首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most snails and slugs locomote over a layer of mucus and although the resultant mucus trail is expensive to produce, we show that this expense can be reduced by trail following. When tracking over fresh conspecific trails, the marine intertidal snail Littorina littorea (L.) produced only approximately 27% of the mucus laid by marker snails. When tracking over weathered trails, snails adjusted their mucus production to recreate a convex trail profile of similar shape and thickness to the trail as originally laid. Maximum energy saving occurs when following recently laid trails which are little weathered. Many and diverse ecological roles for trail following have been proposed. Energy saving is the only role that applies across the Gastropoda and so may help to explain why trail following is such a well-established behaviour.  相似文献   

2.
An experimental procedure involving time-lapse cinematography was used to investigate the responses of the freshwater pulmonate, Biomphalaria glabrata (Say), to their mucus trails. It has been shown that individuals of this species are capable of following their own trails and also those laid by other individuals of the same species. The capacity of mucus trails to influence snail behaviour is lost after a brief period of between 10 and 30 min. The snails tend to move in the direction the trail was laid with expectation greater than by chance. They do not follow mucus trails laid by another species, Limnaea stagnalis. The possible adaptive significance of trail following is discussed.  相似文献   

3.
As it walks, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) spins a trail of silk threads, that is followed by the predatory mite, Neoseiulus womersleyi Schicha (Acari: Phytoseiidae). Starved adult female N. womersleyi followed T. urticae trails laid down by five T. urticae females but did not follow a trail of one T. urticae female, suggesting that the amount of spun threads and their chemical components should correlate positively with the number of T. urticae individuals. To examine whether chemical components of T. urticae trails are responsible for the predatory mite’s trail following, we collected separate T. urticae threads from the exuviae and eggs, and then washed the threads with methanol to separate chemical components from physical attributes of the threads. Female N. womersleyi did not follow T. urticae trails that had been washed with methanol but contained physical residues, but they did follow the direction to which the methanol extracts of the T. urticae trails was applied. These results suggest that the predatory mite follows chemical, not physical, attributes of T. urticae trails.  相似文献   

4.
The purposeful introduction of the land snail Euglandina rosea, which feeds exclusively on snails and slugs, has been implicated as a major factor in the decline of diverse Pacific island land snail faunas. We report on the distribution, movement patterns, and microhabitat preferences of E. rosea in a gulch in the Waianae Mountains, Oahu, Hawaii, because such data will help focus management actions at a local scale to protect native snail populations in areas where E. rosea is established. The Waianae Mountains harbor many endangered or threatened snails, most currently found in isolated habitat patches near the ridges. Conversely, most living individuals (28/29) and shells (46/56) of E. rosea were collected within the gulch, which supported higher densities of other native and non‐native snails, and was cooler and more moist than the ridges. Thirteen individuals of E. rosea were tracked (eight directly using a bobbin and thread method, and five indirectly by mark–recapture); most (10/13) moved on average <2.5 m per week (range 0.1–25.21 m), and all stayed within the gulch. Members of E. rosea preferred leaf litter over open, fern/shrub, or wood microhabitats. There were large differences in the population density of E. rosea over small spatial scales, indicating that there may be places where native snail populations could persist even in areas where populations of E. rosea are established. Identifying areas with differing population densities of E. rosea is critical for not only understanding why some native snail species may be more vulnerable to extinction, but also to locate areas where predation pressure is low and conservation efforts will be most likely to succeed.  相似文献   

5.
Snails are highly unusual among multicellular animals in that they move on a layer of costly mucus, leaving behind a trail that can be followed and utilized for various purposes by themselves or by other animals. Here we review more than 40 years of experimental and theoretical research to try to understand the ecological and evolutionary rationales for trail‐following in gastropods. Data from over 30 genera are currently available, representing a broad taxonomic range living in both aquatic and terrestrial environments. The emerging picture is that the production of mucus trails, which initially was an adaptation to facilitate locomotion and/or habitat extension, has evolved to facilitate a multitude of additional functions. Trail‐following supports homing behaviours, and provides simple mechanisms for self‐organisation in groups of snails, promoting aggregation and thus relieving desiccation and predation pressures. In gastropods that copulate, trail‐following is an important component in mate‐searching, either as an alternative, or in addition to the release of water‐ or air‐borne pheromones. In some species, this includes a capacity of males not only to identify trails of conspecifics but also to discriminate between trails laid by females and males. Notably, trail discrimination seems important as a pre‐zygotic barrier to mating in some snail species. As production of a mucus trail is the most costly component of snail locomotion, it is also tempting to speculate that evolution has given rise to various ways to compensate for energy losses. Some snails, for example, increase energy intake by eating particles attached to the mucus of trails that they follow, whereas others save energy through reducing the production of their own mucus by moving over previously laid mucus trails. Trail‐following to locate a prey item or a mate is also a way to save energy. While the rationale for trail‐following in many cases appears clear, the basic mechanisms of trail discrimination, including the mechanisms by which many snails determine the polarity of the trail, are yet to be experimentally determined. Given the multiple functions of trail‐following we propose that future studies should adopt an integrated approach, taking into account the possibility of the simultaneous occurrence of many selectively advantageous roles of trail‐following behaviour in gastropods. We also believe that future opportunities to link phenotypic and genotypic traits will make possible a new generation of research projects in which gastropod trail‐following, its multitude of functions and evolutionary trade‐offs can be further elucidated.  相似文献   

6.
The importance of pheromones in insect and mammal social systems is well documented, but few studies have addressed the role of pheromones in land snail behavior. In this investigation, we used a series of behavioral trials and direct analysis in real time mass spectrometry (MS) to test the hypothesis that land snails use mucous trails in orientation and chemical communication. We worked with six endemic Hawaiian land snail species in four genera, three subfamilies, and two families. We tested conspecific trail following in five of these species, and trail following occurred at a statistically significant frequency for each of the species tested (n=181, p‐values ranged <0.0001–0.0494). Percentage of conspecific trials that showed trail following ranged 66.7–94.1%. None of the interspecific tests revealed evidence of trail following among species (n=105, with p‐values of 0.0577–0.5000). Juvenile achatinelline snails did not follow trails of conspecific juveniles (n=30, p=0.5722) or adults (n=30, p=0.4278), nor did adults follow juvenile trails (n=30, p=0.5722). Comparative MS analysis of adult and juvenile trails showed distinct chemical signatures in the two groups. Signals corresponding to medium‐ and long‐chain fatty acids and other unidentified small molecules were present in adult but not in juvenile trails. Considered together, these results support the hypotheses that trail following could serve an important social and reproductive function. This discovery provides evidence for the presence of an ephemeral tree snail pheromone, which could have important implications for the conservation of these increasingly rare and threatened species.  相似文献   

7.
Prairie rattlesnakes (Crotalus viridis) typically release adult rodent prey after envenomation. The post-strike head orientation of the snake may facilitate location of the trail left by the rodent. To examine this possibility, mice were presented using a pair of tongs so that no chemical cues were deposited on any surfaces. Snakes exhibited a change in head orientation after predatory strikes, bringing them closer to the departure bearing of the prey. In addition, when trail searching began snakes contacted the departure bearing of the prey first rather than the entry bearing. When rodent trails are available, we expect this initial contact to bias the snake towards selecting the post-envenomation trail.  相似文献   

8.
In this study, the feeding behaviour of the non‐native invasive predatory fishes largemouth bass Micropterus salmoides and bluegill Lepomis macrochirus was studied in the Ezura River, a northern tributary of Lake Biwa, Japan. Prey composition was estimated based on visual examination of stomach contents and faecal DNA analysis to determine feeding habits of these predatory fishes. Stomach content analysis showed that native fishes (e.g. ayu Plecoglossus altivelis and gobies Rhinogobius spp.) and shrimps (e.g. Palaemon paucidens) were the major prey items for M. salmoides, while snails, larval Chironomidae and submerged macrophytes were the dominant prey items of L. macrochirus. Micropterus salmoides tended to select larger fish in the case of crucian carp Carassius spp., but smaller fishes in the case of P. altivelis and Rhinogobius spp. Faecal DNA analyses revealed prey compositions similar to those identified in predator stomach contents, and identified additional prey species not detected in stomach content inspection. This study demonstrated that both stomach content inspection and DNA‐based analysis bear several inherent shortcomings and advantages. The former method is straightforward, although identification of species can be inaccurate or impossible, whereas the latter method allows for accurate species identification, but cannot distinguish prey size or stage. Hence, integration of morphology‐based and DNA‐based methods can provide more reliable estimates of foraging habits of predatory fishes.  相似文献   

9.
We questioned the well-accepted concept that spider mite-infested plants attract predatory mites from a distance. This idea is based on the preference demonstrated by predatory mites such as Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) for volatiles produced by spider mite-infested plants in a closed environment (Y-tube wind tunnel). However, in natural open environments, kidney bean leaves heavily infested with Tetranychus urticae Koch (Acari: Tetranychidae) did not attract P. persimilis from the same distances as were used in the Y-tube tests. Therefore, the attraction of predatory mites for spider mite-infested plant volatiles in the Y-tube tests may reflect a preference in a closed environment and should be carefully interpreted as a basis for extrapolating predator–prey attraction mechanisms in the wild. On the other hand, we showed that adult female P. persimilis could follow trails laid down by adult female T. urticae in the laboratory and in natural open environments. Consequently, we propose that following spider mite trails represents another prey-searching cue for predatory mites.  相似文献   

10.
1. Trail‐sharing between different ant species is rare and restricted to a small number of species pairs. Its underlying mechanisms are largely unknown. For trail‐sharing to occur, two factors are required: (i) one or both species must recognise the other species or its pheromone trails and (ii) both species must tolerate each other to a certain extent to allow joint use of the trail. A species that follows another's trails can efficiently exploit the other's information on food sources contained in the pheromone trails. Hence, food competition and thus aggressive interactions between a species following another's trail and the species being followed, seem likely. 2. In the present study, we investigated interspecific trail following and interspecific aggression in trail sharing associations (i) among Polyrhachis ypsilon, Camponotus saundersi, and Dolichoderus cuspidatus, and (ii) among Camponotus rufifemur and Crematogaster modiglianii. We tested whether trail‐sharing species follow each other's pheromone trails, and whether the ants tolerated or attacked their trail‐sharing partners. In both associations, we confronted workers with pheromone trails of their associated species, and, for the former association, measured interspecific aggression among the trail‐sharing species. 3. In our assays, D. cuspidatus and C. rufifemur regularly followed heterospecific pheromone trails of P. ypsilon and C. modiglianii, respectively. However, only few workers of the remaining species followed heterospecific pheromone trails. Thus, shared trails of P. ypsilon and C. saundersi cannot be explained by interspecific trail‐following. 4. Interspecific aggression among P. ypsilon, C. saundersi, and D. cuspidatus was strongly asymmetric, C. saundersi being submissive to the other two. All three species differentiated between heterospecific workers from the same or another site, suggesting habituation to the respective trail‐sharing partners. We therefore hypothesise that differential tolerance by dominant ant species may be mediated by selective habituation towards submissive species and this way determines the assembly of trail‐sharing associations.  相似文献   

11.
Trail following behaviour and pedal mucus production were investigated in the mid-shore topshell, Monodonta labio (Linnaeus) in Hong Kong. On the shore, individuals exhibited both conspecific and self trail following while awash on ebb and flood tides, although fidelity to resting sites during emersion on successive days was low. In the laboratory, animals that encountered trails that had been aged on the shore for different periods showed similar patterns of movement (distance moved, speed and tortuosity) suggesting that degradation of cues in the mucus that animals responded to did not occur until > 3 days post-deposition. Animals moved faster, with a lower rate of radular rasping, on freshly laid mucus trails than on a biofilm-covered substratum and did not change their speed when moving over aged (biofilm-covered) mucus compared to fresh mucus. Mucus production rates were similar when animals were crawling on vertical or horizontal surfaces, but significantly more mucus was produced when animals were emersed than when submerged. Mucus trail profiles were of variable thickness, but ‘double’ mucus trails (marker + tracker trails) did not contain significantly more mucus than ‘single’ trails (marker mucus only) and were considerably thinner than single trails suggesting tracker snails utilized mucus laid by marker snails, reducing their own deposition of mucus. Thus, while M. labio do not appear to utilize trails for orientation or refuge location, snails that follow trails have the potential to save energy through reducing mucus production or to gain energy through mucus ingestion. Given the role of pedal mucus production in the overall energy balance of gastropods, such energetic benefits are considerable and may have implications for the life history of the snail.  相似文献   

12.
The ability of neonate larvae of the aquatic sciomyzids, Sepedon spinipes spinipes (Scopoli) and Dictya montana Steyskal (Diptera), to follow snail mucus trails was assessed using filter paper Y-mazes. On finding a mucus trail, larval behaviour of both species switched from unstimulated to stimulated searching behaviour, the latter being characterised by an increase in larval velocity and the frequency of lateral head taps. When fresh mucus trails were used, all of the neonates displayed a positive response and followed the mucus trail into the experimental arm. In addition, for S. s. spinipes and D. montana 80.00% and 86.67% of larvae respectively exhibited a strong response and followed the trail to its end. The stimulatory substance (s), however, appears to become inactive with time and after 45 minutes none of the tested larvae reached the trail end. These results are discussed in relation to the ability of aquatic species to forage outside of water for prey and the implications for their use in the biological control of nuisance snails.  相似文献   

13.
There are several records of the carnivorous behaviour of land flatworms, considered to be top‐predators in their micro‐habitats, by preying upon various species of invertebrates. However, there is little knowledge of predators on land‐flatworms. The possible impact of invasive land flatworms on prey populations has caused widespread concern, when considering their predatory behaviour, combined with recent human influence on the distribution of certain species. This work is the first record of predation on land flatworms by a carnivorous snail. Various‐sized land flatworms of 10 native species of the subfamily Geoplaninae, as well as the exotic species Bipalium kewense (subfamily Bipaliinae), were offered to Rectartemon depressus (Gastropoda, Streptaxidae), which accepted all. The predator also fed on the snail Bradybaena similaris. The snails were maintained in laboratory for an average period of 12 months based on a mixed diet of flatworms and B. similaris, suggesting that the snail is a polyphagous predator. Because certain land‐flatworm species have been described as invasive species which may have a potential impact on prey populations in native and man‐made ecosystems, it is proposed that carnivorous snails of other native species, as potential predators of flatworms, should be tested for possible use in biological control programmes of these invasive planarians.  相似文献   

14.
Paltothyreus tarsatus workers show an adaptive predatory strategy compatible with central place theory which predicts that single-prey loading is an extension of the optimal diet choice while multiple-prey loading behavior would correspond to the optimal use of patches. The insight learning involved in the quick modifications of predatory strategy enablesP. tarsatus to hunt all available prey in a great diversity of sizes and species. Nevertheless, this generalist predator strongly preferred termites and very large prey such as giant diplopods and crickets to other choices within its diet. In the hunting of these favorite prey, the recruitment of nestmates enhanced the efficiency of total predation, though the release of a chemical trail appeared to depend on the hunger-satiety balance of the colony. In addition to the hunger, the miscapture of prey also triggered the release of chemical trails. The strategy for capturing grouped termites was characterized by the loading of multiple prey at a single time, by a concentrated search in a restricted area and by an optional recruitment of nestmates. These behavioral characteristics of ponerine ants probably account for the flexibility of their predatory strategy for hunting aggregated small prey.  相似文献   

15.
The introduction of the snail-eating flatworm Platydemus manokwari (Tricladida: Rhynchodemidae) has been considered a cause of the extinction of native land snails on several Pacific islands. Although P. manokwari is known to attack land snails on the ground, whether P. manokwari attacks snails on trees remains unclear. To clarify the effect of P. manokwari on arboreal snails, we examined survival rates of land snails experimentally placed on tree trunks (0.5–2.0 m above the ground) in a forest on Chichijima, Ogasawara (Bonin) Islands, in the northwestern Pacific Ocean. The survival of snails experimentally placed on tree trunks with artificially created snail scent trails rapidly decreased for 7 days, and the mortality was caused by P. manokwari predation. However, snails placed on tree trunks without snail scent trails were not attacked by P. manokwari. Therefore, P. manokwari climbed tree trunks, likely tracking the snail scent. We found that over 40% of the snails placed on tree trunks with snail scent trails were eaten by P. manokwari within 7 days. This experiment supports the hypothesis that P. manokwari predation is an important cause of the rapid decline or extinction of native arboreal snails on Pacific islands.  相似文献   

16.
Johan Ahlgren  Christer Brönmark 《Oikos》2012,121(9):1501-1506
Prey species are often exposed to multiple predators, which presents several difficulties to prey species. This is especially true when the response to one predator influences the prey’s susceptibility to other predators. Predator‐induced defences have evolved in a wide range of prey species, and experiments involving predators with different hunting strategies allow researchers to evaluate how prey respond to multiple threats. Freshwater snails are known to respond to a variety of predators with both morphological and behavioural defences. Here we studied how freshwater snails Radix balthica responded behaviourally to fish and leech predators, both separately and together. Our aim was to explore whether conflicting predator‐induced responses existed and, if so, what effect they had on snail survival when both predatory fish and leeches were present. We found that although R. balthica increased refuge use when exposed to predatory fish, they decreased refuge use when exposed to predatory leeches. When both predators were present, snails showed a stronger response towards leech than fish and responded by leaving the refuge. This response made the snails more susceptible to fish predation, which increased snail mortality when exposed to both fish and leech compared to fish only. We show that predators that have a relatively low predation rate can substantially increase mortality rates by indirect effects. By forcing snails out of refuges such as rock and macrophyte habitats, leeches can indirectly increase predation from molluscivorous fish and may thus affect snail densities.  相似文献   

17.
18.
Summary The behaviour of adultHomoeusa acuminata on trails of its hostLasius fuliginosus was investigated both in the field and in the laboratory. The beetles were active from May to September, accurately following the foraging trails of their hosts up to 20 metres from the nest. Most of the time, they were ignored by the ants, but if attacked they raised their abdomen as a possible appeasement or defensive behaviour. On trails the beetles most probably act as food robbers, feeding on prey collected by ants. The following method, called stowaway behaviour, was used by the beetles: when a beetle encountered an ant carrying a prey back to the nest it jumped on the prey, probably feeding on it while being transported.Laboratory experiments on circular artificial trails demonstrated thatH. acuminata follows a water extract of hindguts of the ants, the source of the trail pheromone. Both beetles and ants responded to an artificial trail of 0.03 hindgut equivalent per cm, but the mean distance followed by the beetles was about twelve times higher than that covered by the ants themselves. In contrast, experiments with solutions of the six fatty acids reported as the active components of the trail pheromone showed that the beetles did not respond at all, and that the ants only respond to the fatty acids at a very high concentration.  相似文献   

19.
Comparison of the behaviour of slugs before and during trailfollowing shows that there is no change in their rates of locomotionbut that there are decreases in measures of tentacle activity(distance moved and the frequency of substrate contacts) duringtrail following. Bilateral amputation of tentacles has the generaleffect of slowing the speed of locomotion whether trail followingor not, and preventing the decrease in tentacle activity duringtrail following. Amputation of the anterior tentacles results in a decrease inthe accuracy with which trails are followed. Amputation of theposterior tentacles on the other hand, results in a decreasein the frequency with which slugs turned onto trails. Removalof all the tentacles prevents trail following. It is concludedthat the posterior tentacles are concerned with the detectionand identification of trails which are subsequently followedand that the anterior tentacles normally control the behaviourof the slug on the trail. (Received 22 May 1984;  相似文献   

20.
Pheidologeton diversus workers group-hunt (that is, search for food in raiding groups) and are in this way remarkably convergent with army ants (Dorylinae and Ecitoninae). Raids appear usually to take independent courses and are capable of tracking areas of high food density. However, raid advance is not dependent on continual food discovery at the raid front, since raids can advance over areas without food. Most raids extend from trunk trails, which originate when the basal trail of a raid remains in use even after the original raid has ceased. Trunk trails can last at least as long as 10 weeks, with the terrain and the distance to the nest influencing the trail stability. Territories are limited to the trail systems, with rich food items in particular being vigorously defended. Group hunting permits P. diversus to quickly harvest booty, usurp foods from competing species, and capture large prey. This strategy is compared with the raiding strategies of other ants. I hypothesize that group hunting originated from an ancestor which hunted solitarily from trunk trails through the acceleration of trail production and reduction in worker autonomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号