首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Steady state kinetics were used to examine the influence of Cd2+ both on K+ stimulation of a membrane-bound ATPase from sugar beet roots (Beta vulgaris L. cv. Monohill) and on K+(86Rb+) uptake in intact or excised beet roots. The in vitro effect of Cd2+ was studied both on a 12000–25000 g root fraction of the (Na++K++Mg2+)ATPase and on the ATPase when further purified by an aqueous polymer two-phase system. The observed data can be summarized as follows: 1) Cd2+ at high concentrations (>100 μM) inhibits the MgATPase activity in a competitive way, probably by forming a complex with ATP. 2) Cd2+ at concentrations <100 μM inhibits the specific K+ activation at both high and low affinity sites for K+. The inhibition pattern appears to be the same in the two ATPase preparations of different purity. In the presence of the substrate MgATP, and at K+ <5 mM, the inhibition by Cd2+ with respect to K+ is uncompetitive. In the presence of MgATP and K+ >10 μM, the inhibition by Cd2+ is competitive. 3) At the low concentrations of K+, Cd2+ also inhibits the 2,4-dinitrophenol(DNP)-sensitive (metabolic) K+(86Rb+) uptake uncompetitively both in excised roots and in roots of intact plants. 4) The DNP-insensitive (non metabolic) K+(86Rb+) uptake is little influenced by Cd2+. As Cd2+ inhibits the metabolic uptake of K+(86Rb+) and the K+ activation of the ATPase in the same way at low concentrations of K+, the same binding site is probably involved. Therefore, under field conditions, when the concentration of K+ is low, the presence of Cd2+ could be disadvantageous.  相似文献   

2.
Isolated muscle cells from adult rat heart have been used to study the relationship between myocardial glucose transport and the activity of the Na+/K+ pump. 86Rb+-uptake by cardiac cells was found to be linear up to 2 min with a steady-state reached by 40–60 min, and was used to monitor the activity of the Na+/K+ pump. Ouabain (10?3 mol/I) inhibited the steady-state uptake of 86Rb+ by more than 90%. Both, the ouabain-sensitive and ouabain-insensitive 86Rb+-uptake by cardiac cells were found to be unaffected by insulin treatment under conditions where a significant stimulation of 3-O-methylglucose transport occurred. 86Rb+-uptake was markedly reduced by the presence of calcium and/or magnesium, but remained unresponsive towards insulin treatment. Inhibition of the Na+/K+ pump activity by ouabain and a concomitant shift in the intracellular Na+:K+ ratio did not affect basal or insulin stimulated rates of 3-O-methylglucose transport in cardiac myocytes. The data argue against a functional relationship between the myocardial Na+/K+ pump and the glucose transport system.  相似文献   

3.
The roles of K+ uptake and loss in the salinity response of the wild type and the salt-tolerant mutant stl2 of Ceratopteris richardii were studied by measuring Rb+ influx and loss and the effects of Na+, Mg2+, Ca2+ and K+-transport inhibitors. In addition, electrophysiological responses were measured for both K+ and Rb+ and for the effects of Na+ and NH4+ on subsequent K+-induced depolarizations. stl2 had a 26–40% higher uptake rate for Rb+ than the wild type at 0.5–10 mol m?3 RbCl. Similarly, membrane depolarizations induced by both RbCl and KCl were consistently greater in stl2. In the presence of 0–180 mol m?3 NaCl, stl2 maintained a consistently greater Rb+ influx than the wild type. stl2 retained a greater capacity for subsequent KCl-induced depolarization following exposure to NaCl. Five mol m?3 Mg2+ decreased Rb+ uptake in stl2; however, additional Mg2+ up to 40 mol m?3 did not affect Rb+ uptake further. Ca2+ supplementation resulted in a very minor decrease of Rb+ uptake that was similar in the two genotypes. Tetraethylammonium chloride and CsCl gave similar inhibition of Rb+ uptake in both genotypes, but NH4Cl gave substantially greater inhibition in the wild type than in stl2. NH4Cl resulted in a greater membrane depolarization in the wild type and the capacity for subsequent depolarization by KCl was markedly reduced. stl2 exhibited a higher Independent loss of Rb+ than the wild type, but, in the absence of external K+, loss of Rb+ was equivalent in the two genotypes. Since constitutive K+ contents are nearly identical, we conclude that high K+ influx and loss exact a metabolic cost that is reflected in the inhibition of gametophytic growth. Growth inhibition can be alleviated by reduced supplemental K+ or by treatments that slightly reduce K+ influx, such as moderate concentrations of Na+ or Mg2+. We propose that high throughput of K+ allows maintenance of cytosolic K+ under salt stress and that a high uptake rate for K+ results in a reduced capacity for the entrance and accumulation of alternative cations such as Na+ in the cytosol.  相似文献   

4.
Liposomes containing either purified or microsomal (Na+,K+)-ATPase preparations from lamb kidney medulla catalyzed ATP-dependent transport of Na+ and K+ with a ratio of approximately 3Na+ to 2K+, which was inhibited by ouabain. Similar results were obtained with liposomes containing a partially purified (Na+,K+-ATPase from cardiac muscle. This contrasts with an earlier report by Goldin and Tong (J. Biol. Chem. 249, 5907–5915, 1974), in which liposomes containing purified dog kidney (Na+,K+)-ATPase did not transport K+ but catalyzed ATP-dependent symport of Na+ and Cl?. When purified by our procedure, dog kidney (Na+,K+)-ATPase showed some ability to transport K+ but the ratio of Na+ : K+ was 5 : 1.  相似文献   

5.
The influx of Rb+ into the roots of two barley varieties (Hordeum vulgare L. cv. Salve and cv. Ingrid) from a K+-free 86Rb-labelled nutrient solution with 2.0 mM Rb+, was checked at intervals from day 6 to day 18. The control plants were continuously grown in complete nutrient solution containing 5.0 mM K+, while two other groups of plants were grown in K+-free nutrient solution starting on day 6 and between day 6 and day 9, respectively. The pattern of Rb+ influx was similar for both varieties, although their efficiencies in absorbing Rb+ were different. The relationship between Rb+ influx and K+ concentration of the root could be interpreted in terms of negative feedback through allosteric control of uptake across the plasmalemma of the root cells. Hill plots were bimodal, but in the opposite direction. The Hill coefficients, reflecting the minimum number of interacting allosteric binding sites for K+ (Rb+), were low (≤–3.0). It is discussed whether the threshold value, that is the breaking point in the Hill plot, is indicative of a changed efficiency of transporting units for K+ (Rb+) transport to the xylem. Moreover, feedback regulation might be involved in transport of K+ between root and shoot. The variation in K+ concentrations in the roots and shoots of control plants were cyclic but in phase opposition despite an exponential growth. The average K+ concentration varied only slightly with age.  相似文献   

6.
Two ionophores, monensin and salinomycin, increased total cell Na+ and ouabain-sensitive 86Rb+ uptake in cultures of smooth muscle cells from rat aorta. Monensin was used to produced graded increases in cell Na+ in order to assess the Na+ dependence of the Na+/K+ pump in the intact cell. The relationship between internal Na+ and ouabain-sensitive 86Rb+ uptake was hyperbolic (K1Na = 3 mM). Monensin did not stimulate 86Rb+ uptake in the absence of external Na+. Loading the cells with Na+ by exposing cultures to a K+-free medium for 3 hr maximally increased cell Na+ and ouabain-sensitive 86Rb+ uptake to the same extent as monensin. Total cell Na+ and pump activity in monensin-treated cells returned to the initial values after removing the ionophore. Monensin was then able to increase total cell Na+ and ouabain-sensitive 86Rb+ uptake to the same extent as the initial treatment with the ionophore.  相似文献   

7.
Rat osteoblatoma cells (ROS 23) were subjected in culture to a physiologic, intermittent, compressive force. The mechanical perturbation enhanced the activity of ornithine decarboxylase by 60%. Investigation of the mechanism of enzyme activation revealed an increase in ouabain inhibitable 86Rb+ uptake, indicating an elevated Na+, K+ ATPase activity. Ouabain (1 μM) reduced ornithine decarboxylase activity by 75% in control cultures. This inhibition was partially overcome by intermittent compression. It appears that a functioning Na+, K+ ATPase is essential for the maintenance of ornithine decarboxylase activity and that activation of Na+, K+ ATPase may be associated with the trophic effects of mechanical stimuli in these cells.  相似文献   

8.
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 μM ATP and 50 μM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 μM ATP and 3 mM MgCl2. The K0.5 for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+-ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 μM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the K0.5 for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis.  相似文献   

9.
A furosemide-sensitive, ouabain-insensitive [86Rb+] uptake is described in glioma cells in culture which is dependent upon external Na+, K+, and Cl? concentrations. This transport activity was also inhibited by bumetanide at 100-fold lower concentrations than furosemide. Furosemide-sensitive swelling of glioma cells is demonstrated and this activity is dependent upon external Na+ and K+ in a manner similar to [86Rb+] uptake. This transport activity was not detected in neuroblastoma cells and the possible relevance of these findings to extracellular K+ buffering by glia is discussed.  相似文献   

10.
A microsomal (Na++ K++ Mg2+)ATPase preparation from sugar beet roots was used. The activation by simultaneous addition of Na+ and K+ at different levels was examined in terms of steady state kinetics. The observed data can be summarized in the following way: 1. The apparent affinity between the enzyme and the substrate MgATP depends on the ratio between Na+ and K+. At low Na+ concentration (below 5 mM), the apparent Km decreases with increasing concentrations of K+ (1–20 mM). At 5 mM Na+, the K+ level does not change the apparent Km, while at Na+ levels above 10 mM, the apparent Km between enzyme and substrate increases with increasing concentration of K+. 2. When the MgATP concentration is kept constant, homotropic cooperativity (concerning one type of ligand) and heterotropic cooperativity (concerning different types of ligands) exist in the activation by Na+ and K+. The Na+ binding is cooperative with different Km values and Hill coefficients (n) in the presence of low and high concentration of K+. At low Na+ level (< 5 mM). a negative cooperativity exists for Na+ (nNa < 1) which is more pronounced in the presence of high [K+]. When the concentration of Na+ is raised the negative cooperativity disappears and turns into a positive one (nNa > 1). Only K+ binding in the presence of low [Na+] shows cooperativity with a Hill coefficient that reflects changes from negative to positive homotropic cooperativity with increasing concentrations of K+ (nK < 1 → nK > 1). In the presence of [Na+] > 10 mM, the changes in nk are insignificant. 3. A model is proposed in which one or two different K sites and one or two Na sites control the catalytic activity, with multiple interactions between Na+, K+ and MgATP. 4. In the presence of Na+ (< 10 mM), K+ is probably bound to two K sites, one of which translocates K+ through the membrane by an antiport Na+/K+ mechanism. This could be connected with an elevated K+ uptake in the presence of Na+ and could therefore explain some field properties of sugar beets.  相似文献   

11.
Plant roots accumulate potassium from a wide range of soil concentrations, utilizing at least two distinct plasma membrane uptake systems with different affinities for the cation. Although details on the structure and function of these transporters are beginning to emerge many prominent questions remain concerning how these proteins function in planta. Such questions can be addressed through the use of well-defined transport mutants. Csi52, a caesium-insensitive mutant of Arabidopsis thaliana which is defective in potassium transport, is further characterized here using conventional electrophysiology, patch-clamp and radiometric approaches to identify the nature of the potassium transport lesion. Rb+ uptake experiments reveal a reduced uptake in csi52 in both the high- and low-affinity uptake range. Patch-clamp analysis indicates that the activity of the predominant inward rectifying channel observed in wild-type cells is extremely low in root protoplasts isolated from csi52, whereas outward rectifying channel activity is comparable between wild-type and mutant. Rb+ uptake studies show that in both wild-type and csi52 the high-affinity uptake pathway is considerably less sensitive to Cs+ than the low-affinity pathway with K1/2 values for Cs+ of around 1.3 and 0.2 mM, respectively. Furthermore, K+ starvation leads to a larger relative increase in high-affinity K+ uptake in the mutant than the wild-type. The results demonstrate the Cs+ sensitivity of each individual uptake pathway is comparable in wild-type and csi52 but the high-affinity pathway is less Cs+ sensitive (in both wild-type and csi52). Therefore, the larger shift toward high-affinity uptake in the mutant compared with the wild-type under K+-starvation conditions will endow the mutant with a higher degree of overall Cs+ resistance. The data supply evidence for the hypothesis that the csi52 mutation lies within a gene that regulates the activity of several potassium transport systems and coordinates their relative contribution to overall root K+ uptake.  相似文献   

12.
Ionophores (monensin, nigericin) capable of transporting both Na+ and K+ across cell membranes down their concentration gradients reduce the rate and total magnitude of serotonin uptake by platelets. The effect of the ionophores was time dependent, so that inhibition increased progressively until eventually uptake ceased entirely. Nigericin and monensin produced loss of platelet K+ and an equivalent molar uptake of Na+ thereby abolishing the normal transmembrane Na+ and K+ gradients. The time course of these ionophore-induced cation shifts at 37° C corresponded to the rate at which inhibition of serotonin transport developed. The ionophores did not affect total ATP concentration of platelets nor the metabolic pool of ATP formed from [14C] adenine. Nigericin and monensin released about 80% of platelet 14C and endogenous serotonin over a 30 min period, without release of platelet adenine nucleotides, calcium or β-glucuronidase. The ionophores did not elicit platelet aggregation nor did they prevent maximal aggregation brought about by ADP, collagen or A23187. Replacement of Na+ in the medium by K+ abolished serotonin uptake but only 10–20% of endogenous serotonin was released. In KCl medium the Na+ gradient was initially reversed, but quickly dissipated as Na+ reequilibrated with the extracellular fluid. At 37° C the ionophores did not affect either the rate of Na+ reequilibration or the efflux of [14C] serotonin. Na+ reequilibration was slower at 20° C and the ionophores significantly increased platelet Na+ loss and strongly inhibited the efflux of [14C] serotonin. The data support a mechanism of serotonin transport due to a Na+-dependent carrier-mediated process which need not be directly dependent on metabolic energy, but which does require metabolic energy to maintain normal Na+ + K+ gradients.  相似文献   

13.
Spergularia marina (L.) Griseb. is. a rapidly growing, annual, coastal halophyte. Because of its small size, it is suitable for isotope studies of ion transport well beyond the seedling stage. The purpose of this report is to establish the similarities and differences between 22Na+ and 42K+ uptake in S. marina and in more commonly used mesophytic crop species. Vegetative plants were used 18 days after transfer to solution culture. Plants were grown either on Na+-free medium or on 0.2 × sea water. 22Na+ uptake was linear with time for several hours. The rate was relatively insensitive to external concentration between 1 and 180 mol Na+ m?3, particularly in Na+-free plants. Transport to the shoot accounted for 40 to 70% of the total uptake, dependent on salinity but largely independent of time. 42K+ uptake decreased with increasing salinity in Na+-free plants and increased in 0.2 × sea water plants. Both uptake and transport to the shoot were non-linear with time, upward concavity suggesting recovery from a manipulative and/or osmotic injury. Steady state root contents were compared with predicted contents based on cortical cell electrical potentials using the Nernst equation. Reasonable agreement was found in all cases except Na+ content of 0.2 × sea water plants, in which active efflux was indicated. Uptake studies conducted in the presence of chemical modifiers (dicyclohexylcarbodiimide, dinitrophenol and fusicoccin) showed responses of 42K+ uptake as expected from studies on agronomic species, and implied the presence of a similar active uptake here despite the appearance of equilibrium. Active Na+ uptake was suggested at low Na+ levels. We conclude that S. marina is a promising experimental system combining the rapid nutrient acquisition strategy of agionomically important annuals with a high degree of salt tolerance.  相似文献   

14.
The K+-dependent p-nitrophenylphosphatase activity catalyzed by purified (Na+ + K+)-ATPase from pig kidney shows substrate inhibition (Ki about 9.5 mM at 2.1 mM Mg2+). Potassium antagonizes and sodium favours this inhibition. In addition, K+ reduces the apparent affinity for substrate activation, whereas p-nitrophenyl phosphate reduces the apparent affinity for K+ activation. In the absence of Mg2+, p-nitrophenyl phosphate, as well as ATP, accelerates the release of Rb+ from the Rb+ occluded unphosphorylated enzyme. With no Mg2+ and with 0.5 mM KCl, trypsin inactivation of (Na+ + K+)-ATPase as a function of time follows a single exponential but is transformed into a double exponential when 1 mM ATP or 5 mM p-nitrophenyl phosphate are also present. In the presence of 3 mM MgCl2, 5 mM p-nitrophenyl phosphate and without KCl the trypsin inactivation pattern is that described for the E1 enzyme form; the addition of 10 mM KCl changes the pattern which, after about 6 min delay, follows a single exponential. These results suggest that (i) the shifting of the enzyme toward the E1 state is the basis for substrate inhibition of the p-nitrophenulphosphatase acitivy of (Na+ + K+)-ATPase, and (ii) the substrate site during phosphatase activity is distinct from the low-affinity ATP site.  相似文献   

15.
The light-stimulated absorption of 86Rb+ by Phaseolus vulgaris L. leaf slices was found to be sensitive to dichlorophenyldimethylurea in air as well as in nitrogen, whereas light-stimulated 22Na+ absorption in nitrogen was not sensitive to this inhibitor. The absorption of 22Na+ is not affected by light in air. The absorption of 42K+ is enhanced by a dichlorophenyldimethylurea-insensitive light effect under anaerobic conditions and further increased by light in the absence of the inhibitor. Light-enhanced 42K+ absorption in air was also inhibited by dichlorophenyldimethylurea. Previous work showed that light-stimulated 86Rb+ and 42K+ absorption by Phaseolus vulgaris leaf slices is restricted to the guard cells. The present results are discussed with reference to the effect of light on stomatal opening.  相似文献   

16.
The addition of LiCl stimulated the (Na++K+)-dependent ATPase activity of a rat brain enzyme preparation. Stimulation was greatest in high Na+/low K+ media and at low Mg. ATP concentrations. Apparent affinities for Li+ were estimated at the α-sites (moderate-affinity sites for K+ demonstrable in terms of activation of the associated K+-dependent phosphatase reaction), at the β-sites (high-affinity sites for K+ demonstrable in terms of activation of the overall ATPase reaction), and at the Na+ sites for activation. The relative efficacy of Li+ was estimated in terms of the apparent maximal velocity of the phosphatase and ATPase reactions when Li+ was substituted for K+, and also in terms of the relative effect of Li+ on the apparent KM for Mg· ATP. With these data, and previously determined values for the apparent affinities of K+ and Na+ at these same sites, quantitative kinetic models for the stimulation were examined. A composite model is required in which Li+ stimulates by relieving inhibition due to K+ and Na+ (i) by competing with K+ for the α-sites on the enzyme through which K+ decreases the apparent affinity for Mg·ATP and (ii) by competing with Na+ at low-affinity inhibitory sites, which may represent the external sites at which Na+ is discharged by the membrane NA+/K+ pump that this enzyme represents. Both these sites of action for Li+ would thus lie, in vivo, on the cell exterior.  相似文献   

17.
Showdomycin [2-(β-d-ribofuranosyl)maleimide] is a nucleoside antibiotic containing a maleimide ring and which is structurally related to uridine. Showdomycin inhibited rat brain (Na+ + K+)-ATPase irreversibly by an apparently bimolecular reaction with a rate constant of about 11.01·mol?1·min?1. Micromolar concentrations of ATP protected against this inhibition but uridine triphosphate or uridine were much less effective. In the presence of K+, 100 μM ATP was unable to protect against inhibition by showdomycin. These observations show that showdomycin inhibits (Na+ + K+)-ATPase by reacting with a specific chemical group or groups at the nucleotide-binding site on this enzyme. Inhibition by showdomycin appears to be more selective for this site than that due to tetrathionate or N-ethylmaleimide. Since tetrathionate is a specific reactant for sulfhydryl groups it appears likely that the reactive groups are sulfhydryl groups. The data thus show that showdomycin is a relatively selective nucleotide-site-directed inhibitor of (Na+ + K+)-ATPase and inhibition is likely due to the reaction of showdomycin with sulfhydryl group(s) at the nucleotide-binding site on this enzyme.  相似文献   

18.
The fluxes of 22Na+ and 86Rb+ in Arbacia sperm and oocytes were studied in order to determine how these cells carry out cation exchange with the sea environment. The uptake of these ions by serum followed a pattern of early rapid influx (initial 0.5 min) and subsequent efflux (1–3 min) followed by a gradual uptake (after 3 min). Neither the uptake nor the efflux of these cations by Arbacia sperm were affected by ouabain, suggesting that influx and efflux of 22Na+ and 86Rb+ in Arbacia sperm occur predominantly by passive transport. The 22Na+ uptake by Arbacia oocytes showed a steady increase after an initial rapid uptake. A slight but significant inhibition of 22Na+ uptake was observed with ouabain. However, 86Rb+ uptake by the oocytes reached an early equilibrium and was not affected by ouabain. The uptake of Rb+ by Arbacia oocyte is by passive transport while that of Na+ is both by passive and active transport.  相似文献   

19.
The presence of an Na+/Ca2+ exchange system in basolateral plasma membranes from rat small intestinal epithelium has been demonstrated by studying Na+ gradient-dependent Ca2+ uptake and the inhibition of ATP-dependent Ca2+ accumulation by Na+. The presence of 75 mM Na+ in the uptake solution reduces ATP-dependent Ca2+ transport by 45%, despite the fact that Na+ does not affect Ca2+-ATPase activity. Preincubation of the membrane vesicles with ouabain or monensin reduces the Na+ inhibition of ATP-dependent Ca2+ uptake to 20%, apparently by preventing accumulation of Na+ in the vesicles realized by the Na+-pump. It was concluded that high intravesicular Na+ competes with Ca2+ for intravesicular Ca2+ binding sites. In the presence of ouabain, the inhibition of ATP-dependent Ca2+ transport shows a sigmoidal dependence on the Na+ concentration, suggesting cooperative interaction between counter transport of at least two sodium ions for one calcium ion. The apparent affinity for Na+ is between 15 and 20 mM. Uptake of Ca2+ in the absence of ATP can be enhanced by an Na+ gradient (Na+ inside > Na+ outside). This Na+ gradient-dependent Ca2+ uptake is further stimulated by an inside positive membrane potential but abolished by monensin. The apparent affinity for Ca2+ of this system is below 1 μM. In contrast to the ATP-dependent Ca2+ transport, there is no significant difference in Na+ gradient-dependent Ca2+ uptake between basolateral vesicles from duodenum, midjejunum and terminal ileum. In duodenum the activity of ATP-driven Ca2+ uptake is 5-times greater than the Na+/Ca2+ exchange capacity but in the ileum both systems are of equal potency. Furthermore, the Na+/Ca2+ exchange mechanism is not subject to regulation by 1α,25-dihydroxy vitamin D-3, since repletion of vitamin D-deficient rats with this seco-steroid hormone does not influence the Na+/Ca2+ exchange system while it doubles the ATP-driven Ca2+ pump activity.  相似文献   

20.
The concentration dependence of both Rb+ uptake and Na+ uptake by yeast can be described by a quadratic rate equation. This equation is derived for translocation of cations via a two-site translocation system. In accordance with predictions made for such a two-site translocation system the shape of the uptake isotherm depends both upon the substrate cation species and upon the concentration of other added competing cations. On plotting the rate of Rb+ uptake against the quotient of that rate and the Rb+ concentration concave, convex and also linear curves are found depending upon the type and the concentration of added monovalent cations. The Na+ uptake isotherm plotted in a similar way shows a shift from a concave curve to a straight line on adding increasing amounts of Rb+ to the yeast suspension.Decreasing the pH of the medium leads to a more pronounced convex  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号