首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 2002 European seal plague: epidemiology and population consequences   总被引:1,自引:0,他引:1  
We present the first epidemiological data on the 2002 outbreak of phocine distemper virus (PDV) in European harbour seals (Phoca vitulina). The epizootic curve to date supports a mortality rate and probability of infection identical to that of the 1988 outbreak, which killed 58% of the population. Thus immunity is playing no significant role in the dynamics of the current outbreak. Because the timing of the outbreak is important in determining local mortality rates, we predict higher mortality rates on the European continent than in Great Britain or Ireland. A stochastic model is used to quantify how recurrent epizootics affect the long‐term growth, fluctuation, and persistence of the population. Recurrent PDV epizootics with the observed frequency and severity would reduce the long‐term stochastic growth rate of the harbour seal population by half, and significantly increase the risk of quasi‐extinction.  相似文献   

2.
Disease can be an important driver of host population dynamics and epizootics can cause severe host population declines. Batrachochytrium dendrobatidis (Bd), the pathogen causing amphibian chytridiomycosis, may occur epizootically or enzootically and can harm amphibian populations in many ways. While effects of Bd epizootics are well documented, the effects of enzootic Bd have rarely been described. We used a state-space model that accounts for observation error to test whether population trends of a species highly susceptible to Bd, the midwife toad Alytes obstetricans, are negatively affected by the enzootic presence of the pathogen. Unexpectedly, Bd had no negative effect on population growth rates from 2002-2008. This suggests that negative effects of disease on individuals do not necessarily translate into negative effects at the population level. Populations of amphibian species that are susceptible to the emerging disease chytridiomycosis can persist despite the enzootic presence of the pathogen under current environmental conditions.  相似文献   

3.
While epizootics increasingly affect wildlife, it remains poorly understood how the environment shapes most host–pathogen systems. Here, we employ a three‐step framework to study microclimate influence on ectotherm host thermal behaviour, focusing on amphibian chytridiomycosis in fire salamanders (Salamandra salamandra) infected with the fungal pathogen Batrachochytrium salamandrivorans (Bsal). Laboratory trials reveal that innate variation in thermal preference, rather than behavioural fever, can inhibit infection and facilitate salamander recovery under humidity‐saturated conditions. Yet, a 3‐year field study and a mesocosm experiment close to the invasive Bsal range show that microclimate constraints suppress host thermal behaviour favourable to disease control. A final mechanistic model, that estimates range‐wide, year‐round host body temperature relative to microclimate, suggests that these constraints are rule rather than exception. Our results demonstrate how innate host defences against epizootics may remain constrained in the wild, which predisposes to range‐wide disease outbreaks and population declines.  相似文献   

4.
Host populations for the plague bacterium, Yersinia pestis, are highly variable in their response to plague ranging from near deterministic extinction (i.e., epizootic dynamics) to a low probability of extinction despite persistent infection (i.e., enzootic dynamics). Much of the work to understand this variability has focused on specific host characteristics, such as population size and resistance, and their role in determining plague dynamics. Here, however, we advance the idea that the relative importance of alternative transmission routes may vary causing shifts from epizootic to enzootic dynamics. We present a model that incorporates host and flea ecology with multiple transmission hypotheses to study how transmission shifts determine population responses to plague. Our results suggest enzootic persistence relies on infection of an off-host flea reservoir and epizootics rely on transiently maintained flea infection loads through repeated infectious feeds by fleas. In either case, early-phase transmission by fleas (i.e., transmission immediately following an infected blood meal) has been observed in laboratory studies, and we show that it is capable of driving plague dynamics at the population level. Sensitivity analysis of model parameters revealed that host characteristics (e.g., population size and resistance) vary in importance depending on transmission dynamics, suggesting that host ecology may scale differently through different transmission routes enabling prediction of population responses in a more robust way than using either host characteristics or transmission shifts alone.  相似文献   

5.
Disease can generate intense selection pressure on host populations, but here we show that acquired immunity in a population subject to repeated disease outbreaks can impede the evolution of genetic disease resistance by maintaining susceptible genotypes in the population. Interference between the life-history schedule of a species and periodicity of the disease has unintuitive effects on selection intensity, and stochasticity in outbreak period further reduces the rate of spread of disease-resistance alleles. A general age-structured population genetic model was developed and parameterized using empirical data for phocine distemper virus (PDV) epizootics in harbor seals. Scenarios with acquired immunity had lower levels of epizootic mortality compared with scenarios without acquired immunity for the first PDV outbreaks, but this pattern was reversed after about five disease cycles. Without acquired immunity, evolution of disease resistance was more rapid, and long-term population size variation is efficiently dampened. Acquired immunity has the potential to significantly influence rapid evolutionary dynamics of a host population in response to age-structured disease selection and to alter predicted selection intensities compared with epidemiological models that do not consider such feedback. This may have important implications for evolutionary population dynamics in a range of human, agricultural, and wildlife disease settings.  相似文献   

6.
Obtaining inferences on disease dynamics (e.g., host population size, pathogen prevalence, transmission rate, host survival probability) typically requires marking and tracking individuals over time. While multistate mark–recapture models can produce high‐quality inference, these techniques are difficult to employ at large spatial and long temporal scales or in small remnant host populations decimated by virulent pathogens, where low recapture rates may preclude the use of mark–recapture techniques. Recently developed N‐mixture models offer a statistical framework for estimating wildlife disease dynamics from count data. N‐mixture models are a type of state‐space model in which observation error is attributed to failing to detect some individuals when they are present (i.e., false negatives). The analysis approach uses repeated surveys of sites over a period of population closure to estimate detection probability. We review the challenges of modeling disease dynamics and describe how N‐mixture models can be used to estimate common metrics, including pathogen prevalence, transmission, and recovery rates while accounting for imperfect host and pathogen detection. We also offer a perspective on future research directions at the intersection of quantitative and disease ecology, including the estimation of false positives in pathogen presence, spatially explicit disease‐structured N‐mixture models, and the integration of other data types with count data to inform disease dynamics. Managers rely on accurate and precise estimates of disease dynamics to develop strategies to mitigate pathogen impacts on host populations. At a time when pathogens pose one of the greatest threats to biodiversity, statistical methods that lead to robust inferences on host populations are critically needed for rapid, rather than incremental, assessments of the impacts of emerging infectious diseases.  相似文献   

7.
  • 1 Disease epizootics can significantly influence host population dynamics and the structure and functioning of ecological communities. Sarcoptic mange Sarcoptes scabiei has dramatically reduced red fox populations Vulpes vulpes in several countries, including Britain, although impacts on demographic processes are poorly understood. We review the literature on the impact of mange on red fox populations, assess its current distribution in Britain through a questionnaire survey and present new data on resultant demographic changes in foxes in Bristol, UK.
  • 2 A mange epizootic in Sweden spread across the entire country in < 10 years resulting in a decline in fox density of up to 95%; density remained lowered for 15–20 years. In Spain, mange has been enzootic for > 75 years and is widely distributed; mange presence was negatively correlated with habitat quality.
  • 3 Localized outbreaks have occurred sporadically in Britain during the last 100 years. The most recent large‐scale outbreak arose in the 1990s, although mange has been present in south London and surrounding environs since the 1940s. The questionnaire survey indicated that mange was broadly distributed across Britain, but areas of perceived high prevalence (> 50% affected) were mainly in central and southern England. Habitat type did not significantly affect the presence/absence of mange or perceived prevalence rates. Subjective assessments suggested that populations take 15–20 years to recover.
  • 4 Mange appeared in Bristol's foxes in 1994. During the epizootic phase (1994–95), mange spread through the city at a rate of 0.6–0.9 km/month, with a rise in infection in domestic dogs Canis familiaris c. 1–2 months later. Juvenile and adult fox mortality increased and the proportion of females that reproduced declined but litter size was unaffected. Population density declined by > 95%.
  • 5 In the enzootic phase (1996–present), mange was the most significant mortality factor. Juvenile mortality was significantly higher than in the pre‐mange period, and the number of juveniles classified as dispersers declined. Mange infection reduced the reproductive potential of males and females: females with advanced mange did not breed; severely infected males failed to undergo spermatogenesis. In 2004, Bristol fox population density was only 15% of that in 1994.
  相似文献   

8.
Epizootics of diphyllobothriidean cestodes appear to be simple, but deceptive similarity conceals the myriad ways in which these events are shaped by complex abiotic and biotic interactions. In Dog Bone Lake, Alaska, an epizootic of Schistocephalus pungitii infecting the ninespine stickleback (Pungitius pungitius) was short-lived. Its duration, with a peak that lasted only 1 yr, was shorter than for previously documented epizootics in Schistocephalus solidus . The ability of the ninespine stickleback to sustain infections, which appears to be related to species-specific characteristics of the host, may have played an important role in shaping the epizootic. Moreover, the epizootic of S. pungitii was not coincident with those observed for S. solidus in earlier studies within this region, supporting the hypothesis that processes involved in epizootics largely reflect local (lake-level) influences on population dynamics of the parasite. The outbreak occurred at a time when the host population was not relatively dense, which is inconsistent with epidemiological theory and may be a consequence of the parasite's indirect life cycle. The variability of the unregulated and unstable epizootic events of diphyllobothriidean cestodes presents a challenge to understand the ecological and evolutionary factors influencing the prevalence of infections in host populations.  相似文献   

9.
Vesicular stomatitis virus (VSV) has been shown previously to be capable of undergoing rapid mutational change during sequential experimental infections in various tissue culture cell systems (J. Holland, K. Spindler, F. Horodyski, E. Grabau, S. Nichol, and S. Vandepol, Science 215:1577-1585, 1982). The present study was undertaken to determine the degree of genetic diversity and evolution of the virus under natural infection conditions and to gain insight into the epizootiology of the disease. Between 1982 and 1985, numerous outbreaks of VSV of the New Jersey serotype were reported throughout regions of the United States and Mexico. A T1 RNase fingerprint analysis was performed on the RNA genomes of 43 virus isolates from areas of epizootic and enzootic virus activity. This indicates that virus populations were genetically relatively homogeneous within successive U.S. virus epizootics. The data included virus isolates from different epizootic stages, geographical locations, host animals, and host lesion sites. In contrast, only distant genome RNA T1 fingerprint similarities were observed among viruses of the different U.S. epizootics. However, Mexican viruses isolated before or concurrent with U.S. epizootics had very similar RNA genome fingerprints, suggesting that Mexico may have been the possible origin of virus initiating recent U.S. VSV New Jersey outbreaks. Comparison of T1 fingerprints of viruses with enzootic disease areas revealed a greater extent of virus genetic diversity in these areas relative to that observed in epizootic areas. The evolutionary significance of these findings and their relationship to experimental data on VSV evolution are discussed.  相似文献   

10.
The occurrence of a wildlife rabies epizootic in Britain remains a very unlikely event, but it is important to examine all the possible consequences of such an event. Here, I examine the possible role of the European Badger (Meles meles) in such an epizootic. The population density of Badgers in Britain is much higher than that in Europe, and appears to have increased substantially over the last decade or so. The population parameters and epizootiology of rabies in the Badger are reviewed in comparison with the Fox (Vulpes vulpes) and other species. Mustelids appear to be very susceptible to rabies, with the smaller mustelids becoming aggressive, although Badgers do not appear to show heightened aggression when infected. Badger populations on the continent become severely reduced when rabies arrives in the area, and circumstantial evidence strongly suggests that Badgers can easily transmit the virus. Preliminary models support the idea that the Badger could be a very significant secondary host, especially in the initial rabies outbreak. The population recovery rate of the Badger suggests that it is unlikely to become a primary host, although short‐term epizootics in the Badger population are likely. The potential for controlling rabies in the Badger is also examined.  相似文献   

11.
While disease‐induced extinction is generally considered rare, a number of recently emerging infectious diseases with load‐dependent pathology have led to extinction in wildlife populations. Transmission is a critical factor affecting disease‐induced extinction, but the relative importance of transmission compared to load‐dependent host resistance and tolerance is currently unknown. Using a combination of models and experiments on an amphibian species suffering extirpations from the fungal pathogen Batrachochytrium dendrobatidis (Bd), we show that while transmission from an environmental Bd reservoir increased the ability of Bd to invade an amphibian population and the extinction risk of that population, Bd‐induced extinction dynamics were far more sensitive to host resistance and tolerance than to Bd transmission. We demonstrate that this is a general result for load‐dependent pathogens, where non‐linear resistance and tolerance functions can interact such that small changes in these functions lead to drastic changes in extinction dynamics.  相似文献   

12.
The current species extinction crisis is being exacerbated by an increased rate of emergence of epizootic disease. Human‐induced factors including habitat degradation, loss of biodiversity and wildlife population reductions resulting in reduced genetic variation are accelerating disease emergence. Novel, efficient and effective approaches are required to combat these epizootic events. Here, we present the case for the application of human precision medicine approaches to wildlife medicine in order to enhance species conservation efforts. We consider how the precision medicine revolution, coupled with the advances made in genomics, may provide a powerful and feasible approach to identifying and treating wildlife diseases in a targeted, effective and streamlined manner. A number of case studies of threatened species are presented which demonstrate the applicability of precision medicine to wildlife conservation, including sea turtles, amphibians and Tasmanian devils. These examples show how species conservation could be improved by using precision medicine techniques to determine novel treatments and management strategies for the specific medical conditions hampering efforts to restore population levels. Additionally, a precision medicine approach to wildlife health has in turn the potential to provide deeper insights into human health and the possibility of stemming and alleviating the impacts of zoonotic diseases. The integration of the currently emerging Precision Medicine Initiative with the concepts of EcoHealth (aiming for sustainable health of people, animals and ecosystems through transdisciplinary action research) and One Health (recognizing the intimate connection of humans, animal and ecosystem health and addressing a wide range of risks at the animal–human–ecosystem interface through a coordinated, collaborative, interdisciplinary approach) has great potential to deliver a deeper and broader interdisciplinary‐based understanding of both wildlife and human diseases.  相似文献   

13.
Epizootiology of skunk rabies in North America   总被引:2,自引:0,他引:2  
Public health surveillance data from the United States and Canada (1961 to 1982) were analyzed to determine if consistent temporal and spatial patterns in skunk rabies could be identified. Enzootic/epizootic rabies was recognized in 18 states (enzootic states) based on the criteria of greater than or equal to 20 yr of reported skunk rabies and at least 1 yr with a minimum of 50 reported rabid skunks. In other wildlife species, epizootics have been demonstrated to expand along a wave-like front. We hypothesized: if skunk rabies behaved in a similar fashion, states reporting rabid skunks would change over time. No such change was noted. During epizootics the number of counties reporting increased but not the number of states. Within Illinois certain counties were demonstrated to have persistent rabies histories and likely served as enzootic foci. Enzootic states combined prevalence indicated a 6 to 8 yr cycle for epizootics. Data on monthly percent rabies positive (number rabid/total number tested) were available from six states and Canada. Mean distributions were bimodal with winter and spring peaks. The patterns identified for skunk rabies differ from those of other major wildlife vectors and have significance for potential vaccination control regimes.  相似文献   

14.
The amphibian fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), poses a great threat to global amphibian biodiversity. In Peruvian cloud forests of the Kosñipata Valley of Manu National Park where chytrid infection is highly prevalent, we have monitored species-rich amphibian communities since 1996. An epizootic of chytridiomycosis is thought to have caused the disappearance of 35% of species richness in the early 2000s. We investigated the post-epizootic Bd prevalence and infection intensity within the remnant amphibian community from 2008 to 2015, and modeled Bd dynamics as a function of species, season, reproductive mode, life stage, and elevation. Prevalence was higher in 2012–2015 than in 2008–2009, but overall prevalence has remained fairly constant (~50%) post-epizootic. We also found that while prevalence decreased with elevation during the wet season, it generally increased with elevation during the dry season, potentially due to seasonal changes in temperature and precipitation. In aquatic habitats, Bd is likely maintained through a single, stream-breeding, putative reservoir species (which survived epizootics, in contrast to other aquatic-breeding species). The now-dominant terrestrial-breeding species allow Bd to persist and spread in terrestrial habitats, possibly through individual dispersal into naïve areas. We conclude that Bd prevalence in the Kosñipata Valley has stabilized over time, suggesting that Bd is now enzootic. Long-term monitoring of host infection is important because temporal changes in prevalence and infection intensity can cause changes in host species richness and abundance, which in turn may alter the trajectory of host–pathogen dynamics.  相似文献   

15.
Urbanisation and agriculture cause declines for many wildlife, but some species benefit from novel resources, especially food, provided in human‐dominated habitats. Resulting shifts in wildlife ecology can alter infectious disease dynamics and create opportunities for cross‐species transmission, yet predicting host–pathogen responses to resource provisioning is challenging. Factors enhancing transmission, such as increased aggregation, could be offset by better host immunity due to improved nutrition. Here, we conduct a review and meta‐analysis to show that food provisioning results in highly heterogeneous infection outcomes that depend on pathogen type and anthropogenic food source. We also find empirical support for behavioural and immune mechanisms through which human‐provided resources alter host exposure and tolerance to pathogens. A review of recent theoretical models of resource provisioning and infection dynamics shows that changes in host contact rates and immunity produce strong non‐linear responses in pathogen invasion and prevalence. By integrating results of our meta‐analysis back into a theoretical framework, we find provisioning amplifies pathogen invasion under increased host aggregation and tolerance, but reduces transmission if provisioned food decreases dietary exposure to parasites. These results carry implications for wildlife disease management and highlight areas for future work, such as how resource shifts might affect virulence evolution.  相似文献   

16.
Plague, caused by the bacterium Yersinia pestis, causes die-offs of colonies of prairie dogs (Cynomys ludovicianus). It has been argued that other small rodents are reservoirs for plague, spreading disease during epizootics and maintaining the pathogen in the absence of prairie dogs; yet there is little empirical support for distinct enzootic and epizootic cycles. Between 2004 and 2006, we collected blood from small rodents captured in colonies in northern Colorado before, during, and for up to 2 yr after prairie dog epizootics. We screened 1,603 blood samples for antibodies to Y. pestis, using passive hemagglutination and inhibition tests, and for a subset of samples we cultured blood for the bacterium itself. Of the four species of rodents that were common in colonies, the northern grasshopper mouse (Onychomys leucogaster) was the only species with consistent evidence of plague infection during epizootics, with 11.1-23.1% of mice seropositive for antibody to Y. pestis during these events. Seropositive grasshopper mice, thirteen-lined ground squirrels (Spermophilus tridecemlineatus), and deer mice (Peromyscus maniculatus) were captured the year following epizootics. The appearance of antibodies to Y. pestis in grasshopper mice coincided with periods of high prairie dog mortality; subsequently, antibody prevalence rates declined, with no seropositive individuals captured 2 yr after epizootics. We did not detect plague in any rodents off of colonies, or on colonies prior to epizootics, and found no evidence of persistent Y. pestis infection in blood cultures. Our results suggest that grasshopper mice could be involved in epizootic spread of Y. pestis, and possibly, serve as a short-term reservoir for plague, but provide no evidence that the grasshopper mouse or any small rodent acts as a long-term, enzootic host for Y. pestis in prairie dog colonies.  相似文献   

17.
Parasite transmission strategies strongly impact host–parasite co‐evolution and virulence. However, studies of vector‐borne parasites such as avian malaria have neglected the potential effects of host relatedness on the exchange of parasites. To test whether extended parental care in the presence of vectors increases the probability of transmission from parents to offspring, we used high‐throughput sequencing to develop microsatellites for malaria‐like Leucocytozoon parasites of a wild raptor population. We show that host siblings carry genetically more similar parasites than unrelated chicks both within and across years. Moreover, chicks of mothers of the same plumage morph carried more similar parasites than nestlings whose mothers were of different morphs, consistent with matrilineal transmission of morph‐specific parasite strains. Ours is the first evidence of an association between host relatedness and parasite genetic similarity, consistent with vector‐mediated parent‐to‐offspring transmission. The conditions for such ‘quasi‐vertical’ transmission may be common and could suppress the evolution of pathogen virulence.  相似文献   

18.
Human‐induced landscape change associated with habitat loss and fragmentation places wildlife populations at risk. One issue in these landscapes is a change in the prevalence of disease which may result in increased mortality and reduced fecundity. Our understanding of the influence of habitat loss and fragmentation on the prevalence of wildlife diseases is still in its infancy. What is evident is that changes in disease prevalence as a result of human‐induced landscape modification are highly variable. The importance of infectious diseases for the conservation of wildlife will increase as the amount and quality of suitable habitat decreases due to human land‐use pressures. We review the experimental and observational literature of the influence of human‐induced landscape change on wildlife disease prevalence, and discuss disease transmission types and host responses as mechanisms that are likely to determine the extent of change in disease prevalence. It is likely that transmission dynamics will be the key process in determining a pathogen's impact on a host population, while the host response may ultimately determine the extent of disease prevalence. Finally, we conceptualize mechanisms and identify future research directions to increase our understanding of the relationship between human‐modified landscapes and wildlife disease prevalence. This review highlights that there are rarely consistent relationships between wildlife diseases and human‐modified landscapes. In addition, variation is evident between transmission types and landscape types, with the greatest positive influence on disease prevalence being in urban landscapes and directly transmitted disease systems. While we have a limited understanding of the potential influence of habitat loss and fragmentation on wildlife disease, there are a number of important areas to address in future research, particularly to account for the variability in increased and decreased disease prevalence. Previous studies have been based on a one‐dimensional comparison between unmodified and modified sites. What is lacking are spatially and temporally explicit quantitative approaches which are required to enable an understanding of the range of key causal mechanisms and the reasons for variability. This is particularly important for replicated studies across different host‐pathogen systems. Furthermore, there are few studies that have attempted to separate the independent effects of habitat loss and fragmentation on wildlife disease, which are the major determinants of wildlife population dynamics in human‐modified landscapes. There is an urgent need to understand better the potential causal links between the processes of human‐induced landscape change and the associated influences of habitat fragmentation, matrix hostility and loss of connectivity on an animal's physiological stress, immune response and disease susceptibility. This review identified no study that had assessed the influence of human‐induced landscape change on the prevalence of a wildlife sexually transmitted disease. A better understanding of the various mechanisms linking human‐induced landscape change and the prevalence of wildlife disease will lead to more successful conservation management outcomes.  相似文献   

19.
As globalization lowers geographic barriers to movement, coinfection with novel and enzootic pathogens is increasingly likely. Novel and enzootic pathogens can interact synergistically or antagonistically, leading to increased or decreased disease severity. Here we examine host immune responses to coinfection with two closely related fungal pathogens: Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). Both pathogens have had detrimental effects on amphibian populations, with Bd now largely enzootic, while Bsal is currently spreading and causing epizootics. Recent experimental work revealed that newts coinfected with Bd and Bsal had significantly higher mortality than those infected with either pathogen alone. Here we characterize host immunogenomic responses to chytrid coinfection relative to single infection. Across several classes of immune genes including pattern recognition receptors, cytokines, and MHC, coinfected host gene expression was weakly upregulated or comparable to that seen in single Bd infection, but significantly decreased when compared to Bsal infection. Combined with strong complement pathway downregulation and keratin upregulation, these results indicate that coinfection with Bd and Bsal compromises immune responses active against Bsal alone. As Bsal continues to invade naïve habitats where Bd is enzootic, coinfection will be increasingly common. If other Bd‐susceptible species in the region have similar responses, interactions between the two pathogens could cause severe population and community‐level declines.  相似文献   

20.
Infectious diseases can have dramatic impacts on animal population dynamics, but how they influence vital rates remains understudied. We took advantage of the appearance of an avian cholera epizootic in an arctic colony of common eiders Somateria mollissima to study variation in juvenile survival and selection on hatch characteristics in relation to this highly infectious disease. Avian cholera is one of the most important infectious diseases affecting wild birds and is thought to primarily affect adult survival. Here, we show that avian cholera was associated with a 90% decline in duckling survival, leading to almost zero recruitment. Before the cholera outbreak, there was significant stabilizing selection on hatching date and significant positive directional selection on hatching mass. During cholera outbreaks, selection on hatch characteristics was no longer significant. These results were based on a low sample of surviving ducklings in cholera years, but suggested that date and mass at hatching did no longer affect duckling survival in the presence of cholera. These effects of avian cholera on post‐hatching survival were likely not only the consequence of the disease per se, but also a consequence of an increase in predation rates that followed the emergence of avian cholera. Our results emphasize the dramatic direct and indirect impacts that infectious disease can have on vital rates, and thus population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号