellylar membranes in hepatocytes.The immunological procedure for membrane isolation allowed the rapid preparation of plasma membranes in high yield. Liver cells were incubated with rabbit anti-(rat erythrocyte) serum and homogenized. The antibody-coated membrane fragments were then extracted onto an immunoadsorbent consisiting of sheep anti-(rabbit IgG) immunoglobulin covalently bound to aminocellulose. Plasma membrane was obtained in approx. 40% yield within 50 min of homogenizing cells.  相似文献   

11.
Biofilm production is an important step in the pathogenesis ofStaphylococcus epidermidis associated biomaterial infections.Staphylococcus epidermidis strains isolated from dialysis fluid (n=9) and needle cultures (n=14) were phenotyped and genotyped for extracellular polysaccharide production and were examined for their ability to produce slime in a medium at various pH levels (3, 5, 7, 9 and 12) and with ethanol supplementation (0, 2, 5, 10 and 15%) using a semi-quantitative adherence assay. A total of 23 clinicalicaADBC positiveS. epidermidis, one reference strain (S. epidermidis CIP 106510) used as positive control, and oneicaADBC negative strain (E21) were investigated. Qualitative biofilm production analysis revealed that 15 of the 23icaADBC positive strains (65.21%) produced slime on Congo Red agar plates. Quantitative biofilm was determined by measuring the optical density at 570 nm (OD570). The results show that the slime production depended on the pH value of the medium and the ethanol concentration. At highly acidic (pH 3) and alkaline (pH 12) levels, the OD570 was lower, while at pH 7 the adhesion was moderate. In addition the cells adhered strongly with 2% ethanol than with the other concentrations. Our results suggest that pH and ethanol were stress factors that led toS. epidermidis biofilm formation and also play a possible role in the pathogenesis of biomaterial-related infections.  相似文献   

12.
The effects of K+, Na+ and ATP on the gastric (H+ + K+)-ATPase were investigated at various pH. The enzyme was phosphorylated by ATP with a pseudo-first-order rate constant of 3650 min?1 at pH 7.4. This rate constant increased to a maximal value of about 7900 min?1 when pH was decreased to 6.0. Alkalinization decreased the rate constant. At pH 8.0 it was 1290 min?1. Additions of 5 mM K+ or Na+, did not change the rate constant at acidic pH, while at neutral or alkaline pH a decrease was observed. Dephosphorylation of phosphoenzyme in lyophilized vesicles was dependent on K+, but not on Na+. Alkaline pH increased the rate of dephosphorylation. K+ stimulated the ATPase and p-nitrophenylphosphatase activities. At high concentrations K+ was inhibitory. Below pH 7.0 Na+ had little or no effect on the ATPase and p-nitrophenylphosphatase, while at alkaline pH, Na+ inhibited both activities. The effect of extravesicular pH on transport of H+ was investigated. At pH 6.5 the apparent Km for ATP was 2.7 μM and increased little when K+ was added extravesicularly. At pH 7.5, millimolar concentrations of K+ increased the apparent Km for ATP. Extravesicular K+ and Na+ inhibited the transport of H+. The inhibition was strongest at alkaline pH and only slight at neutral or acidic pH, suggesting a competition between the alkali metal ions and hydrogen ions at a common binding site on the cytoplasmic side of the membrane. Two H+-producing reactions as possible candidates as physiological regulators of (H+ + K+)-ATPase were investigated. Firstly, the hydrolysis of ATP per se, and secondly, the hydration of CO2 and the subsequent formation of H+ and HCO3?. The amount of hydrogen ions formed in the ATPase reaction was highest at alkaline pH. The H+/ATP ratio was about 1 at pH 8.0. When CO2 was added to the reaction medium there was no change in the rate of hydrogen ion transport at pH 7.0, but at pH 8.0 the rate increased 4-times upon the addition of 0.4 mM CO2. The results indicate a possible co-operation in the production of acid between the H+ + K+-ATPase and a carbonic anhydrase associated with the vesicular membrane.  相似文献   

13.
In order to establish whether p.m.r. spectroscopy is useful for identifying Amadori- and Heyns-rearrangement products, the p.m.r. spectra at 220 MHz of 16 rearrangement products derived from d-glucose or d-fructose and amino acids have been investigated. At pH 3, the protons of the NCH2 group of N-substituted 1-amino-1-deoxy-d-fructose (Amadori-rearrangement products) resonate at δ 3.25–3.60 in D2O and are shifted upfield by 0.3–0.6 p.p.m. at pH 9. These protons exchange with deuterium. Also, in D2O there is an equilibrium of the acyclic, furanose, and pyranose structures, the last being favoured. At pH ? 7, the equilibrium is completely shifted to the β-pyranose form, which adopts exclusively the 2C5 conformation. At pH 3, the equilibrium favours the β-furanose form. At pH 3, H-1e and H-1a of N-substituted 2-amino-2-deoxy-d-glucoses (Heyns-rearrangement products) resonate at δ 5.55 and 5.04, respectively. At pH 9, the signal for H-2 is shifted upfield by 0.2–0.7 p.p.m. In D2O solution, these compounds exist as an equilibrium of α- and β-pyranose forms in the 4C1 conformation. The α anomer is stabilised by the amino acid group at position 2. At pH 3, the αβ-ratio is 2–4:1, and, at pH 9, 1.0–1.1:1.  相似文献   

14.
A repressible extracellular alkaline phosphatase (with activity increasing steadily even up to pH 10.5) was purified from cultures of the wild-type strain 74A of Neurospora crassa, after growth on acetate and under limiting amounts of inorganic phosphate for 72 hr at 30°. The enzyme was homogeneous on polyacrylamide gel electrophoresis (PAGE) with or without sodium dodecyl sulphate (SDS). The MW was ca 172 000 and 82 000 as determined by Sephadex G-200 gel filtration and SDS-PAGE, respectively. The enzyme contained 23.6% neutral sugars, cations were not required for activity, and it was not inactivated by 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) at pH 8. Kinetic data showed Michaelian behaviour for the enzymatic hydrolysis of 4-nitrophenyl disodium orthophosphate (PNP-P) at pH 9 (the Km value and Hill coefficient were 2.2 × 10?4 M and 0.95, respectively). It was also shown that, at pH 9, the apparent number of Pi bound per dimer molecule equalled one, with a Ki value of 7.0 × 10?4 M. The secreted enzyme showed half-lives of 23.5, 49.0 and 23.5 min at, pH 5.4, 7.4 and 9.0, respectively, after thermal inactivation at 60°. At pH 5.4, the half-life value was quite similar, while the others were respectively 2 and 4 times greater than those previously described for the repressible alkaline phosphatase retained by the mycelium at pH 5.6 or secreted by ‘slime’ cells.  相似文献   

15.
Uptake of testosterone was demonstrated in membrane vesicles prepared from Pseudomonas testosteroni grown on testosterone. In contrast, membrane vesicles from uninduced cultures revealed no significant transport activity for steroids. The Km of the reaction was 2 · 10−6M and the V 28.5 nmoles/min per mg protein. Steroid uptake was maximal within the pH range of 8 to 9 and at incubation temperatures between 30 and 37 °C. Transport of steroid was dependent upon NAD+ and was reduced by NADH, dinitrophenol, and inhibitors of electron transport, such as N3 · CN and amytal. The intravesicular steroid concentration was approx. 800 times the steroid concentration present in the medium at the start of the incubation.  相似文献   

16.
The technique of resonance X-ray diffraction (Blasie, J.K. and Stamatoff, J. (1981) Annu. Rev. Biophys. Bioeng. 10, 451–452) utilizing synchrotron radiation was used to determine the locations of the cytochrome c heme iron atom and the photosynthetic reaction center iron atom within the profile of a reconstituted membrane. The accuracy of these determinations was better than ±2 ?. The cytochrome c heme iron atom → reaction center iron atom vector was determined to have a magnitude of approx. 44 ? projected onto the membrane profile and to span most of the lipid hydrocarbon core of the membrane profile. Since the reaction center iron atom interacts magnetically with the primary quinone electron acceptor QI over a distance of less than 10 ?, the primary light-induced electron-transfer reactions for this system generate the electric charge separation between oxidized cytochrome c+ and Fe-Q?I across most (approx. 23) of the membrane profile including most or all of the lipid hydrocarbon core of the membrane.  相似文献   

17.
S. Ogawa  C. Shen  C.L. Castillo 《BBA》1980,590(2):159-169
31P-NMR has been used to study the increase of ΔpH in mitochondria by externally added ATP. Freshly prepared mitochondria was treated with N-ethylmaleimide to inhibit the exchange between internal and external Pi. Upon addition of ATP, phosphocreatine (30 mM) and creatine kinase to a NMR sample of mitochondria suspension (approx. 120 mg protein/ml) at 0°C, an increase of ΔpH by approx. 0.5 pH unit was observed. However the increased ΔpH could not be maintained, but slowly decayed along with the increase of external ADP/ATP ratio. Further addition of valinomycin to the suspension induced a larger ΔpH (approx. 1) which was maintained by the increased rate of internal ATP hydrolysis as seen in the growth of the internal Pi peak intensity in NMR spectra and the concomitant decrease of the external phosphocreatine peak. The external Pi and ATP peaks stayed virtually constant. When carboxyatractyloside was added to inhibit the ATP/ADP translocase, the internal Pi increase was stopped and the ΔpH decayed. These observations in conjunction with those made earlier in respiring mitochondria clearly show the reversible nature of the ATPase function in which the internal ATP hydrolysis is associated with outward pumping of protons.  相似文献   

18.
The formation constants of the proton and calcium complexes of PGE1 and PGF have been measured in aqueous solution at 20 ± 1°. The proton complexes are shown to be effectively ionized at pH 7, log KHL values being 5.12 and 5.46, respectively. The calcium complexes, studied radiometrically using 45Ca by ion exchange equilibria, have formation constants (KCaPG) of 37 and 9 (approx.), respectively. “Model” ligands studied in developing the technique were 3-hydroxybutyric acid (KCa, 3.1) and 4-hydroxybutyric acid (KCa, 5.7).  相似文献   

19.
Chalcone isomerase (EC 5.5.1.6) from cell suspension cultures of Phaseolus vulgaris has been purified about 400-fold. The molecular weight, as estimated by gel-filtration and SDS-polyacrylamide gel electrophoresis, is approx. 28 000. No isoenzymic forms are observed. The enzyme, which appears to require no cofactors, catalyses the isomerisation of both 6′-hydroxy and 6′-deoxy chalcones to the corresponding flavones. Likewise, a range of both 5-hydroxy and 5-deoxy flavonoids and isoflavonoids act as competitive inhibitors. The most potent inhibitors include the naturally occurring antimicrobial comcpounds kievitone (Ki 9.2 μM) and coumestrol (Ki 2.5 μM). The kinetics of the isomerisation of 2′,4,4′-trihydroxychalcone to the flavanone liquiritigenin have been investigated at a range of pH values. The pH optimum was around 8.0 and Km changed with pH in a manner consistent with control by groups which ionise with pKa values of 7.05 and 8.7 respectively. At pH 8.0, the energy of activation was 17.56 kJ/mol in the range 25–40°C. The role of the enzyme in the induced accumulation of flavonoid/isoflavonoid derivatives inthe Frech bean in discussed.  相似文献   

20.
The effects of ocean acidification will be pronounced in high-latitude marine communities, although little is known on how reproduction in free-spawning polar invertebrates will respond. Using the circum-Antarctic sea star Odontaster validus, we examined fertilisation, larval survival and development under a controlled seawater treatment (temperature = ?0.5 °C, pH 8.1, pCO2(aq) = 326.6 μatm, TA = 2,274.2 μmol kg soln?1), two near-future pH treatments (pH 7.8 and 7.6) and an extreme treatment (pH 7.0). At a sperm concentration of 3.5 × 105 sperm ml?1, percentage of fertilisation was 98–90 % across a pH 8.1–7.0 range. At near-future pH ranges (pH 7.8 and 7.6), fertilisation was not significantly lower than in the control pH 8.1 except at the lowest sperm concentration (2.2 × 103 sperm ml?1) where fertilisation was reduced to 60 and 61 % in pH 7.6 and 7.8, respectively. Larval survival was not significantly affected by a decrease in pH of 0.3 units, but at pH 7.6 survival was significantly reduced. This difference was apparent at 9 days, and at the end of the experiment at 58 days, survival was 55 % compared with 85 % in the ambient treatment. Near-future changes to pH yielded smaller larvae, a result of both subtle differences in their morphology and slowed development rates, while larvae at pH 7.0 showed evidence of abnormal development. O. validus fertilisation and larval success declines in seawater pH conditions expected in coastal Antarctica over the coming decades, although the responses observed are within the range observed in warmer-water echinoderms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号