首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Question: Is plant diversity in fragmented semi‐natural grasslands related to present and historical landscape context? Location: Southern Sweden. Methods: Plant diversity was described at 30 semi‐natural grassland sites in terms of total and specialist plant species richness at the site and species density at different scales (0.5–10 m2). These measures are commonly used to assess conservation value of semi‐natural grasslands. Landscape context was measured as contemporary connectivity to other semi‐natural grasslands, historical connectivity 50 years ago, amount of linear elements potentially suitable for dispersal (road verges, power line clearings), and amount of forest (inverse of the openness of the landscape). Results: The diversity measures were generally correlated with each other, implying that species richness in a subset of the grassland can predict the total richness. Plant species density at three scales (0.5 m2, 10 m2 and total) was related to the landscape context using an information theoretic approach. Results showed that total species richness increased with increased size of grasslands, contrary to earlier diversity studies in semi‐natural grasslands. Larger grasslands were more heterogeneous than smaller grasslands, and this is a likely reason for the species‐area relationship. Heterogeneity was also of high importance at the smaller scales (0.5 m2, 10 m2). With increased amount of forest, total species richness increased but species density on 10 m2 decreased. There was no influence of connectivity in either the contemporary or the historical landscape, contrary to previous studies. Conclusions: Grassland size and heterogeneity are of greater importance for plant diversity in semi‐natural grassland, than grassland connectivity in the landscape.  相似文献   

2.
3.
Question: How do traditional management practices of field margins maintain the biodiversity of native grassland species? Location: Semi‐natural grassland on the field margins of traditional and consolidated agricultural fields on Awaji Island, central Japan. Methods: The distance to the nearest traditional field margin to the study sites was determined because the traditional field was considered as a seed source of native vegetation to the semi‐natural grasslands under study. We selected field margins in consolidated fields of different ages and distances from seed sources. Indicator species for both field types were sought. Regression analysis and detrended correspondence analysis (DCA) were used to determine the effect of spatial and temporal distances on the species composition of native vegetation. Results: Species richness differed significantly between the margin of traditional and consolidated fields. We identified significant indicator species of traditional fields, but not of consolidated fields. In consolidated fields, species richness increased significantly with age and decreased significantly with increasing distance to the source. At younger sites, species richness decreased faster with distance to the source because of strong negative correlation, but not at older sites. DCA ordination plots similarly indicated that similarities of vegetation composition in consolidated and traditional fields decreased with distance, and the effect of distance decreased with age. Conclusions: The species composition of the grassland margins of consolidated field was more similar to the margins of traditional fields if the consolidated fields were older, and/or closer to traditional fields. This pattern suggests that dispersal may play a role in the establishment of species on field margins.  相似文献   

4.
The accumulation of biodiversity in space and time has been modelled extensively using the species–area relationship and the species–time relationship, respectively. Recently, these models have been combined into time–area curves in order to investigate spatiotemporal scaling of species richness. This study expands on previous research by applying these spatiotemporal models to functional diversity. Understanding spatiotemporal dynamics of ecological traits is important due to their crucial role in ecosystem functioning and mediating species responses to environmental change. We present a new function based on the semi‐logarithmic species–area relationship, which was applied with a power function to vegetation survey data from Scottish machair grassland for both species richness and two measures of functional diversity. When taking a whole‐study approach using non‐linear mixed effects models, the semi‐logarithmic function used here shows a positive time–area interaction for species richness, contrasting with the negative interaction of the power law found in previous investigations. Although there was a negative time–area interaction for functional diversity measures at the whole‐study scale, parameter estimates were inconsistent at the individual site level. Overall, the results reveal differing spatiotemporal dynamics of species and their traits and suggest that the appropriate scale for space‐for‐time substitutions depends on the aspect of biodiversity being investigated. The new model developed in this study, and the novel application to functional diversity, opens up future possible research into spatiotemporal dynamics of biodiversity.  相似文献   

5.
6.
7.
Many previous studies have assumed that a linear relationship between local and regional species richness indicates that communities are limited by regional processes, while a saturating relationship suggests that species interactions restrict local richness. We show theoretically that the relationship between local and regional richness changes in a consistent fashion with assembly time in interacting communities. Communities show saturation in their early assembly stages because only a subset of the regional pool may colonize a locality. At intermediate assembly times, communities will appear unsaturated until significant competitive exclusion occurs. Finally, when communities reach equilibrium, we found saturation as a result of resource competition resulting in the dominance of a limited number of species. We show that habitat size and species fecundity are important in determining the time needed for the community to reach equilibrium and thus affect the relationship between local and regional species richness. Our results suggest the number of coexisting species is a function of local and regional processes whose relative influences might vary over time and that research using the relationship between local and regional species richness to infer mechanisms limiting species richness must have knowledge of the assembly time of the community.  相似文献   

8.
9.
ABSTRACT

Background: Discrepancies in the shape of the productivity–diversity relationship may arise from differences in spatial scale. We hypothesised that there is a grain size effect on the productivity–diversity relationship.

Aims: To determine the effect of three sampling grain sizes on the productivity–diversity relationship.

Methods: We applied generalised linear mixed effect models on community data from 735 vegetation plots in the Taleghan rangelands, Iran, sampled at three grain sizes (0.25, 1 and 2 m2) to ascertain plant productivity-diversity patterns, while accounting for the effects of site, plant community type, disturbance, and life form.

Results: Overall, relationships between biomass and plant species richness were unimodal at grain sizes of 0.25 and 1 m2, and asymptotical at 2 m2. The spurious occurrence of a single large shrub may overwhelm a small-sized sampling unit, resulting in a high estimate of the sample’s biomass relative to species richness. However, the relationship between biomass and species richness at larger grain sizes is more likely to reach an asymptote.

Conclusions: Shrubs are partly responsible for driving the relationship between plant biomass and species richness. Given that the frequency of shrubs is highly variable between small plots but not so in large plots, their presence may result in unimodal productivity–diversity relationships at small but not at large grain sizes.  相似文献   

10.
Aim Understanding the response of species to ecotones and habitat edges is essential to designing conservation management, especially in mosaic agricultural landscapes. This study examines how species diversity and composition change with distance from semi‐natural habitats, over ecotones into agricultural fields, and how within‐site patterns of community transition change across a climatic gradient and differ between crop types. Location A total of 19 sites in Israel where semi‐natural habitats border agricultural fields (wheat fields or olive groves) distributed along a sharp climatic gradient ranging between 100 and 800 mm mean annual rainfall. Methods  We performed butterfly surveys in 2006. We analysed species richness (α‐diversity), diversity, community nestedness and species turnover (β‐diversity) within sites and between sites (γ‐diversity). We also assessed where species of conservation concern occurred. Results In wheat sites, richness and diversity declined abruptly from ecotones to fields and remained homogenously poor throughout the fields, regardless of climate. In olive sites, despite the sharp structural boundary, richness and diversity remained high from the semi‐natural habitat to the grove margins and then declined gradually into groves. Species of conservation concern occurred across all habitats at olive sites, but none were found inside wheat fields or at their ecotones. The contrast in community structure between semi‐natural habitats and fields was affected by both climate and field type. Irrigation in arid regions did not augment species diversity. Main conclusions Our results indicate that consideration of crop type, within a climatic context, should receive high priority in biodiversity conservation in agricultural areas. In ‘hostile’ crops, such as wheat, we suggest favouring a combination of high‐intensity management and wide margins over less intensive management without margins, which may merely aid generalist butterfly species. The scarcity of butterflies in arid irrigated fields suggests a need to carefully assess the effects of irrigation and agrochemicals on species’ communities.  相似文献   

11.
12.
Question: What is the relationship between soil fertility and plant species richness in the ‘fertile islands’ occurring beneath two species of legume (Cercidium praecox and Prosopis laevigata)? Location: Tehuacán‐Cuicatlán region, central Mexico. Methods: Plant richness was measured in three micro‐environments (below canopies of C. praecox, below canopies of P. laevigata and in areas without canopies). The concentration of soil nutrients (C, N and P), C and N in the microbiota, and processes of ecosystem functioning (net C mineralization rate and N mineralization) were measured. The relationship between soil variables and plant richness were assessed with ANCOVAs. Results: Soil nutrients and species richness increases markedly under fertility islands. There were higher concentrations of C and N in the soil, faster rates of C mineralization, and higher species richness under P. laevigata canopies. The relationship between soil fertility and species richness was always positive except for total N, ammonium and net C mineralization rate under C. praecox, and for available P under P. laevigata. Conclusions: The sign of the relationship between soil fertility and species richness varies according to the nutrient and the micro‐environment. Positive relationships could result from between species complementarity and facilitation. Negative relationships could be explained by a specific limitation threshold for some soil resources (P and N for plants and C for the soil microbiota) which eliminate the possibilities of between species complementarity and facilitation above that threshold. As in all observational studies, these relationships should be considered only correlational.  相似文献   

13.
14.
Ockinger E  Smith HG 《Oecologia》2006,149(3):526-534
During the last 50 years, the distribution and abundance of many European butterfly species associated with semi-natural grasslands have declined. This may be the result of deteriorating habitat quality, but habitat loss, resulting in decreasing area and increasing isolation of remaining habitat, is also predicted to result in reduced species richness. To investigate the effects of habitat loss on species richness, we surveyed butterflies in semi-natural grasslands of similar quality and structure, but situated in landscapes of different habitat composition. Using spatially explicit habitat data, we selected one large (6–10 ha) and one small (0.5–2 ha) grassland site (pasture) in each of 24 non-overlapping 28.2 km2 landscapes belonging to three categories differing in the proportion of the area that consisted of semi-natural grasslands. After controlling for local habitat quality, species richness was higher in grassland sites situated in landscapes consisting of a high proportion of grasslands. Species richness was also higher in larger grassland sites, and this effect was more pronounced for sedentary than for mobile species. However, the number of species for a given area did not differ between large and small grasslands. There was also a significant relationship between butterfly species richness and habitat quality in the form of vegetation height and abundance of flowers. In contrast, butterfly density was not related to landscape composition or grassland size. When species respond differently to habitat area or landscape composition this leads to effects on community structure, and nestedness analysis showed that depauperate communities were subsets of richer ones. Both grassland area and landscape composition may have contributed to this pattern, implying that small habitat fragments and landscapes with low proportions of habitat are both likely to mainly contain common generalist species. Based on these results, conservation efforts should aim at preserving landscapes with high proportions of the focal habitat.  相似文献   

15.
16.
Aims: (1) Understanding how the relationship between species richness and its determinants depends on the interaction between scales at which the response and explanatory variables are measured. (2) Quantifying the relative contributions of local, intermediate and large‐scale determinants of species richness in a fragmented agro‐ecosystem. (3) Testing the hypothesis that the relative contribution of these determinants varies with the grain size at which species richness is measured. Location: A fragmented agro‐ecosystem in the Southern Judea Lowland, Israel, within a desert–Mediterranean transition zone. Methods: Plant species richness was estimated using hierarchical nested sampling in 81 plots, positioned in 38 natural vegetation patches within an agricultural matrix (mainly wheat fields) among three land units along a sharp precipitation gradient. Explanatory variables included position along that gradient, patch area, patch isolation, habitat heterogeneity and overall plant density. We used general linear models and hierarchical partitioning of variance to test and quantify the effect of each explanatory variable on species richness at four grain sizes (0.0625, 1, 25 and 225 m2). Results: Species richness was mainly affected by position along a precipitation gradient and overall plant density, and to a lesser extent by habitat heterogeneity. It was also significantly affected by patch area and patch isolation, but only for small grain sizes. The contribution of each explanatory variable to explained variance in species richness varied with grain size, i.e. scale‐dependent. The influence of geographic position and habitat heterogeneity on species richness increased with grain size, while the influence of plant density decreased with grain size. Main conclusions: Species richness is determined by the combined effect of several scale‐dependent determinants. Ability to detect an effect and effect size of each determinant varies with the scale (grain size) at which it is measured. The combination of a multi‐factorial approach and multi‐scale sampling reveals that conclusions drawn from studies that ignore these dimensions are restricted and potentially misleading.  相似文献   

17.
18.
Species–area relationships (SARs) of European butterfly species (Rhopalocera) appear to follow power functions with Mediterranean butterflies having a much higher slope value (z=0.49) compared to the slope for the northern and eastern European countries (z=0.10). A simulated process of species extinction by a stepwise density dependent random elimination of species affected species–area patterns differently. For Mediterranean countries SAR slopes decreased, for other European countries slopes increased during the extinction process. Comparisons of species numbers before and after extinction with those predicted by a classical SAR approach differed widely and revealed that SARs are not able to predict future species numbers at local scales. For Mediterranean countries the classical SAR approach underestimated the number of species remaining after simulated extinction, for all other European countries SARs highly overestimated species numbers. These contrasting patterns indicate that changes in SAR patterns do not unequivocally point to changes in species diversity or community structure as assumed by current theory. On the other hand, the results strongly indicate that simplified applications of SARs for forecasting might give misimpressions about species loss and future biodiversity if the initial community structure, especially relative densities and numbers of species with restricted range size, are not taken into account.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号