首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Question: How do traditional management practices of field margins maintain the biodiversity of native grassland species? Location: Semi‐natural grassland on the field margins of traditional and consolidated agricultural fields on Awaji Island, central Japan. Methods: The distance to the nearest traditional field margin to the study sites was determined because the traditional field was considered as a seed source of native vegetation to the semi‐natural grasslands under study. We selected field margins in consolidated fields of different ages and distances from seed sources. Indicator species for both field types were sought. Regression analysis and detrended correspondence analysis (DCA) were used to determine the effect of spatial and temporal distances on the species composition of native vegetation. Results: Species richness differed significantly between the margin of traditional and consolidated fields. We identified significant indicator species of traditional fields, but not of consolidated fields. In consolidated fields, species richness increased significantly with age and decreased significantly with increasing distance to the source. At younger sites, species richness decreased faster with distance to the source because of strong negative correlation, but not at older sites. DCA ordination plots similarly indicated that similarities of vegetation composition in consolidated and traditional fields decreased with distance, and the effect of distance decreased with age. Conclusions: The species composition of the grassland margins of consolidated field was more similar to the margins of traditional fields if the consolidated fields were older, and/or closer to traditional fields. This pattern suggests that dispersal may play a role in the establishment of species on field margins.  相似文献   

2.
Many previous studies have assumed that a linear relationship between local and regional species richness indicates that communities are limited by regional processes, while a saturating relationship suggests that species interactions restrict local richness. We show theoretically that the relationship between local and regional richness changes in a consistent fashion with assembly time in interacting communities. Communities show saturation in their early assembly stages because only a subset of the regional pool may colonize a locality. At intermediate assembly times, communities will appear unsaturated until significant competitive exclusion occurs. Finally, when communities reach equilibrium, we found saturation as a result of resource competition resulting in the dominance of a limited number of species. We show that habitat size and species fecundity are important in determining the time needed for the community to reach equilibrium and thus affect the relationship between local and regional species richness. Our results suggest the number of coexisting species is a function of local and regional processes whose relative influences might vary over time and that research using the relationship between local and regional species richness to infer mechanisms limiting species richness must have knowledge of the assembly time of the community.  相似文献   

3.
4.
ABSTRACT

Background: Discrepancies in the shape of the productivity–diversity relationship may arise from differences in spatial scale. We hypothesised that there is a grain size effect on the productivity–diversity relationship.

Aims: To determine the effect of three sampling grain sizes on the productivity–diversity relationship.

Methods: We applied generalised linear mixed effect models on community data from 735 vegetation plots in the Taleghan rangelands, Iran, sampled at three grain sizes (0.25, 1 and 2 m2) to ascertain plant productivity-diversity patterns, while accounting for the effects of site, plant community type, disturbance, and life form.

Results: Overall, relationships between biomass and plant species richness were unimodal at grain sizes of 0.25 and 1 m2, and asymptotical at 2 m2. The spurious occurrence of a single large shrub may overwhelm a small-sized sampling unit, resulting in a high estimate of the sample’s biomass relative to species richness. However, the relationship between biomass and species richness at larger grain sizes is more likely to reach an asymptote.

Conclusions: Shrubs are partly responsible for driving the relationship between plant biomass and species richness. Given that the frequency of shrubs is highly variable between small plots but not so in large plots, their presence may result in unimodal productivity–diversity relationships at small but not at large grain sizes.  相似文献   

5.
6.
Ockinger E  Smith HG 《Oecologia》2006,149(3):526-534
During the last 50 years, the distribution and abundance of many European butterfly species associated with semi-natural grasslands have declined. This may be the result of deteriorating habitat quality, but habitat loss, resulting in decreasing area and increasing isolation of remaining habitat, is also predicted to result in reduced species richness. To investigate the effects of habitat loss on species richness, we surveyed butterflies in semi-natural grasslands of similar quality and structure, but situated in landscapes of different habitat composition. Using spatially explicit habitat data, we selected one large (6–10 ha) and one small (0.5–2 ha) grassland site (pasture) in each of 24 non-overlapping 28.2 km2 landscapes belonging to three categories differing in the proportion of the area that consisted of semi-natural grasslands. After controlling for local habitat quality, species richness was higher in grassland sites situated in landscapes consisting of a high proportion of grasslands. Species richness was also higher in larger grassland sites, and this effect was more pronounced for sedentary than for mobile species. However, the number of species for a given area did not differ between large and small grasslands. There was also a significant relationship between butterfly species richness and habitat quality in the form of vegetation height and abundance of flowers. In contrast, butterfly density was not related to landscape composition or grassland size. When species respond differently to habitat area or landscape composition this leads to effects on community structure, and nestedness analysis showed that depauperate communities were subsets of richer ones. Both grassland area and landscape composition may have contributed to this pattern, implying that small habitat fragments and landscapes with low proportions of habitat are both likely to mainly contain common generalist species. Based on these results, conservation efforts should aim at preserving landscapes with high proportions of the focal habitat.  相似文献   

7.
Species–area relationships (SARs) of European butterfly species (Rhopalocera) appear to follow power functions with Mediterranean butterflies having a much higher slope value (z=0.49) compared to the slope for the northern and eastern European countries (z=0.10). A simulated process of species extinction by a stepwise density dependent random elimination of species affected species–area patterns differently. For Mediterranean countries SAR slopes decreased, for other European countries slopes increased during the extinction process. Comparisons of species numbers before and after extinction with those predicted by a classical SAR approach differed widely and revealed that SARs are not able to predict future species numbers at local scales. For Mediterranean countries the classical SAR approach underestimated the number of species remaining after simulated extinction, for all other European countries SARs highly overestimated species numbers. These contrasting patterns indicate that changes in SAR patterns do not unequivocally point to changes in species diversity or community structure as assumed by current theory. On the other hand, the results strongly indicate that simplified applications of SARs for forecasting might give misimpressions about species loss and future biodiversity if the initial community structure, especially relative densities and numbers of species with restricted range size, are not taken into account.  相似文献   

8.
Question: Does management intensity affect the association between non‐native and native species and between non‐native species and soil nutrients in wetlands? Location: MacArthur Agro‐Ecology Research Center, Florida, USA. Methods: We evaluated native and non‐native plant richness and relative frequency in 15 1‐m2 plots in 40 wetlands across two types of pastures, highly managed (fertilized, ditched, planted, heavily grazed by cattle) and semi‐natural (unfertilized, lightly seasonally grazed). Plant biomass was collected in five 0.25‐m2 plots per wetland and sorted to species. Soil cores were collected to analyse soil total nitrogen (N) and phosphorus (P). An information‐theoretic approach was used to compare mixed effects models considering the association of non‐native richness, relative frequency, and biomass with native richness, relative frequency, biomass, C3 grass relative frequency (a dominant native group), N, P and wetland‐type. Results: Non‐native richness was negatively correlated with native richness in semi‐natural wetlands, but there was no evidence of an association between these variables in highly managed wetlands. Non‐native richness increased with increasing soil N in semi‐natural wetlands, but not in the highly managed wetlands. Soil P was positively related to non‐native frequency in semi‐natural wetlands but negatively related in highly managed wetlands. Non‐native frequency and biomass were negatively related to relative frequency of C3 grasses in both management types. Conclusions: Our results indicate that management intensity influences relationships between native and non‐native richness. Management intensity interacts with abiotic or biotic factors, such as soil nutrients and composition, in predicting where non‐native species will most likely need control.  相似文献   

9.
10.
1. With habitat fragmentation spreading around the world, there is a pressing need to understand its impacts on local food webs. To date, few studies have examined the effects of landscape context on multiple local communities in a quantitative, spatially realistic setting. 2. To examine how the isolation of a food web affects its structure, we construct local food webs of specialist herbivores and their natural enemies on 82 individual oaks (Quercus robur) growing in different landscape contexts. 3. Across this set of webs, we find that communities in isolated habitat patches not only contained fewer species than did well-connected ones, but also differed in species composition. 4. Surprisingly, the effects observed in terms of species composition were not reflected in the quantitative interaction structure of local food webs: landscape context had no detectable effect on either the interaction evenness, linkage density, connectance, generality or vulnerability of local webs. 5. We conclude that the quantitative structure of food webs may be stable in the face of habitat fragmentation, despite clear-cut impacts on individual species. This finding offers hope-inspiring news for conservation, but should clearly be verified by empirical studies across both naturally and more recently fragmented systems.  相似文献   

11.
1. River flow alterations due to climate change and increasing water usage affect freshwater biodiversity including fish species richness. Here, we statistically explored the relationships of fish species richness to 14 ecologically relevant flow metrics as well as basin area and latitude in 72 rivers worldwide. 2. The statistical models best supported by the data included three variables with positive coefficients (mean river discharge, basin area and the maximum proportion of no‐flooding period) and three variables with negative coefficients (latitude, coefficients of variation in the frequency of low flow and the Julian date of annual minimum flow). 3. The model outputs have provided the first empirical indication that specific low‐ and high‐flow characteristics may be important in explaining variations in basin‐scale fish species richness. Our findings can be useful in identifying high‐risk basins for conservation of fish species diversity. 4. The results not only support the adoption of mean discharge as a predictor, but also suggest the importance of basin area in predicting basin‐scale fish species richness around the world.  相似文献   

12.
Despite considerable criticism in recent years, the use of local (SL) and regional species richness (SR) plots has a long tradition to test for community saturation. The traditional approach has been to compare linear and polynomial regression models of untransformed measures of SL and SR with a statistically significant linear or polynomial model indicating unsaturated and saturated communities, respectively. This approach has been the target of much controversy owing to statistical issues, the confounding effects of the arbitrary choice for the size of the local and regional area, and the difficulty in attributing ecological processes to the underlying SL SR pattern. The statistical issues and effects of scale stem from the lack of statistical independence and induced correlation between SL SR arising from the mathematical constraint, SL<SR. However, by removing this mathematical constraint by means of a logratio transformation, SL SR relationships can be calculated using ordinary linear regression and with a logical and definitive null‐hypothesis based solely on the presence of a statistically significant slope, which provides a quantitative measure of curvature. Simulations of SL SR relationships with varying curvature and SL:SR ratio demonstrate that the logratio model can accurately measure curvature independent of the SL:SR ratio. Therefore, the tendency for studies with high local:regional area ratio to result in linear SL SR trends when analysed by traditional regression methods may be mitigated by reanalysis by the logratio model. By alleviating the effects of scale, the logratio model offers a more statistically sound assessment of the SL SR relationship, which in turn can serve as an effective tool to complement emerging process‐based models.  相似文献   

13.
Kenny Helsen  Martin Hermy  Olivier Honnay 《Oikos》2012,121(12):2121-2130
Community assembly or succession was traditionally thought of as being deterministic and directional, leading to a clearly defined climax state. The alternative view, however, keeps gaining attention. This view states that community assembly is influenced by historical processes, where differences in the sequence and timing of species arrival result in distinct communities. Here we tested the hypothesis that both views are valid, but at a different level, with increasing dissimilarity in species composition among sites with increasing age (divergence), caused by historical processes (priority effects), and with increasing similarity in mean trait composition (convergence) among sites, indicating a directional development at the niche level. We surveyed a chronosequence of restored semi‐natural grassland patches on former pine plantations over seven restoration age classes, covering 22 grasslands. Pairwise multivariate distances were calculated between the different grassland patches based on species abundance on the one hand, and on mean community trait values for 28 plant life history traits on the other. Trait composition showed a clear decrease in multivariate distance with increasing restoration age, indicating trait convergence through time. At the species level, we found no evidence of convergence through time, with even a trend towards divergence. Furthermore, spatial variation and environmental heterogeneity were found to remain constant through time. These results confirm our hypothesis. At the trait level, limited niches occur, only filled by species having the appropriate traits, resulting in a clear deterministic model of assembly. Species identity, on the contrary, has no role in this niche filling. The first appropriate species to reach a restoration site will be most likely the ones that get established, resulting in divergence of the species composition among restored grasslands.  相似文献   

14.
15.
Disentangling the relative effects of local and regional processes on local species richness (LSR) is critical for understanding the mechanisms underlying large‐scale biodiversity patterns. In this study we used 1098 forest plots from 41 mountains across China, together with regional flora data, to examine the relative influence of local climate vs regional species richness (RSR) on LSR patterns. Both RSR and LSR for woody species and all species combined decreased with increasing latitude, while richness of herbaceous species exhibited a hump‐shaped pattern. The major climatic orrelates of species richness differed across spatial scales. At the regional scale, winter coldness was the best predictor of RSR patterns for both woody and herbaceous species. At the local scale, however, productivity‐related climatic indices were the best predictors of LSR patterns. Local climate and RSR together explained 48, 54 and 23% of the variation in LSR, for overall, woody and herbaceous species, respectively. Both local climate and RSR independently influenced LSR in addition to their joint effects, suggesting that LSR patterns were shaped by local and regional processes together. Local climate and RSR affected LSR of woody species mainly through their joint effects, while there were few shared effects of climate and RSR on the LSR of herbaceous species. Our findings suggest that while geographic RSR patterns are mainly determined by winter coldness, the ecological processes driven by productivity may be critical to the filtering of regional flora into local communities. We also demonstrate that biogeographic region is not a good surrogate for regional richness, at least for our dataset. Consequently, whether biogeographic region can effectively reflect regional effects needs further examination.  相似文献   

16.
Plant and Soil - It has been well demonstrated that several interacting endogenous and exogenous factors influence decomposition. However, teasing apart the direct and indirect effects of these...  相似文献   

17.
18.
Metapopulation theory predicts that species richness and total population density of habitat specialists increase with increasing area and regional connectivity of the habitat. To test these predictions, we examined the relative contributions of habitat patch area, connectivity of the regional habitat network and local habitat quality to species richness and total density of butterflies and day-active moths inhabiting semi-natural grasslands. We studied butterflies and moths in 48 replicate landscapes situated in southwest Finland, including a focal patch and the surrounding network of other semi-natural grasslands within a radius of 1.5 km from the focal patch. By applying the method of hierarchical partitioning, which can distinguish between independent and joint contributions of individual explanatory variables, we observed that variables of the local habitat quality (e.g. mean vegetation height and nectar plant abundance) generally showed the highest independent effect on species richness and total density of butterflies and moths. Habitat area did not show a significant independent contribution to species richness and total density of butterflies and moths. The effect of habitat connectivity was observed only for total density of the declining butterflies and moths. These observations indicate that the local habitat quality is of foremost importance in explaining variation in species richness and total density of butterflies and moths. In addition, declining butterflies and moths have larger populations in well-connected networks of semi-natural grasslands. Our results suggest that, while it is crucial to maintain high-quality habitats by management, with limited resources it would be appropriate to concentrate grassland management and restoration to areas with well-connected grassland networks in which the declining species currently have their strongest populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.
We used an individual-based spatially-explicit model to assess the role of facilitation and plant strategies in shaping the 'community biomass–species richness' relationship. Facilitation had few impacts on community's richness under both the most benign (high community biomass) and the most severe (low community biomass) environments where its intensity was weak. From medium to high environmental severity, facilitation increased community richness, because all plant strategies were facilitated. In contrast, from low to medium environmental severity facilitation decreased community richness, because only the most competitive species were facilitated, which induced a decrease in the richness of the stress-tolerant species overwhelming the increase in richness of the competitive species. Above all, our simulations show how 'strategy-dependent' interactions among species combine to shape the humped-back biomass–species richness relationship. It also demonstrates that facilitative effects might have long-term negative effects on species richness, which result is not included in current facilitation models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号