首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Foraging costs of vigilance in large mammalian herbivores   总被引:7,自引:0,他引:7  
Vigilance has been assumed to reduce food intake by taking away time from food processing. Such foraging costs of vigilance have been predicted to have profound effects on the structure of communities. Recently, however, it has been argued that mammalian herbivores might be capable of maintaining their rate of food intake despite being vigilant, because of their ability to scan the environment while chewing vegetation. We conducted behavioral observations to evaluate whether vigilance decreases the bite rate of free-ranging female bison ( Bison bison ) in Prince Albert National Park and elk ( Cervus canadensis ) in Yellowstone National Park. Modeling of foraging processes indicated that chewing time exceeded the time that bison and elk spent searching for food, interacting with conspecifics, and scanning. Consequently, bison and elk might have been capable of maintaining their rate of food intake despite vigilance. The maintenance of intake rate would have required bison and elk to match scanning events closely with chewing bouts, but we did not detect a positive correlation between the duration of scanning bouts and the number of consecutive bites taken just before vigilance events. As a result, vigilance was costly, and as it increased, bite rate declined for both herbivore species. Scanning still overlapped partially with food handling. Indeed, we estimated that 31% of feeding time being vigilant decreased bite rate by 20% for bison and 26% for elk, whereas total absence of overlap between chewing and scanning should have reduced bite rate by 31%. While we observed that vigilance induced foraging costs, these costs were less important than traditionally assumed.  相似文献   

2.
Migration is an effective behavioral strategy for prolonging access to seasonal resources and may be a resilient strategy for ungulates experiencing changing climatic conditions. In the Greater Yellowstone Ecosystem (GYE), elk are the primary ungulate, with approximately 20,000 individuals migrating to exploit seasonal gradients in forage while also avoiding energetically costly snow conditions. How climate‐induced changes in plant phenology and snow accumulation are influencing elk migration timing is unknown. We present the most complete record of elk migration across the GYE, spanning 9 herds and 414 individuals from 2001 to 2017, to evaluate the drivers of migration timing and test for temporal shifts. The timing of elk departure from winter range involved a trade‐off between current and anticipated forage conditions, while snow melt governed summer range arrival date. Timing of elk departure from summer range and arrival on winter range were both influenced by snow accumulation and exposure to hunting. At the GYE scale, spring and fall migration timing changed through time, most notably with winter range arrival dates becoming almost 50 days later since 2001. Predicted herd‐level changes in migration timing largely agreed with observed GYE‐wide changes—except for predicted winter range arrival dates which did not reflect the magnitude of change detected in the elk telemetry data. Snow melt, snow accumulation, and spring green‐up dates all changed through time, with different herds experiencing different rates and directions of change. We conclude that elk migration is plastic, is a direct response to environmental cues, and that these environmental cues are not changing in a consistent manner across the GYE. The impacts of changing elk migration timing on predator–prey dynamics, carnivore–livestock conflict, disease ecology, and harvest management across the GYE are likely to be significant and complex.  相似文献   

3.
St-Louis A  Côté SD 《Oecologia》2012,169(1):167-176
Forage abundance, forage quality, and social factors are key elements of the foraging ecology of wild herbivores. For non-ruminant equids, forage-limited environments are likely to impose severe constraints on their foraging behaviour. We used a multi-scale approach to study foraging behaviour in kiang (Equus kiang), a wild equid inhabiting the high-altitude rangelands of the Tibetan Plateau. Using behavioural observations and vegetation sampling, we first assessed how patterns of plant abundance and quality affected (i) the instantaneous forage intake rate (fine scale) and (ii) the proportion of time spent foraging (coarse scale) across seasons. We also tested whether foraging behaviour differed among group types, between sex in adults, and between females of different reproductive status. At a fine scale, intake rate increased linearly with bite size and increased following a type II curvilinear function with biomass on feeding sites. Forage intake rate also increased linearly with plant quality. Male and female kiangs had similar intake rates. Likewise, gravid and lactating females had similar intake rates as barren and non-lactating females. At a coarse scale, kiangs spent longer time feeding in mesic than in xeric habitats, and spent more time feeding in early summer and fall than in late summer. Groups of adults with foals spent less time feeding than male groups and groups of adults without foals. Our findings suggest that kiangs use flexible foraging behaviours in relation to seasonal variations of vegetation quality and abundance, a likely outcome of the extreme seasonal conditions encountered on the Tibetan Plateau.  相似文献   

4.
Despite evidence of home range behaviour across many taxa, the mechanisms underlying the development of home ranges are still unknown. Recently, models have been developed to explore these mechanisms for both territorial and non‐ territorial species. One such model for a generic forager suggests animal memory and optimal foraging theory as underlying mechanisms driving forager movement and the development of stable home ranges. Although this is a promising model for ungulate home range development, assumptions of the model have yet to be evaluated. Using GPS relocation data from two populations of elk, we explored how foraging patch selection might influence the structure and development of home ranges in elk Cervus elaphus. During the summer growing season, we identified and sampled foraging patches used by elk. Points along elk paths not used for foraging were sampled identically for comparison. We contrasted ‘patch’ and ‘nonpatch’ data points, to identify foraging selection differences across herd, sex and season using a combination of directly sampled and remotely sensed covariates. In general, elk selected patches with higher biomass, cover, slope and lower traffic on the nearest road. These patch‐selection results speak directly to differences between foraging areas and other areas used by elk and demonstrate that both physiographic and anthropocentric features influence foraging patch selection. Our results offer insight as to what defines a valuable foraging patch for elk and how these patches might influence the development and structure of home ranges in a free‐ranging ungulate.  相似文献   

5.
During winter, ungulates in boreal forests must cope with high energetic costs related to locomotion in deep snow and reduced forage abundance and quality. At high density, ungulates face additional constraints, because heavy browsing reduces availability of woody browse, the main source of forage during winter. Under these severe conditions, large herbivores might forage on alternative food sources likely independent of browsing pressure, such as litterfall or windblown trees. We investigated the influence of alternative food sources on winter habitat selection, by studying female white-tailed deer (Odocoileus virginianus) living in 2 landscapes with contrasted browse abundance, recently logged and regenerated landscapes, in a population at high density and on a large island free of predators. We fitted 21 female white-tailed deer with Global Positioning System (GPS) collars and delineated winter home ranges and core areas. We measured snow conditions in different habitat categories and sampled vegetation in the core areas and in the rest of the home ranges to determine how forage abundance, protective cover, and snow conditions influenced habitat selection within the home range. In both landscapes, deer were less likely to use open habitat categories as snow accumulated on the ground. At a finer scale, deer inhabiting the regenerated landscape intensively used areas where balsam fir cover was intermediate with greater balsam fir browse density than in the rest of the home range. In the recently logged landscape, deer were more likely to be found near edges between clear-cuts and balsam fir stands and in areas where windblown balsam fir trees were present; the latter being the most influential variable. Although balsam fir browse was sparse and mainly out of reach in this landscape, deer increased the use of areas where it was present. Our results offer novel insights into the resource selection processes of northern ungulates, as we showed that access to winter forage, such as woody browse and alternative food sources, depends on climatic conditions and stochastic events, such as abundant compacted snow or windthrows. To compensate for these scarce and unpredictable food supplies, deer selected habitat categories, but mostly areas within those habitat categories, where the likelihood of finding browse, litterfall, and windblown trees was greatest. © 2011 The Wildlife Society.  相似文献   

6.
Elk winter foraging at fine scale in Yellowstone National Park   总被引:1,自引:0,他引:1  
Fortin D  Morales JM  Boyce MS 《Oecologia》2005,145(2):334-342
The link between landscape properties and foraging decisions by herbivores remains unclear, but such knowledge is central to the understanding of plant–herbivore dynamics. Our goal was to determine whether fine-scale foraging paths of free-ranging elk (Cervus canadensis) respond to spatial structure of habitats in Yellowstone National Park. During winter 2002 we gathered elk-foraging information by following snow tracks in open habitats located on hillsides and flat terrain. The 21 snow paths surveyed were comprised on average of 15 discrete snow craters connected to each other by relatively straight-line movements. Our analyses revealed two levels of selection: elk chose where to dig, and how much search effort to allocate at digging sites based on habitat characteristics. On hillsides, elk preferentially dug in areas of greater biomass of grasses and forbs, and simply walked through poorer sites without digging. Individuals also searched more intensively, creating larger craters, where food biomass was higher. On flat terrain, crater size decreased with snow depth and increased with snow density. Correlated random walk models usually were adequate to characterize elk movement on flat terrain, but not on hillsides. First, as the number of movements between local foraging areas increased, elk displacements on hillsides became shorter than expected from random patterns. This trend on hillsides was strongly influenced by interindividual variation in movement behavior. Second, elk tended to forage perpendicularly to aspect, resulting in horizontal displacements. Our study demonstrates that free-ranging elk adjust their foraging to fine-scale habitat structure.  相似文献   

7.
Partial migration is widespread in ungulates, yet few studies have assessed demographic mechanisms for how these alternative strategies are maintained in populations. Over the past two decades the number of resident individuals of the Ya Ha Tinda elk herd near Banff National Park has been increasing proportionally despite an overall population decline. We compared demographic rates of migrant and resident elk to test for demographic mechanisms partial migration. We determined adult female survival for 132 elk, pregnancy rates for 150 female elk, and elk calf survival for 79 calves. Population vital rates were combined in Leslie‐matrix models to estimate demographic fitness, which we defined as the migration strategy‐specific population growth rate. We also tested for differences in factors influencing risk of mortality between migratory strategies for adult females using Cox‐proportional hazards regression and time‐varying covariates of exposure to forage biomass, wolf predation risk, and group size. Despite higher pregnancy rates and winter calf weights associated with higher forage quality, survival of migrant adult females and calves were lower than resident elk. Resident elk traded high quality food to reduce predation risk by selecting areas close to human activity, and by living in group sizes 20% larger than migrants. Thus, residents experienced higher adult female survival and calf survival, but lower pregnancy and calf weights. Cause‐specific mortality of migrants was dominated by wolf and grizzly bear mortality, whereas resident mortality was dominated by human hunting. Demographic differences translated into slightly higher (2–3%), but non‐significant, resident population growth rate compared to migrant elk, suggesting demographic balancing between resident strategies during our study. Despite statistical equivalence, our results are also consistent with slow long‐term declines in migrants because of high predation because of higher wolf‐caused mortality in migrants. These results emphasize that migrants and residents will make different tradeoffs between forage and risk may affect the demographic balance of partially migratory populations, which may explain recent declines in migratory behavior in many ungulate populations around the world.  相似文献   

8.
Large herbivores are typically confronted by considerable spatial and temporal variation in forage abundance and predation risk. Although animals can employ a range of behaviours to balance these limiting factors, scale-dependent movement patterns are expected to be an effective strategy to reduce predation risk and optimise foraging opportunities. We tested this prediction by quantifying site fidelity of global positioning system-collared, non-migratory female elk (Cervus canadensis manitobensis) across multiple nested temporal scales using a long-established elk–wolf (Canis lupus) system in Manitoba, Canada. Using a hierarchical analytical approach, we determined the combined effect of forage abundance and predation risk on variation in site fidelity within four seasons across four nested temporal scales: monthly, biweekly, weekly, daily. Site fidelity of female elk was positively related to forage-rich habitat across all seasons and most temporal scales. At the biweekly, weekly and daily scales, elk became increasingly attached to low forage habitat when risk was high (e.g. when wolves were close or pack sizes were large), which supports the notion that predator-avoidance movements lead to a trade-off between energetic requirements and safety. Unexpectedly, predation risk at the monthly scale increased fidelity, which may indicate that elk use multiple behavioural responses (e.g. movement, vigilance, and aggregation) simultaneously to dilute predation risk, especially at longer temporal scales. Our study clearly shows that forage abundance and predation risk are important scale-dependent determinants of variation in site fidelity of non-migratory female elk and that their combined effect is most apparent at short temporal scales. Insight into the scale-dependent behavioural responses of ungulate populations to limiting factors such as predation risk and forage variability is essential to infer the fitness costs incurred.  相似文献   

9.
Foraging of lynxes in a managed boreal-alpine environment   总被引:2,自引:0,他引:2  
Foraging of Eurasian lynxes Lynx lynx was studied with telemetry and snow tracking in central Norway. In all habitats and at all seasons, medium-sized ungulates (roe deer Capreolus capreolus , reindeer Rangifer tarandus and domestic sheep Ovis aries) dominated the diet (81% of ingested biomass estimated from faeces). Mountain hares Lepus timidus and galliform birds comprised the remainder of the diet (15% and 3%, respectively). Lynxes with different life history status did not differ in prey choice, but adult males utilised carcasses of ungulate prey considerably less (16% of the edible parts) than did females with offspring (80%) and subadults (58%.). Forest habitats in lowlands and adjacent to cultivated fields were the most favourable foraging habitats (indexed as the prey encounter rate per km lynx track) primarily owing to the presence of roe deer. Two family groups tracked in winter killed 0.2 ungulate per day. The importance of agricultural land as a foraging habitat and the dominance of livestock in the diet in remoter areas indicate that the lynx has responded to agriculture and reindeer husbandry during the past century by switching from smaff game to ungulates.  相似文献   

10.
Understanding predator-prey dynamics is an important component of management strategy development for wildlife populations that are directly affected by predation. Ungulates often serve as a significant source of prey for many large mammal predators, and patterns of predation are known to influence population dynamics. Although black bear and wolf diets have been investigated extensively, prey preference has been less commonly examined, especially in analyses that take into account age class (i.e., juvenile and adult) of the ungulate prey. We examined black bear (Ursus americanus), wolf (Canis lupus), and hybrids (Canis spp.) prey preference in Ontario based on the availability of three ungulate species—elk (Cervus elaphus), moose (Alces alces), and white-tailed deer (Odocoileus virginianus). We analyzed the presence of prey items in black bear and wolf scats collected over 3 years by examining prey hair cuticular scale patterns. We applied correction factors to frequencies of occurrence of prey items found in predator scat and related diet composition to the availability of ungulates, determined by fecal pellet transect surveys. In addition, non-ungulate diet items were identified to obtain full diet composition profiles. We found that black bear diet consisted of more than 87% vegetation, and they were opportunistic, not selecting for any particular ungulate species in either adult or juvenile age class. Wolf diet was comprised mainly of ungulates (~?73.2%), muskrat (Ondatra zibethica; ~?8.5%), and beaver (Castor canadensis; ~?14.6%), and although moose were at least 1.5 times more abundant then each of the other ungulate prey species in the study area, wolves preferred elk, using moose less than expected. Although we found black bear diet to be opportunistic during the summer, wolves in our study heavily utilized both juvenile and adult ungulates, however, among ungulate species, displayed preference for elk. The preference displayed by wolves provides insight that wildlife managers can use to guide further investigation and assist with the development of strategies to ensure continued elk reintroduction success, and moose and white-tailed deer population sustainability.  相似文献   

11.
Ungulate abundance has increased dramatically worldwide, having strong impacts on ecosystem functioning. High ungulate densities can reduce the abundance, diversity and/or body condition of small mammals, which has been attributed to reductions in cover shelter and food availability by ungulates. The densities of wild ungulates have increased recently in high-diversity Mediterranean oak ecosystems, where acorn-dispersing small rodents are keystone species. We analysed experimentally ungulate effects on seed-dispersing rodents in two types of oak woodland: a forest with dense shrub layer and in dehesas lacking shrubs. Ungulates had no significant effects on vegetation structure or rodent body mass, but they reduced dramatically rodent abundance in the lacking-shrub dehesas. In the forest, ungulates modified the spatial distribution and space use of rodents, which were more concentrated under shrubs in the presence than in the absence of ungulates. Our results point to the importance of shrubs in mediating ungulate–rodent interactions in Mediterranean areas, suggesting that shrubs serve as shelter for rodents against ungulate physical disturbances such as soil compaction, trampling or rooting. Holm oak seedling density was reduced by ungulates in dehesa plots, but not in forests. Acorn consumption by ungulates may reduce oak recruitment to a great extent. Additionally, we suggest that ungulates may have a negative effect on oak regeneration processes by reducing the abundance of acorn-dispersing rodents. Given that shrubs seem to mediate ungulate effects on acorn dispersers, controlled shrub encroachment could be an effective alternative to ungulate population control or ungulate exclusion for the sustainability of the high-diversity Mediterranean oak ecosystems.  相似文献   

12.
Forage availability and predation risk interact to affect habitat use of ungulates across many biomes. Within sky‐island habitats of the Mojave Desert, increased availability of diverse forage and cover may provide ungulates with unique opportunities to extend nutrient uptake and/or to mitigate predation risk. We addressed whether habitat use and foraging patterns of female mule deer (Odocoileus hemionus) responded to normalized difference vegetation index (NDVI), NDVI rate of change (green‐up), or the occurrence of cougars (Puma concolor). Female mule deer used available green‐up primarily in spring, although growing vegetation was available during other seasons. Mule deer and cougar shared similar habitat all year, and our models indicated cougars had a consistent, negative effect on mule deer access to growing vegetation, particularly in summer when cougar occurrence became concentrated at higher elevations. A seemingly late parturition date coincided with diminishing NDVI during the lactation period. Sky‐island populations, rarely studied, provide the opportunity to determine how mule deer respond to growing foliage along steep elevation and vegetation gradients when trapped with their predators and seasonally limited by aridity. Our findings indicate that fear of predation may restrict access to the forage resources found in sky islands.  相似文献   

13.
Each spring, migratory herbivores around the world track or ‘surf’ green waves of newly emergent vegetation to distant summer or wet‐season ranges. This foraging tactic may help explain the great abundance of migratory herbivores on many seasonal landscapes. However, the underlying fitness benefits of this life‐history strategy remain poorly understood. A fundamental prediction of the green‐wave hypothesis is that migratory herbivores obtain fitness benefits from surfing waves of newly emergent vegetation more closely than their resident counterparts. Here we evaluate whether this behavior increases body‐fat levels – a critically important correlate of reproduction and survival for most ungulates – in elk Cervus elaphus of the Greater Yellowstone Ecosystem. Using satellite imagery and GPS tracking data, we found evidence that migrants (n = 23) indeed surfed the green wave, occupying sites 12.7 days closer to peak green‐up than residents (n = 16). Importantly, individual variation in surfing may help account for up to 6 kg of variation in autumn body‐fat levels. Our findings point to a pathway for anthropogenic changes to the green wave (e.g. climate change) or migrants’ ability to surf it (e.g. development) to impact migratory populations. To explore this possibility, we evaluated potential population‐level consequences of constrained surfing with a heuristic model. If green‐wave surfing deteriorates by 5–15 days from observed, our model predicts up to a 20% decrease in pregnancy rates, a 2.5% decrease in population growth, and a 30% decrease in abundance over 50 years. By linking green‐wave surfing to fitness and illustrating potential effects on population growth, our study provides new insights into the evolution of migratory behavior and the prospects for the persistence of migratory ungulate populations in a changing world.  相似文献   

14.
With their striking predilection for perching on African ungulates and eating their ticks, yellow-billed (Buphagus africanus) and red-billed oxpeckers (B. erythrorhynchus) represent one of the few potentially mutualistic relationships among vertebrates. The nature of the oxpecker-ungulate relationship remains uncertain, however, because oxpeckers are known to consume ungulate tissues, suggesting that the relationship between oxpeckers and ungulates may also be parasitic. To examine this issue further, we obtained data on oxpecker preferences for different ungulate species, the abundance of ticks on these ungulates, and ungulate hide thickness. In support of the mutualism hypothesis, we found that both species of oxpeckers prefer ungulate hosts that harbor a higher abundance of ticks. We found no evidence that hide thickness-a measure of the potential for parasitism by oxpeckers-predicts oxpecker preferences for different ungulate species. Oxpeckers also prefer larger-bodied ungulates, possibly because larger animals have more ticks, provide a more stable platform upon which to forage, or support more oxpeckers feeding simultaneously. However, the preference for ungulates with greater tick abundance was independent of host body mass. These results support the hypothesis that the relationship between oxpeckers and ungulates is primarily mutualistic.  相似文献   

15.
Ungulates impact woody species’ growth and abundance but little is understood about the comparative impacts of different ungulate species on forest expansion in savanna environments. Replacement of native herbivore guilds with livestock [i.e., beef cattle (Bos taurus)] has been hypothesized as a factor facilitating trembling aspen (Populus tremuloides Michx.) encroachment into grasslands of the Northern Great Plains. We used a controlled herbivory study in the Parklands of western Canada to compare the impact of native ungulates and cattle on aspen saplings. Native ungulate treatments included a mixed species guild and sequences of herbivory by different ungulates [bison (Bison bison subsp. bison), elk (Cervus elaphus) then deer (Odocoileus hemionus); or deer, elk, then bison]. Herbivory treatments were replicated in three pastures, within which sets of 40 marked aspen saplings (<1.8 m) were tracked along permanent transects at 2-week intervals, and compared to a non-grazed aspen stand. Stems were assessed for mortality and incremental damage (herbivory, leader breakage, stem abrasion and trampling). Final mortality was greater with exposure to any type of herbivore, but remained similar between ungulate treatments. However, among all treatments, the growth of aspen was highest with exposure only to cattle. Herbivory of aspen was attributed primarily to elk within the native ungulate treatments, with other forms of physical damage, and ultimately sapling mortality, associated with exposure to bison. Overall, these results indicate that native ungulates, specifically elk and bison, have more negative impacts on aspen saplings and provide evidence that native and domestic ungulates can have different functional effects on woody plant dynamics in savanna ecosystems.  相似文献   

16.
People provide wild ungulates with large quantities of supplementary feed to improve their health and survival and reduce forest damage. Whereas supplementary feeding can positively affect the winter survival of ungulates and short-term hunting success, some of the feeds provided may actually reduce ungulate health and increase forest damage. Here, we highlight how recent advances in ungulate nutritional ecology can help explain why supplementary feeding can lead to undesirable outcomes. Using Europe’s largest cervid, the moose (Alces alces), as a model species, and Sweden, as the socio-ecological context, we explain the concept of nutritional balancing and its relevance to supplementary feeding. Nutritional balancing refers to how animals alter their food intake to achieve a specific nutritional target balance in their diet, by selecting balanced food items or by combining items with nutritional compositions that are complimentary. As the most common supplementary feeds used contain higher concentrations of non-structural carbohydrates than the ungulates’ normal winter diet, the consumption of such feeds may cause animals to increase their intake of woody browse, and thereby exacerbate forest damage. We also explain how animal health may be negatively affected by large intakes of such feed if complementary browse items are not available. We therefore suggest that the use of inappropriate feed is an additional means by which supplementary feeding may result in negative outcomes for hunters, forest owners, and wild animals.  相似文献   

17.
In female ungulates lactation carries a high energetic cost and mothers often devote more care to sons than to daughters. The aims of this study were to determine whether lactating bighorn ewes have higher foraging time, bite rate or selectivity of forage than barren ewes and whether reproductive status affects migration patterns. Ewes with male lambs were predicted to spend more time foraging and to have a higher bite rate than ewes with female lambs. There were no differences in foraging behavior according to ewe reproductive status from April to August. In September-November lactating ewes had a higher bite rate and spent more time foraging than nonlactating ewes but lamb gender did not affect foraging behavior. Lactating ewes gained less weight than nonlactating ones until mid-August; from mid-August to late September mass gain was similar for both groups of ewes. Nonlactating ewes spent more time standing but reproductive status did not affect vigilance behavior or step rate while foraging. Ewes with lambs did not differ from nonlactating ewes in step rate. Pregnant ewes migrated earlier than barren ewes to alpine areas in spring. By so doing they abandoned areas with good quality forage presumably to give birth in areas safer from predation. All ewes spent most of the summer in the alpine range but nonlactating ewes returned to the winter range earlier than lactating ewes, probably to profit from the abundant forage there.  相似文献   

18.
Understanding the functional response of species is important in comprehending the species’ population dynamics and the functioning of multi-species assemblages. A Type II functional response, where instantaneous intake rate increases asymptotically with sward biomass, is thought to be common in grazers. However, at tall, dense swards, food intake might decline due to mechanical limitations or if animals selectively forage on the most nutritious parts of a sward, leading to a Type IV functional response, especially for smaller herbivores. We tested the predictions that bite mass, cropping time, swallowing time and searching time increase, and bite rate decreases with increasing grass biomass for different-sized Canada geese (Branta canadensis) foraging on grass swards. Bite mass indeed showed an increasing asymptotic relationship with grass biomass. At high biomass, difficulties in handling long leaves and in locating bites were responsible for increasing cropping, swallowing, and searching times. Constant bite mass and decreasing bite rate caused the intake rate to decrease at high sward biomass after reaching an optimum, leading to a Type IV functional response. Grazer body mass affected maximum bite mass and intake rate, but did not change the shape of the functional response. As grass nutrient contents are usually highest in short swards, this Type IV functional response in geese leads to an intake rate that is maximised in these swards. The lower grass biomass at which intake rate was maximised allows resource partitioning between different-sized grazers. We argue that this Type IV functional response is of more importance than previously thought.  相似文献   

19.
Steven L. Lima 《Oecologia》1983,58(2):232-237
Summary I describe an artificial patch system that was used to study the foraging behavior of free-roaming downy woodpeckers (Picoides pubescens) in a woodlot in southeastern Michigan. The artificial patches used were thin logs into which were drilled small holes to hold food items (bits of sunflower seed kernels). Downy woodpeckers would systematically search the holes of a patch for food items and thus by manipulating the food distribution within the patches, the birds could be made to experience differing rates of energy intake while foraging.Simple deterministic theories of optimal foraging in patchy environments indicate that an optimal forager, who experiences a decreasing rate of energy intake while foraging in a patch, should leave a patch when its rate of energy intake falls below the average intake rate for the overall environment. In other words, an optimal forager is continually assessing the quality of a patch and makes decisions as to when to leave a patch via its energy intake rate. When the downy woodpeckers studied could encounter any one of several types of patches each with differing, decreasing rates of energy intake, they followed a patch quality assessment strategy similar to that suggested by theory. Upon encountering a single type of patch for a number of consecutive days, however, the birds appeared to forage according to prior expectations of patch quality and not according to a quality assessment strategy based on energy intake rates. The observed expectations were not related to the number of food items per patch but they appeared to be based on expectations of when or where to leave a patch.  相似文献   

20.
To preserve biodiversity, identifying at‐risk populations and developing conservation plans to mitigate the effects of human‐induced rapid environmental change (HIREC) are essential. Changes in diet, especially for food‐limited species, can aid in detecting populations being impacted by HIREC, and characterizing the quality, abundance, and temporal and spatial consistency of newly consumed food items may provide insight concerning the likelihood of a species persisting in a changing environment. We used Wood Storks (Mycteria americana) nesting in the Florida Everglades as a model system to study the possible effects of HIREC on a food‐limited population. We compared the diets of Wood Storks in 2013 and 2014 with those reported during the 1970s before major anthropogenic activities affected the Everglades system and prey availability. Wood Storks in our study consumed more large‐bodied sunfish species (Lepomis spp.), fewer native marsh fishes, and more non‐native fish species than during the 1970s. Large sunfish and non‐native fish are relatively rare in the drying pools of Everglades marshes where storks traditionally forage, suggesting that Wood Storks may be using novel foraging habitats such as created wetlands (i.e., canals and stormwater ponds). Although created wetlands have long hydroperiods conducive to maintaining large‐bodied fishes and could provide alternative foraging habitat when prey availability is reduced in natural marshes, additional studies are needed to determine the extent to which these wetlands are used by Wood Storks and, importantly, the quality of prey items potentially available to foraging Wood Storks in created wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号