首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dispersal is crucial for gene flow and often determines the long‐term stability of meta‐populations, particularly in rare species with specialized life cycles. Such species are often foci of conservation efforts because they suffer disproportionally from degradation and fragmentation of their habitat. However, detailed knowledge of effective gene flow through dispersal is often missing, so that conservation strategies have to be based on mark–recapture observations that are suspected to be poor predictors of long‐distance dispersal. These constraints have been especially severe in the study of butterfly populations, where microsatellite markers have been difficult to develop. We used eight microsatellite markers to analyse genetic population structure of the Large Blue butterfly Maculinea arion in Sweden. During recent decades, this species has become an icon of insect conservation after massive decline throughout Europe and extinction in Britain followed by reintroduction of a seed population from the Swedish island of Öland. We find that populations are highly structured genetically, but that gene flow occurs over distances 15 times longer than the maximum distance recorded from mark–recapture studies, which can only be explained by maximum dispersal distances at least twice as large as previously accepted. However, we also find evidence that gaps between sites with suitable habitat exceeding ~20 km induce genetic erosion that can be detected from bottleneck analyses. Although further work is needed, our results suggest that M. arion can maintain fully functional metapopulations when they consist of optimal habitat patches that are no further apart than ~10 km.  相似文献   

2.
The evolutionary viability of an endangered species depends upon gene flow among subpopulations and the degree of habitat patch connectivity. Contrasting population connectivity over ecological and evolutionary timescales may provide novel insight into what maintains genetic diversity within threatened species. We employed this integrative approach to evaluating dispersal in the critically endangered Coahuilan box turtle (Terrapene coahuila) that inhabits isolated wetlands in the desert‐spring ecosystem of Cuatro Ciénegas, Mexico. Recent wetland habitat loss has altered the spatial distribution and connectivity of habitat patches; and we therefore predicted that T. coahuila would exhibit limited movement relative to estimates of historic gene flow. To evaluate contemporary dispersal patterns, we employed mark–recapture techniques at both local (wetland complex) and regional (intercomplex) spatial scales. Gene flow estimates were obtained by surveying genetic variation at nine microsatellite loci in seven subpopulations located across the species’ geographical range. The mark–recapture results at the local spatial scale reveal frequent movement among wetlands that was unaffected by interwetland distance. At the regional spatial scale, dispersal events were relatively less frequent between wetland complexes. The complementary analysis of population genetic substructure indicates strong historic gene flow (global FST = 0.01). However, a relationship of genetic isolation by distance across the geographical range suggests that dispersal limitation exists at the regional scale. Our approach of contrasting direct and indirect estimates of dispersal at multiple spatial scales in T. coahuila conveys a sustainable evolutionary trajectory of the species pending preservation of threatened wetland habitats and a range‐wide network of corridors.  相似文献   

3.
The West African trypanosomoses are mostly transmitted by riverine species of tsetse fly. In this study, we estimate the dispersal and population size of tsetse populations located along the Mouhoun river in Burkina Faso where tsetse habitats are experiencing increasing fragmentation caused by human encroachment. Dispersal estimated through direct (mark and recapture) and indirect (genetic isolation by distance) methods appeared consistent with one another. In these fragmented landscapes, tsetse flies displayed localized, small subpopulations with relatively short effective dispersal. We discuss how such information is crucial for designing optimal strategies for eliminating this threat. To estimate ecological parameters of wild animal populations, the genetic measures are both a cost- and time-effective alternative to mark–release–recapture. They can be applied to other vector-borne diseases of medical and/or economic importance.  相似文献   

4.
刘阳  张正旺 《生态学报》2008,28(4):1354-1365
扩散是生物个体之间相互远离的单线性运动,是生物的基本特征之一,对种群的分布、动态及遗传结构等方面均有重要影响.扩散有出生扩散和繁殖扩散等主要形式.动物发生扩散的主要原因包括:避免近亲繁殖、减少竞争、改变繁殖地点等.近年来,扩散已经成为鸟类学研究的前沿领域.评述了鸟类扩散行为的性别差异、体质对于扩散的影响,阐述了扩散的基本过程及栖息地选择、长距离扩散等内容,同时介绍了环志标记、无线电遥测、分子生物学等研究鸟类扩散的主要方法.展望了鸟类扩散研究的发展趋势,认为新技术和新方法的应用将成为扩散生态学家关注的重要问题,未来研究将更加重视对鸟类扩散理论问题的探讨,而对鸟类扩散行为的研究成果也会更广泛地应用于濒危物种及其栖息地的保护工作中.  相似文献   

5.
Dispersal is a key process for the population dynamics of spatially structured populations (at local and metapopulation levels), so the understanding of the mechanisms underlying the movement of individuals in space and time is important for evolutionary and ecological studies. Here we analyzed, for the first time, a long‐term (1992–2009) multi‐site capture– recapture database collected at four local populations of a long‐lived seabird, the Audouin’s gull Larus audouinii, covering 90% of its total world population. Those local populations show different ecological and demographic features that allow us to assess the influence of several key factors involved in breeding dispersal patterns at large spatio‐temporal scales. A recently developed analytical tool in mark–recapture modelling, the multi‐event approach, allowed us to obtain separate departure and settlement probabilities and test different biological hypotheses for each step of the dispersal process. Our results revealed that site fidelity was the most common strategy among breeders, and dispersal was only high from the site with the lowest population size and habitat quality. However, departures from the two largest local populations increased over the study period in response to severe ecological perturbations. Dispersers chose different settlement patches depending on their site of origin, with settlement choices determined by the population size of the destination colony rather than by the local reproductive performance, foraging area (a proxy of food availability) or distance to the destination site. Our results indicate that a breeding site is not abandoned by breeders unless a series of cumulative perturbations occur; once dispersing, settlement is directed towards densely populated sites, with dispersers using population size to rapidly assess the quality of the breeding patch.  相似文献   

6.
Dispersal (i.e. movement from a natal or breeding site to another breeding site) is a central process in ecology and evolution as it affects the eco‐evolutionary dynamics of spatially structured populations. Dispersal evolution is regulated by the balance between costs and benefits, which is influenced by the individual phenotype (i.e. phenotype‐dependent dispersal) and environmental factors (i.e. condition‐dependent dispersal). Even though these processes have been extensively studied in species with simple life cycles, our knowledge about these mechanisms in organisms displaying complex life cycles remains fragmentary. In fact, little is specifically known about how the interplay between individual and environmental factors may lead to alternative dispersal strategies that, in turn, lead to the coexistence of contrasted site fidelity phenotypes. In this paper, we examined breeding dispersal in a pond‐breeding amphibian, the great crested newt Triturus cristatus, within usual walking distances for a newt. We took advantage of recent developments in multi‐event capture–recapture models and used capture–recapture data (946 newts marked) collected in a spatially structured population occupying a large pond network (73 ponds). We showed a high rate of breeding site infidelity (i.e. pond use) and the coexistence of two dispersal phenotypes, namely, a highly pond faithful phenotype and a dispersing phenotype. Individuals that were site faithful at time t – 1 were therefore more likely to remain site faithful at time t. Our results also demonstrated that the probability that individuals belong to one or the other dispersal phenotypes depended on environmental and individual factors. In particular, we highlighted the existence of a dispersal syndrome implying a covariation pattern among dispersal behavior, body size, and survival. Our work opens new research prospects in the evolution of dispersal in organisms displaying complex life cycles and raises interesting questions about the evolutionary pathways that contribute to the diversification of movement strategies in the wild.  相似文献   

7.
Dispersal is a key parameter of adaptation, invasion and persistence. Yet standard population genetics inference methods hardly distinguish it from drift and many species cannot be studied by direct mark‐recapture methods. Here, we introduce a method using rates of change in cline shapes for neutral markers to estimate contemporary dispersal. We apply it to the devastating banana pest Mycosphaerella fijiensis, a wind‐dispersed fungus for which a secondary contact zone had previously been detected using landscape genetics tools. By tracking the spatio‐temporal frequency change of 15 microsatellite markers, we find that σ, the standard deviation of parent–offspring dispersal distances, is 1.2 km/generation1/2. The analysis is further shown robust to a large range of dispersal kernels. We conclude that combining landscape genetics approaches to detect breaks in allelic frequencies with analyses of changes in neutral genetic clines offers a powerful way to obtain ecologically relevant estimates of dispersal in many species.  相似文献   

8.
Dispersal distances determine the scales over which many population processes occur. Knowledge of these distances may therefore be crucial in determining the appropriate spatial scales for research and management. However, dispersal distances are difficult to measure, especially for vagile organisms like songbirds. For these species, the use of traditional mark–recapture and radio‐telemetry methods is problematic. We used positive one‐year time‐lagged correlations in abundance to estimate natal dispersal distances. Using the North American Breeding Bird Survey database, we examined one‐year time‐lagged correlations between pairs of North American songbird samples separated by 10–100 km. We submit that consistent positive one‐year time‐lagged correlations reflect the exchange of individuals through dispersal. We found positive one‐year time‐lagged correlations between pairs of samples from 25 different songbird species. The median distances of these correlations ranged from 15 to 95 km, depending on the species. These distances were positively correlated with body size and wing length. Dispersal appears to be the most parsimonious explanation for the time‐lagged correlations we observed in these species. The putative dispersal distances we measured are generally an order of magnitude longer than those reported in the literature.  相似文献   

9.
陈鹏  叶辉  母其爱 《生态学报》2007,27(6):2468-2476
2005年7月在云南怒江流域地区,以荧光粉作为标记物,采用“标记-释放-回收”方法,对怒江流域桔小实蝇迁移扩散规律进行了研究。以释放点潞江坝为中心,东南西北4个方位设立桔小实蝇回收点,经过7d的回捕,从释放点沿潞江以北至六库沿线共回收到的标记桔小实蝇43头,最远在距释放点以北97km的地方回收到标记桔小实蝇5头。沿怒江在释放点以南,仅在小于29km的范围内回收到标记桔小实蝇17头。释放点东面和西面未能回收到标记桔小实蝇。分析释放点以北各回收点标记桔小实蝇与非标记桔小实蝇的相互关系揭示,非标记桔小实蝇与标记桔小实蝇在空间动态中具有相同的行为模式,由此推论非标记桔小实蝇与标记桔小实蝇可能来自同一种群。分析怒江流域区的自然地理发现,潞江坝桔小实蝇可借助怒江两边高大山脉形成的天然河谷通道,在适宜的气候条件下,在北上气流的携带下,实现由南向北的远距离迁移扩散;同时,由于高大山脉的阻隔,使潞江坝桔小实蝇没能向东西两个方向作远距离扩散迁移。研究首次揭示了在特定峡谷地区桔小实蝇扩散迁移现象,为桔小实蝇迁移扩散研究提供了新鲜实例,为在当地制定切实有效的桔小实蝇防治策略提供了基础信息。  相似文献   

10.
1. Habitat fragmentation may lead to natural selection on dispersal rate and other life‐history traits. Both theoretical analyses and empirical studies suggest that habitat fragmentation may select either for increased or decreased dispersal depending on the traits of the species and the characteristics of the landscape. 2. Dispersal and movement rates in Glanville fritillary butterflies (Melitaea cinxia) originating from a continuous landscape in China and from a highly fragmented landscape in Finland were compared using three different methods. 3. The methods included replicated mark‐release‐recapture (MRR) experiments conducted in the natural environments in China and Finland, tracking with harmonic radar of captive‐reared but free‐flying butterflies in a common environment in the field, and replicated common garden experiments in a large outdoor population cage. 4. The results were largely consistent, showing that butterflies from the more continuous landscape in China had a lower movement rate than butterflies originating from the fragmented landscape in Finland. Butterflies originating from newly‐established populations in Finland moved significantly longer distances than butterflies originating from old populations in Finland or from China, demonstrating significant intra‐specific variation in dispersal rate in Finland. These results are consistent with model predictions for the Glanville fritillary. 5. The tracking experiment revealed a result that would have been impossible to obtain with MRR experiments: movement rate was influenced by a significant interaction between population origin (China vs. Finland) and ambient air temperature.  相似文献   

11.
Heritability of dispersal in the great reed warbler   总被引:1,自引:0,他引:1  
Dispersal is commonly considered to be a condition‐dependent behaviour with no or low heritability. Here, we show that dispersal in the great reed warbler (Acrocephalus arundinaceus) has a high heritability. Analyses of capture–recapture data of male great reed warblers gathered from the species’ whole Swedish breeding range revealed a remarkable offspring–parent resemblance in dispersal behaviour (philopatry vs. inter‐population dispersal). Also, the degree of dispersal differed between cohorts, which shows that dispersal was partly conditionally dependent. The offspring to mid‐parent estimate of heritability was 0.50. In a previous study of the same data set of male offspring, we did not detect associations between dispersal and several relevant environmental, parental and offspring condition factors. Thus, our results indicate that variation in dispersal partly has a genetic basis in great reed warblers.  相似文献   

12.
Amphibians display wide variations in life‐history traits and life cycles that should prove useful to explore the evolution of sex‐biased dispersal, but quantitative data on sex‐specific dispersal patterns are scarce. Here, we focused on Salamandra atra, an endemic alpine species showing peculiar life‐history traits. Strictly terrestrial and viviparous, the species has a promiscuous mating system, and females reproduce only every 3 to 4 years. In the present study, we provide quantitative estimates of asymmetries in male vs. female dispersal using both field‐based (mark–recapture) and genetic approaches (detection of sex‐biased dispersal and estimates of migration rates based on the contrast in genetic structure across sexes and age classes). Our results revealed a high level of gene flow among populations, which stems exclusively from male dispersal. We hypothesize that philopatric females benefit from being familiar with their natal area for the acquisition and defence of an appropriate shelter, while male dispersal has been secondarily favoured by inbreeding avoidance. Together with other studies on amphibians, our results indicate that a species' mating system alone is a poor predictor of sex‐linked differences in dispersal, in particular for promiscuous species. Further studies should focus more directly on the proximate forces that favour or limit dispersal to refine our understanding of the evolution of sex‐biased dispersal in animals.  相似文献   

13.
Abstract:  Dispersal of European corn borer, Ostrinia nubilalis Hübner was examined by release and recapture of the dye marked adults and by capture of the feral adults in and around the large 50 ha center pivot irrigated fields of Bacillus thuringiensis (Bt) maize. Pheromone and black light traps were used to catch the adults. In 1999, 15 094 marked males and 7993 marked females were released, and in 2001, 13 942 marked males and 9977 marked females were released. In 1999, maximum mean recapture beyond the release point was 1.95 and 1.67% for males and females, but in 2001, the recapture rate was 9.97 and 4.37% for males and females. Few males (3.8%) and females (2.07%) were recaptured in neighbourhood maize fields. An exponential decay function explained recapture of marked adults across the dispersal distance. More than 90% of marked adults were recaptured within 300 m of the release point. Large numbers of feral adults were captured throughout the study fields. Feral adult dispersal could be fitted to a linear model. Virgin females (20% marked and 8% feral) were captured throughout the study fields. The recapture of marked insects suggests that the dispersal was limited. However, capture of feral adults throughout Bt-maize fields indicate that the actual dispersal may be more extensive than indicated by recapture of marked adults. Potential refuge sources for the feral adults were 587–1387 m from the edge of the study fields. It is not clear if the dispersal recorded in this study is extensive enough to support the current resistance management strategy for corn borers. There appears to be some dispersal of corn borers from the non-transgenic 'refuge' fields into the transgenic fields that allows some genetic mixing of the two populations.  相似文献   

14.
陈鹏  叶辉  母其爱 《生态学报》2007,27(6):2468-2476
2005年7月在云南怒江流域地区,以荧光粉作为标记物,采用“标记-释放-回收”方法,对怒江流域桔小实蝇迁移扩散规律进行了研究。以释放点潞江坝为中心,东南西北4个方位设立桔小实蝇回收点,经过7d的回捕,从释放点沿潞江以北至六库沿线共回收到的标记桔小实蝇43头,最远在距释放点以北97 km 的地方回收到标记桔小实蝇5头。沿怒江在释放点以南,仅在小于29 km 的范围内回收到标记桔小实蝇17头。释放点东面和西面未能回收到标记桔小实蝇。分析释放点以北各回收点标记桔小实蝇与非标记桔小实蝇的相互关系揭示,非标记桔小实蝇与标记桔小实蝇在空间动态中具有相同的行为模式,由此推论非标记桔小实蝇与标记桔小实蝇可能来自同一种群。分析怒江流域区的自然地理发现,潞江坝桔小实蝇可借助怒江两边高大山脉形成的天然河谷通道,在适宜的气候条件下,在北上气流的携带下,实现由南向北的远距离迁移扩散;同时,由于高大山脉的阻隔,使潞江坝桔小实蝇没能向东西两个方向作远距离扩散迁移。研究首次揭示了在特定峡谷地区桔小实蝇扩散迁移现象,为桔小实蝇迁移扩散研究提供了新鲜实例,为在当地制定切实有效的桔小实蝇防治策略提供了基础信息。  相似文献   

15.
ABSTRACT.   Dispersal is a critical link between organismal and population biology, yet, because of their mobility, our understanding of the causes and consequences of long-distance dispersal by birds remains poorly known. Methods used to study dispersal include (1) marking and recapturing individuals in a limited study area to estimate survival and dispersal rates, and (2) relying on volunteers to mark and recapture individuals over larger areas. We compared these two methods for measuring dispersal distances of Tree Swallows ( Tachycineta bicolor ) using recapture data from a limited-area study in New York State (the Swallow Dispersal Study, SDS) and the recapture dataset from the U.S. Bird Banding Laboratory (BBL). Analysis of BBL records revealed a difference in the dispersal distance distributions (DDD) for data reported before and after 1967. In the earlier data, 84% of the 238 records were for birds within 13.6 km of their first banding location, whereas only 22% of the 799 records in the more recent data were reported in this closest distance belt. These differences are almost certainly due to changes in reporting protocols instituted by the BBL in the mid-1960s. We corrected for recapture effort in the SDS, and, using this corrected SDS data for the proportion of birds returning in the closest distance belt and the recent BBL for the proportions of more distant movements, we created what we think is the best composite DDD for Tree Swallows. Even though dispersal distances up to 2367 km have been reported, the composite DDD indicates that fewer than 3% of birds disperse more than 100 km and that 85% disperse less than 15 km between years. Thus, our results suggest that the dispersal behavior of most individuals can be examined effectively at more local spatial scales. Studies of dispersal and mortality would be facilitated if all recaptures of banded birds were reported with accurate spatial coordinates to the Bird Banding Laboratory.  相似文献   

16.
BackgroundField ecologists often rely on mark-release-recapture (MRR) experiments to estimate population dynamics parameters for a given species. In the case of a medically important taxon, i.e., a disease vector, inferences on species survival and dispersal rates are particularly important as they have the potential to provide insights into disease transmission dynamics in endemic areas. Medical entomologists have traditionally used fluorescent dusts to externally mark the cuticle of insects. However, dust marking is usually restricted to the adult life stage because immature insects lose the mark when they molt.Conclusions/SignificancePrevious evidence shows that there is little or no genetic differentiation between populations at the microgeographic level, which often precludes indirect estimations of dispersal capability based on genetic markers. In such situations, MRR studies are more suitable as they measure insect movement directly from one site to another, instead of effective migration (i.e. gene flow). The determination of a reliable and persistent marking method is the first step towards the development of meaningful ecological estimates through the application of MRR methodology. Here, we have identified trace elements that can be used for mark and recapture studies of three triatomine species in Brazil.  相似文献   

17.
Dispersal is a critical process that has profound influence on ecological and evolutionary processes. Many proximate factors influence natal dispersal, but it is currently unclear whether the conditions experienced during incubation play an important role. We manipulated incubation temperature and used mark–recapture of released hatchlings to test this hypothesis. We tested this hypothesis on the prairie lizard (Sceloporus consobrinus) using two experimental islands in a local reservoir. Incubation conditions influenced some aspects of hatchling morphology, but had little influence on the probability of dispersal. As generally predicted for a polygynous species, males were more likely to disperse than females; however, the growth rate of dispersing vs. resident individuals varied depending on sex. Dispersive male lizards did not grow faster than resident males, whereas female dispersers grew significantly slower than resident females. Although our study was not specifically designed to test for differential costs of dispersal for males and females, this pattern is consistent with recent research demonstrating sex‐specific fitness costs of dispersal.  相似文献   

18.
Marine biologists have gone through a paradigm shift, from the assumption that marine populations are largely ‘open’ owing to extensive larval dispersal to the realization that marine dispersal is ‘more restricted than previously thought’. Yet, population genetic studies often reveal low levels of genetic structure across large geographic areas. On the other side, more direct approaches such as mark‐recapture provide evidence of localized dispersal. To what extent can direct and indirect studies of marine dispersal be reconciled? One approach consists in applying genetic methods that have been validated with direct estimates of dispersal. Here, we use such an approach—genetic isolation by distance between individuals in continuous populations—to estimate the spatial scale of dispersal in five species of coral reef fish presenting low levels of genetic structure across the Caribbean. Individuals were sampled continuously along a 220‐km transect following the Mesoamerican Barrier Reef, population densities were estimated from surveys covering 17 200 m2 of reef, and samples were genotyped at a total of 58 microsatellite loci. A small but positive isolation‐by‐distance slope was observed in the five species, providing mean parent‐offspring dispersal estimates ranging between 7 and 42 km (CI 1–113 km) and suggesting that there might be a correlation between minimum/maximum pelagic larval duration and dispersal in coral reef fishes. Coalescent‐based simulations indicate that these results are robust to a variety of dispersal distributions and sampling designs. We conclude that low levels of genetic structure across large geographic areas are not necessarily indicative of extensive dispersal at ecological timescales.  相似文献   

19.
As suitable habitat becomes increasingly fragmented the ability of a species to reach new areas may often dictate whether populations persist or perish. An understanding of dispersal ability is a prerequisite for informed management decisions. This is particularly true for species that have become restricted to one or a small number of sites, as is the case for several species of Cryptocephalus beetle in the UK. Using mark–release–recapture, host-plant marking and direct observations we investigated population size, movement through suitable habitat and the flight behaviour of Cryptocephalus decemmaculatus. In the UK this species is known from only two sites and it is listed as a priority species on the UK Biodiversity Action Plan. At the time of the study, the one known English site for this species supported a population of ~500 individuals. The adult beetles move through their habitat using suitable host-plants as ‘stepping stones’. There appears to be no interchange of adults between sub-populations that are separated by small areas of unsuitable habitat (e.g. small tracts of woodland or areas devoid of scrub), a result reinforced by studies of genetic differentiation between sub-populations. The small population size of this beetle and its association with, mid-successional habitats makes it vulnerable to local extinction. Furthermore, its limited dispersal ability means that other habitat patches are unlikely ever to be colonised naturally.  相似文献   

20.
Dispersal of offspring from their natal site has a critical influence on individual fitness. Although the consequences of dispersal have received much theoretical attention, the determinants of dispersal remain poorly understood for many animals. To address this issue, we marked and released size‐manipulated hatchling lizards (Amphibolurus muricatus; Agamidae) over a 3‐mo period in the field to evaluate the effects of body size and the time of hatching on dispersal distance. Our mark–recapture data indicated that body size and offspring sex had little effect on distances travelled by individuals. However, the timing of hatching had a strong impact; individuals that hatched early in the season dispersed further than did those hatching late. This pattern may allow early‐hatched juveniles to disperse and secure high‐quality habitats before the arrival of later‐hatched conspecific competitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号