首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genetic structure arises when limited gene flow between populations favours the development of distinct arrays of genetic characters within each population. Determining the spatial scale at which this differentiation occurs is critical to our understanding of population biology and microevolution of species. The genetic structure and spatial pattern of genetic variation in an endemic, clonal perennial, Wyethia reticulata E. Greene, was investigated using random amplified polymorphic DNA (RAPD) markers and allozyme alleles. Large stands (250–360 m2) were found to contain few genetic individuals. Despite the small population sizes and endemism of the species, W. reticulata was highly diverse genetically, with most of the variation (75–81%) distributed within populations. A population structure in full agreement with spatially defined populations was achieved only by combining RAPD and allozyme markers. Analysis using both types of markers appeared to provide estimates of genetic similarity between individuals that were most consistent with empirical data on plant distributions. We postulated that large, long-lived clones dominated genetic relationships within populations but also provided opportunities for gene flow between populations on a longer time scale. The two marker types yielded different estimates of between-individual similarity and revealed disparate patterns of population structure. This result will arise because allozymes and random DNA segments have dissimilar evolutionary dynamics with respect to mutation and selection.  相似文献   

2.
The cicada Pauropsalta annulata Goding & Froggatt, 1904 comprises several distinct song types across its known distribution in eastern Australia, with these songs being statistically distinguishable from one another. Here we use spatial analysis of adult morphology and plant species associations to test further the hypothesis that P. annulata song types represent a complex of cryptic species. To structure this investigation we contrast different approaches and expectations given under the framework of ecological speciation with those of the recognition concept of species. Plotting the geographical distributions of these cicadas revealed that each of the P. annulata song types have independent geographical distributions, with relatively small areas of overlap. ‘Predicted distribution’ modelling revealed that the distribution of each song type forms a unique climatic envelope, which suggests that abiotic factors (rather than interactions among the cicadas themselves) influence the geographical representation of the different song types. One song type has consistent differences in male genitalia, and female ovipositor length differs significantly among three of the other song types. Each song type is strongly associated with a small number of tree species, and these associations are maintained in areas of sympatry. The spatial comparisons made in this study suggest that the P. annulata song types investigated actually represent three species. One of these species is represented by two of the song types originally recognized, and these appear to intergrade in sympatry, and thus represent subspecies. The spatial consistency of the plant associations and morphology exhibited by these (sub)species is significant because it represents an ecological measure of species stability. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 553–565.  相似文献   

3.
Eastern wolves have hybridized extensively with coyotes and gray wolves and are listed as a ‘species of special concern’ in Canada. However, a distinct population of eastern wolves has been identified in Algonquin Provincial Park (APP) in Ontario. Previous studies of the diverse Canis hybrid zone adjacent to APP have not linked genetic analysis with field data to investigate genotype‐specific morphology or determine how resident animals of different ancestry are distributed across the landscape in relation to heterogeneous environmental conditions. Accordingly, we studied resident wolves and coyotes in and adjacent to APP to identify distinct Canis types, clarify the extent of the APP eastern wolf population beyond the park boundaries and investigate fine‐scale spatial genetic structure and landscape–genotype associations in the hybrid zone. We documented three genetically distinct Canis types within the APP region that also differed morphologically, corresponding to putative gray wolves, eastern wolves and coyotes. We also documented a substantial number of hybrid individuals (36%) that were admixed between 2 or 3 of the Canis types. Breeding eastern wolves were less common outside of APP, but occurred in some unprotected areas where they were sympatric with a diverse combination of coyotes, gray wolves and hybrids. We found significant spatial genetic structure and identified a steep cline extending west from APP where the dominant genotype shifted abruptly from eastern wolves to coyotes and hybrids. The genotypic pattern to the south and northwest was a more complex mosaic of alternating genotypes. We modelled genetic ancestry in response to prey availability and human disturbance and found that individuals with greater wolf ancestry occupied areas of higher moose density and fewer roads. Our results clarify the structure of the Canis hybrid zone adjacent to APP and provide unique insight into environmental conditions influencing hybridization dynamics between wolves and coyotes.  相似文献   

4.
Question: In stressful abiotic environments positive plant interaction is expected to be a frequent and an important process driving community composition and structure. In the high Andes in central Chile, the cushion plant Azorella madreporica dominates plant communities and appears to benefit the assemblage of species that grows within it. However, there are also many other species that grow outside this nurse cushion plant, which may or may not interact with this species. What is the prevailing type of spatial associations among the plant species that are not growing inside the nurse plant? What is the type of interactions between cushion plants and those species growing outside them? Location: Molina River basin (33°20'S, 70°16’ W, 3600 m a.s.l.), in the Andes of central Chile, ca. 50 km east of Santiago. Methods: Two accurate mapping plots of individual plants of different species were located at two summits (Franciscano and Tres Puntas sites). The spatial distributions and associations between species growing outside cushions and within cushions at each site were estimated by point‐pattern analyses using the univariate and bivariate transformations of Ripley's K‐functions. Results: We found both positive and, especially, negative spatial associations (8 out of 12 species in Franciscano site) between A. madreporica cushions and plants growing outside them. However, most of the species showed positive spatial associations among them. The variation in spatial association was site‐specific and also depended on the type of plants involved. Adesmia spp., the second most abundant non‐cushion species, displayed negative associations with cushions and positive associations with other species growing outside cushions. Conclusions: Our study suggests very complex interactions among species, which ranged from positive to negative, and are also affected by abiotic environmental conditions.  相似文献   

5.
The Crassulacean genus Aeonium is a well‐known example for plant species radiation on oceanic archipelagos. However, while allopatric speciation among islands is documented for this genus, the role of intra‐island speciation due to population divergence by topographical isolation or ecological heterogeneity has not yet been addressed. The aim of this study was to investigate intraspecific genetic structures and to identify spatial and ecological drivers of genetic population differentiation on the island scale. We analyzed inter simple sequence repeat variation within two island‐endemic Aeonium species of La Palma: one widespread generalist that covers a large variety of different habitat types (Ae. davidbramwellii) and one narrow ecological specialist (Ae. nobile), in order to assess evolutionary potentials on this island. Gene pool differentiation and genetic diversity patterns were associated with major landscape structures in both species, with phylogeographic implications. However, overall levels of genetic differentiation were low. For the generalist species, outlier loci detection and loci–environment correlation approaches indicated moderate signatures of divergent selection pressures linked to temperature and precipitation variables, while the specialist species missed such patterns. Our data point to incipient differentiation among populations, emphasizing that ecological heterogeneity and topographical structuring within the small scales of an island can foster evolutionary processes. Very likely, such processes have contributed to the radiation of Aeonium on the Canary Islands. There is also support for different evolutionary mechanisms between generalist and specialist species.  相似文献   

6.
Many plant species have evolved defense traits against herbivores. Associational effects (AEs) refer to a kind of apparent interaction where the herbivory risk to a focal plant species depends on the composition of other plant species in a neighborhood. Despite ample evidence for AEs between different plant species, this point of view has rarely been applied to polymorphism in defense traits within a plant species. The purpose of this review is to highlight an overlooked role of conspecific AEs in maintaining polymorphism in antiherbivore defense. First, I present a general review of AE between plant species and its role in the coexistence of plant species. This viewpoint of AE can be applied to genetic polymorphism within a plant species, as it causes frequency‐ and density‐dependent herbivory between multiple plant types. Second, I introduce a case study of conspecific AEs in the trichome‐producing (hairy) and glabrous plants of Arabidopsis halleri subsp. gemmifera. Laboratory and semi‐field experiments illustrated that AEs against the brassica leaf beetle Phaedon brassicae mediate a minority advantage in defense and fitness between hairy and glabrous plants. Combined with a statistical modeling approach, field observation revealed that conspecific AEs can maintain the trichome dimorphism via negative frequency‐dependent selection in a plant population. Finally, I discuss spatial and temporal scales at which AEs contribute to shaping genetic variation in antiherbivore defense in a plant metapopulation. Based on the review and evidence, I suggest that AEs play a key role in the maintenance of genetic variation within a plant species.  相似文献   

7.
Populations across the geographical distribution of a species are shaped by different local environments to produce distinctive patterns of variation in plant traits. Among‐population variation is, therefore, important for understanding potential shifts in distributions under changing environments, but is often not included in studies. In particular, critical data on the suitability of local environments for plant traits expressed at different life stages are lacking. To address this we performed two experiments to disentangle the influence of the local environment on multiple plant traits for populations of Actinotus helianthi from across its latitudinal range. A common environment experiment was used to compare early plant traits of germination, early seedling growth and survival for 17 populations of A. helianthi. To examine how biotic interactions vary across populations, we evaluated whether plant traits, including height and number of pseudanthia, influence visitor diversity and abundance, and if insect visitor abundance or diversity was associated with seed set success. We found that populations varied in germination success between 0.2 ± 0.1% and 64.2 ± 2.3%. Seedling growth and early survival varied among populations by as much as a factor of two and 44 respectively. We recorded variation in plant traits across hierarchical spatial scales from the maternal plant to biogeographical regions. The abundance and diversity of insect visitors also varied among populations and seed set was found to be site specific. There was a trend for populations with taller plants and larger floral display sizes to be more frequently visited by pollinators. We also identified a positive linear relationship between the number of visits by flies and seed set success. These results suggest that the local environment has a strong role in directly and indirectly influencing variation in plant traits within populations of A. helianthi, and potentially other perennial species.  相似文献   

8.
The distribution of genetic variation in species is governed by factors that act differently across spatial scales. To tease apart the contribution of different processes, especially at intermediate spatial scales, it is useful to study simple ecosystems such as those on sub‐Antarctic oceanic islands. In this study, we characterize spatial genetic patterns of two keystone plant species, Azorella selago on sub‐Antarctic Marion Island and Azorella macquariensis on sub‐Antarctic Macquarie Island. Although both islands experience a similar climate and have a similar vegetation structure, they differ significantly in topography and geological history. We genotyped six microsatellites for 1,149 individuals from 123 sites across Marion Island and 372 individuals from 42 sites across Macquarie Island. We tested for spatial patterns in genetic diversity, including correlation with elevation and vegetation type, and clines in different directional bearings. We also examined genetic differentiation within islands, isolation‐by‐distance with and without accounting for direction, and signals of demographic change. Marion Island was found to have a distinct northwest–southeast divide, with lower genetic diversity and more sites with a signal of population expansion in the northwest. We attribute this to asymmetric seed dispersal by the dominant northwesterly winds, and to population persistence in a southwestern refugium during the Last Glacial Maximum. No apparent spatial pattern, but greater genetic diversity and differentiation between sites, was found on Macquarie Island, which may be due to the narrow length of the island in the direction of the dominant winds and longer population persistence permitted by the lack of extensive glaciation on the island. Together, our results clearly illustrate the implications of island shape and geography, and the importance of direction‐dependent drivers, in shaping spatial genetic structure.  相似文献   

9.
The relative importance of random genetic drift and local adaptation in causing population substructuring in plant species remains an important empirical question. Here I estimate the effective size of the genetic neighborhood, Nb, as a means of evaluating the likely role of genetic drift in creating genetic differentiation within a population of a marine plant, Zostera marina L. (eelgrass). Calculations of effective neighborhood size are based on field estimates of pollen and seed-dispersal distributions, an electrophoretic estimate of the mating system using open-pollinated progeny arrays, and determination of the effective density of reproductive individuals in the population. Neighborhood area calculated from the parent-offspring dispersal variances was equal to Na = 524 m2; variance in the seed-dispersal distribution contributes more than twice as much as variance in pollen dispersal to Na. Including an outcrossing rate slightly different from random, estimated neighborhood size for Z. marina is Nb = 6255. This estimate is one of the largest reported for plants or animals and indicates that genetic drift in small neighborhoods is highly unlikely to cause genetic substructuring in the study population. High gene-flow levels provided by the marine environment appear to prevent genetic isolation by distance among eelgrass patches, but the importance of drift through founder events in this population characterized by high patch turnover cannot be discounted and is the subject of ongoing study.  相似文献   

10.
11.
Aim Free‐ranging benthopelagic fishes often have large population sizes and high rates of dispersal. These traits can act to homogenize population structure across the distributional range of a species and to reduce the likelihood of allopatric speciation. The apparent absence of any barriers to gene flow among populations, together with prior molecular evidence for panmixia across the ranges of three species, has resulted in Diplotaxodon, a genus of benthopelagic cichlid fishes of Lake Malawi, being proposed as a candidate case of sympatric speciation. Our aim was to further investigate this possibility by testing for intraspecific genetic subdivision among breeding populations, and intraspecific differences in breeding habitat. Location Lake Malawi, central‐east Africa. Methods We analysed eight microsatellite DNA loci to test for spatial genetic differences among populations on breeding grounds of eight Diplotaxodon species. We also tested for temporal population genetic differences within breeding grounds of three species. Records of ripe Diplotaxodon encountered during sampling were analysed to test if spatial variation in assemblage structure was linked to nearshore water depth and geographic proximity of sampling sites. Results Consistent with previous molecular evidence, within four of the eight species tested we found no evidence of spatial genetic structuring among breeding populations. However, within the other four species we found slight yet significant spatial genetic differences, indicating restricted gene flow among breeding grounds. There was no evidence of temporal genetic differences within sites. Analyses of the distributions of ripe Diplotaxodon revealed differences in assemblage structure linked to nearshore water depth. Main conclusions Together, these results demonstrate both the evolution of fidelity to deep‐water breeding locations in some Diplotaxodon species, and differences in breeding habitat among species. These findings are consistent with a role for divergence of breeding habitat in speciation of these cichlids, possibly promoted by dispersal limitation among geographically segregated spawning aggregations.  相似文献   

12.
Phytophagous insects generally feed on a restricted range of host plants, using a number of different sensory and behavioural mechanisms to locate and recognize their host plants. Phloem-feeding aphids have been shown to exhibit genetic variation for host preference of different plant species and genetic variation within a plant species can also have an effect on aphid preference and acceptance. It is known that genotypic interactions between barley genotypes and Sitobion avenae aphid genotypes influence aphid fitness, but it is unknown if these different aphid genotypes exhibit active host choice (preference) for the different barley genotypes. Active host choice by aphid genotypes for particular plant genotypes would lead to assortative association (non-random association) between the different aphid and plant genotypes. The performance of each aphid genotype on the plant genotypes also has the ability to enhance these interactions, especially if the aphid genotypes choose the plant genotype that also infers the greatest fitness. In this study, we demonstrate that different aphid genotypes exhibit differential preference and performance for different barley genotypes. Three out of four aphid genotypes exhibited preference for (or against) particular barley genotypes that were not concordant with differences in their reproductive rate on the specific barley genotype. This suggests active host choice of aphids is the primary mechanism for the observed pattern of non-random associations between aphid and barley genotypes. In a community context, such genetic associations between the aphids and barley can lead to population-level changes within the aphid species. These interactions may also have evolutionary effects on the surrounding interacting community, especially in ecosystems of limited species and genetic diversity.  相似文献   

13.
We analyze patterns of genetic microdifferentiation within a natural population of Lathyrus sylvestris, a perennial herb with both sexual reproduction and clonal growth. In a population from the northern foothills of the Pyrénées in southwestern France, a combined demographic and genetic investigation enabled the study not only of spatial genetic structure of the population, but also of the history of the population's spatial genetic structure over time. Excavation of all individuals allowed identification of clonemates. Age of each individual was determined by counting annual growth rings in the taproot, a method tested with individuals of known age planted in experimental gardens. Each individual was mapped, and genotypes of all individuals were determined using allozyme markers for a number of polymorphic loci. Distribution patterns and spatial genetic structure, both for all individuals and for different age classes, were analyzed using spatial autocorrelation statistics (Geary's Index, Moran's Index). Patterns of gene flow within the population were also studied using F-statistics and tests for random associations of alleles. Because age, allele frequencies, and location were known for each individual, it was possible to study how spatial genetic structure changed over time. Results from all these diverse approaches are consistent with one another, and clearly show the following: (1) founder effects, with the study transect being first colonized by individuals at either end of the transect that were homozygous for different alleles at one marker locus; (2) a difference in spatial distribution of individuals originated from sexual reproduction (seedlings) and from clonal growth (connected individuals); (3) restricted gene flow, due to inbreeding among related, clumped individuals; and (4) increase in heterozygote deficit within the youngest cohort of individuals. The results indicate that genetic differentiation in time was much less marked than differentiation in space. Nevertheless, the results revealed that the studied population is experiencing demographic and genetic variation in time, suggesting that it is not at equilibrium. On the one hand, spatial structuring is becoming less marked due to the recombination of founder genotypes; on the other hand, as establishment of new individuals increases, a new spatial structure emerges due to mating between relatives.  相似文献   

14.
Birds living in riverine environments may show weak population structure because high dispersal abilities required to track habitat dynamics can result in gene flow over broad spatial scales. Alternatively, the configuration of river networks may result in restricted dispersal within river courses or basins, leading to high genetic structure. Although several bird species are riverine specialists in the Andes, no study has extensively evaluated the population genetic structure of any of them. We examined evidence from genetic and morphological data to address questions about the biogeography and taxonomy of the Torrent Duck (Merganetta armata), a riverine specialist bird with a broad distribution in Andean riverine habitats which certainly comprises different subspecies and may comprise more than one species. We found deep subdivisions of Torrent Duck populations from the northern, central and southern portions of the Andes. These lineages, which partly coincide with subspecies described based on plumage variation and body size, do not share mtDNA haplotypes, have private nuclear alleles and exhibit marked differences in morphometric traits. Some geographic barriers presumably restricting gene flow between groups partially coincide with those associated with major genetic breaks in forest species with similar distributions along the Andes, suggesting that bird assemblages including species occupying different habitats were likely affected by common biogeographical events. The three groups of Torrent Ducks may be considered different species under some species definitions and are distinct evolutionary lineages to be conserved and managed separately.  相似文献   

15.
Seed dispersal is a key ecological process in tropical forests, with effects on various levels ranging from plant reproductive success to the carbon storage potential of tropical rainforests. On a local and landscape scale, spatial patterns of seed dispersal create the template for the recruitment process and thus influence the population dynamics of plant species. The strength of this influence will depend on the long‐term consistency of spatial patterns of seed dispersal. We examined the long‐term consistency of spatial patterns of seed dispersal with spatially explicit data on seed dispersal by two neotropical primate species, Leontocebus nigrifrons and Saguinus mystax (Callitrichidae), collected during four independent studies between 1994 and 2013. Using distributions of dispersal probability over distances independent of plant species, cumulative dispersal distances, and kernel density estimates, we show that spatial patterns of seed dispersal are highly consistent over time. For a specific plant species, the legume Parkia panurensis, the convergence of cumulative distributions at a distance of 300 m, and the high probability of dispersal within 100 m from source trees coincide with the dimension of the spatial–genetic structure on the embryo/juvenile (300 m) and adult stage (100 m), respectively, of this plant species. Our results are the first demonstration of long‐term consistency of spatial patterns of seed dispersal created by tropical frugivores. Such consistency may translate into idiosyncratic patterns of regeneration.  相似文献   

16.
Exploring species and genetic diversity interactions provides new opportunities for furthering our understanding of the ecology and evolution of population and community dynamics, and for predicting responses of ecosystems to environmental change. Theory predicts that species diversity within communities and genetic diversity within populations will covary positively, because either species and genetic diversity interact synergistically or they respond in parallel fashion to common habitat conditions. We tested the hypothesis of positive covariation between species and genotypic diversity in a metacommunity of the species-rich southwest Australian flora. We hypothesised that the connection between genotypic diversity and species diversity is strong within functional groups, but weak or non-existent if the species considered extend beyond the functional group. We show that allelic richness of Daviesia triflora, an ant-dispersed pea, covaries positively with the species richness of six co-occurring nitrogen-fixing legume species. No pattern can be detected between allelic richness of D. triflora and species richness of ant-dispersed species when four non-legumes are added. We also show that genetic diversity of D. triflora is not governed by the same environmental factors that determine the presence of a group of large-shrub/small-tree species in the same metacommunity. This study shows that species and genetic diversity covariation are more likely to be confined to within, rather than between, plant functional groups.  相似文献   

17.
Different species of arbuscular mycorrhizal fungi (AMF) alter plant growth and affect plant coexistence and diversity. Effects of within-AMF species or within-population variation on plant growth have received less attention. High genetic variation exists within AMF populations. However, it is unknown whether genetic variation contributes to differences in plant growth. In our study, a population of AMF was cultivated under identical conditions for several generations prior to the experiments thus avoiding environmental maternal effects. We show that genetically different Glomus intraradices isolates from one AMF population significantly alter plant growth in an axenic system and in greenhouse experiments. Isolates increased or reduced plant growth meaning that plants potentially receive benefits or are subject to costs by forming associations with different individuals in the AMF population. This shows that genetic variability in AMF populations could affect host-plant fitness and should be considered in future research to understand these important soil organisms.  相似文献   

18.
Specimens taxonomically treated in the Fauna Hawaiiensis were associated by cluster analysis, thereby reconstructing assemblages of Hawaiian carabid beetle species (Coleoptera: Carabidae) observed during the late 19th century. Associations among specimens representing 193 species permit concise hypotheses of habitat preferences for many of the 32 carabid species collected during the early period of European scientific exploration (1872–1902), but not observed since. These associations are consistent with data derived from contemporary biological surveys of Hawai'i. Absence of entire clusters of associated species from recent collections suggests actions of common agents leading to extinction or extreme population reduction. The candidate list of threatened and endangered species of the US. Fish and Wildlife Service established prior to 1994 included one Hawaiian carabid species missing since 1902, versus eight other species collected at various times over the past century. Improvements in knowledge of carabid beetle species’ spatial distribution and temporal persistence derived from recent field survey and taxonomic research demonstrate that the types of criteria used to construct that list must be rejected. Future consideration of official conservation status for any Hawaiian carabid beetle species must take into account the status of ecologically associated species, and the limited likelihood that individuals of all extant species can be consistently observed in nature due to their natural relative rarity or their secretive habits within restricted geographic and ecological distributions. Historical specimen associations serve as the best guides for continuing efforts to monitor known faunal members and to rediscover long‐missing species. These associations also serve to link information concerning individual species with particular habitats.  相似文献   

19.
Studying population structure and genetic diversity at fine spatial scales is key for a better understanding of demographic processes that influence population connectivity. This is particularly important in marine benthic organisms that rely on larval dispersal to maintain connectivity among populations. Here, we report the results of a genetic survey of the ascidian Pyura chilensis from three localities along the southeastern Pacific. This study follows up on a previous report that described a genetic break in this region among localities only 20 km apart. By implementing a hierarchical sampling design at four spatial levels and using ten polymorphic microsatellite markers, we test whether differences in fine‐scale population structure explain the previously reported genetic break. We compared genetic spatial autocorrelations, as well as kinship and relatedness distributions within and among localities adjacent to the genetic break. We found no evidence of significant autocorrelation at the scale up to 50 m despite the low dispersal potential of P. chilensis that has been reported in the literature. We also found that the proportion of related individuals in close proximity (<1 km) was higher than the proportion of related individuals further apart. These results were consistent in the three localities. Our results suggest that the spatial distribution of related individuals can be nonrandom at small spatial scales and suggests that dispersal might be occasionally limited in this species or that larval cohorts can disperse in the plankton as clustered groups. Overall, this study sheds light on new aspects of the life of this ascidian as well as confirms the presence of a genetic break at 39°S latitude. Also, our data indicate there is not enough evidence to confirm that this genetic break can be explained by differences in fine‐scale genetic patterns among localities.  相似文献   

20.
Spatial structure and the distribution of individuals within a community might be influenced by several factors such as habitat heterogeneity and local interactions among individuals of the same and different species. We investigated the spatial distributions of eight bird species in a grassland community during the breeding season and examined whether the spatial distributions of individuals were influenced by interactions among neighboring individuals or different habitat preferences of different bird species.
In order to identify the effects of the interactions among neighboring individuals and habitat preference, we developed a randomization test in which species identifications were randomly allocated to the observed individual positions within areas with the same vegetation structure. The randomization test indicated that individuals tend to have territories near the territories of individuals of the same species or of a particular species more frequently (or less frequently) than those expected from random distributions of individuals.
Among these associations, only one case was explained by individual interactions, and 19 cases were explained by habitat preference.
The results suggest that both individual interactions and habitat preference affected the spatial distributions of individuals and possibly influence the species compositions and diversity in grassland bird communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号