首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many colonial bird species there is considerable intraspecific variation in colony size and inter‐nest distance (colony density). Possible causes of this variation and its effects on hatching success (survival of eggs) and breeding success (probability of a pair raising chicks) were studied in 48 Avocet Recurvirostra avosetta colonies in Schleswig‐Holstein (Germany) between 1991 and 1996. Colony density was influenced by time of year and habitat (categories: island or mainland, close to or far from feeding grounds). Colonies on islands had the highest densities. When all available space at a colony site was used, colonies became very dense (mean nearest‐neighbour nest distance less than 1 m). Colony size (number of clutches) was influenced by time of year, but not by habitat. Hatching success was low in high density colonies and in very low density ‘colonies’ (single nests) and high over a broad range of intermediate nest densities. The low success rate of single nests was caused by a very high predation rate, whereas the low success rate in very dense colonies was caused by a high rate of nest abandonment. Nest abandonment in very dense colonies was associated with a high level of aggressiveness among Avocets during the egg‐laying period. Due to territorial behaviour, Avocets seemed to be expelled from the densest breeding sites. In very dense colonies, high frequencies of clutches of unusual size occurred due to conspecific nest parasitism. The number of Avocets taking part in attacks on potential egg predators was small and (in colonies of more than one clutch) depended neither on colony size nor on colony density. Despite a low hatching success in very dense colonies, individuals breeding in the densest colonies had significantly better chances of raising chicks than Avocets breeding in less dense colonies. Coloniality seemed to be obligatory for Avocets in order to ensure hatching success. The size and density of colonies seemed to be associated with the availability of suitable nesting habitats (islands).  相似文献   

2.
  1. Intraspecific variation plays important roles in ecology and evolution. Yet, information on how species and populations vary remains scarce, particularly for insects and regarding functional traits. This lack of knowledge can be problematic in trait‐based ecology because traditional approaches assume negligible intraspecific variation, even for analyses that assess highly variable taxa.
  2. We measured 291 Arctic fritillary butterflies (Boloria chariclea) to assess the intraspecific variation in one population of this species, evaluating (i) how wingspan of Arctic fritillaries varies in relation to the other species of its community, and (ii) how well wingspan, a measure of body size, predicts weight, a measure of body mass.
  3. Wingspan of Arctic fritillaries varied between 2.62 and 4.07 cm, with the 95% interval range, including ~33% (14/42) of the species in the community, and ~30% (84/279) of the butterflies of Canada. The relationship between wingspan and weight was significant (βwingspan = 0.002, SE = 0.0008, P < 0.001), but relatively weak (R2adj = 0.31, F2,288 = 67.82, P < 0.001).
  4. We discuss our findings in relation to the assumption of species homogeneity and the use of proxies in the analysis of species traits, complementing our case study with simulations to illustrate how intraspecific and interspecific variation interact in determining when traditional trait analyses are robust. We suggest entomologists interested in trait analyses should critically evaluate how intraspecific variation could affect their inference, especially when evaluating species that are highly sexually dimorphic, phenotypically plastic, and/or distributed across broad environmental and spatial clines.
  相似文献   

3.
In ants, individuals live in tightly integrated units (colonies) and work collectively for its success. In such groups, stable intraspecific variation in behaviour within or across contexts (personality) can occur at two levels: individuals and colonies. This paper examines how colony size and nestmate density influence the collective exploratory behaviour of Formica fusca (Hymenoptera: Formicidae), in the laboratory. The housing conditions of the colonies were manipulated to vary the size of colonies and their densities under a fully factorial design. The results demonstrate the presence of colony behavioural repeatability in this species, and contrary to our expectations, colonies were more explorative on average when they were kept at lower nestmate densities. We also found that experimental colonies created from larger source colonies were more explorative, which conveys that a thorough understanding of the contemporary behaviour of a colony may require knowing its social history and how it was formed. Our results also convey that the colony size and nestmate density can have significant effects on the exploratory behaviour of ant colonies.  相似文献   

4.
Deviations of the site frequency spectrum of mutations (SFS) from neutral expectations may be caused by natural selection or by demographic processes such as population subdivision or temporal changes in population size. As most widespread temperate and boreal tree species have expanded from glacial refugia in the past 13 000 years, colonization bottlenecks associated with this migration may have left variable demographic signatures among geographic populations corresponding to distance from the refugia. To determine whether the signature of postglacial re‐colonization has skewed the SFS in the widely distributed conifer Sitka spruce (Picea sitchensis (Bong.) Carr.), we re‐sequenced 153 nuclear genes in six populations from across the species range. We found that while the SFS for the pooled sample produced negative values for Tajima’s D and Fay and Wu’s H, these statistics exhibited strong clinal variation when populations were analysed separately (R2 = 0.84, P = 0.007 for Tajima’s D and R2 = 0.65, P = 0.033 for Fay and Wu’s H). When historical bottlenecks of varying age were simulated using approximate Bayesian computation, distance of populations from the southern range limit explained most of the variation in bottleneck timing among populations (R2 = 0.89, P = 0.003). These data suggest that sequential population bottlenecks during postglacial re‐colonization have resulted in diverse among‐population signatures within the contemporary SFS in Sitka spruce, with rare variants more common in the south, and medium‐frequency variants more common in the north. Our results also emphasize the need to consider sampling strategy and to explore population‐specific null demographic models in surveys of nucleotide variation in widely distributed species.  相似文献   

5.
Roger Jovani  Roddy Mavor  Daniel Oro 《Oikos》2008,117(12):1774-1781
Explaining the huge variability present in bird colony sizes within and between species is intimately related to the understanding of the proximate and ultimate reasons for bird coloniality. However, natural patterns of colony size frequency distributions (CSFDs) remain poorly known. It is widely believed that colonial birds have similar long‐tailed (highly right‐skewed) CSFDs and that species mainly differ in their maximum colony sizes (in the length of the ‘tail’ of their CSFDs). We used data from the Seabird 2000 project (20 species; 19 978 colonies; 3 779 919 nests), the largest and most detailed dataset currently available, to analyse the CSFDs of seabird breeding in Britain and Ireland. Log‐transformations of colony sizes revealed that the often reported long‐tailed CSFDs in common histograms were hiding contrasting patterns, mainly log‐normal but also power law CSFDs. The different statistical characteristics of CSFDs did not co‐occur at random within species and were in fact highly correlated (e.g. a large geometric mean correlated with a large coefficient of variation). A PCA with these characteristics revealed a smoothed transition between species’ CSFD. Therefore, (a) a logarithmic analysis will allow different aspects of what is currently only referred to as ‘colony size variation’ to be quantified; (b) we challenge the current idea that all species show similar long‐tailed CSFDs; (c) we offer a new (unified) view of colony size variation and discuss how these new patterns confirm, challenge and may advance theoretical and applied research into bird coloniality.  相似文献   

6.
Multivariate statistical tests are performed on three coral species to determine if a relationship exists between colony shape and corallite morphology. Hemispherical to branched colony shapes are emphasized. The material consists of specimens of Montastraea annularis and M. cavernosa from modern reef habitats in Jamaica. Colonies of the more branched M. limbata from the Neogene of the Dominican Republic are analyzed for comparison. The characters studied consist largely of linear measurements of colony dimensions and corallite structures in transverse thin-sections. The results show that different complexes of corallite characters vary within each species. With the possible exception of a complex describing theca thickness in M. annularis, none of these corallite complexes is related to variation in colony shape within species. Colony shape variation within species is related to upward colony growth rate. These results indicate that corallite morphology and colony shape can be represented by two different vectors of variation within species. Comparisons of intraspecific with interspecific patterns suggest that a strong genetic component explains colony shape variation in corals.  相似文献   

7.
Previous work on colonial hydroids in the genus Hydractinia has demonstrated that colony morphology is highly variable and determines intraspecific competitive ability. Competitive encounters are known to be common in nature, suggesting that intraspecific competition may be a major selective force acting on morphological variation. A replicated common garden experiment demonstrated a genetic basis to morphological variation and two data sets provided correlative support for the hypothesis of selection by intraspecific competition. First, morphologies inferior in competitive ability were less abundant in two adult, postcompetition, samples than in juvenile, precompetition, samples from the same populations. Second, among eight populations, the relative frequency of different morphologies was correlated with the frequency of intraspecific competition observed in each population. The direction of selection by competition on the morphological variation present in this species conflicts with recent predictions based on surveys across diverse taxa, suggesting limitations to the inference of competition as a past selective agent on the basis of present day correlations among species.  相似文献   

8.
Inter‐ and intraspecific variation in eggshell colouration has long fascinated evolutionary biologists. Among species, such variation may accomplish different functions, the most obvious of which is camouflage and background matching. Within species, it has been proposed that inter‐female variation in eggshell pigmentation patterns can reflect egg, maternal or paternal traits and hence may provide cues to conspecifics about egg, maternal or paternal phenotypic quality. However, the relationship between protoporphyrin‐based eggshell pigmentation and egg or maternal/paternal traits appears to be highly variable among species. We investigated patterns of intraspecific variation in Eurasian barn swallow Hirundo r. rustica protoporphyrin‐based eggshell pigmentation, and analysed its association with egg and clutch characteristics, maternal/paternal phenotypic traits and parental feeding effort. Eggshell pigmentation pattern significantly varied between breeding colonies, was significantly repeatable in first clutches laid by the same females in different years (intraclass correlation coefficient ranging between 0.56 and 0.63), but it was not significantly associated with egg traits, such as position in the laying sequence, egg mass, yolk testosterone concentration and antioxidant capacity. It was weakly or non‐significantly associated with female and male traits (sexual ornaments), but females laying darker (higher pigment intensity) first clutches had higher hatching success, suggesting that eggshell pigment intensity may predict fitness. Male nestling feeding effort was not predicted by eggshell pigmentation. In addition, females with darker breast plumage colouration (a melanin‐based trait related to fitness) laid highly protoporphyrin‐covered eggs, suggesting the presence of a previously unappreciated link between protoporphyrin biosynthesis and plumage melanisation. Moreover, the proportion of male offspring increased in clutches originating from highly protoporphyrin‐covered eggs, suggesting that parents could acquire visual cues about their future brood sex composition before egg hatching. Our results support the idea that intraspecific signalling via eggshell pigmentation is a species‐specific rather than a general feature of avian taxa.  相似文献   

9.
Density‐dependent competition for food resources influences both foraging ecology and reproduction in a variety of animals. The relationship between colony size, local prey depletion, and reproductive output in colonial central‐place foragers has been extensively studied in seabirds; however, most studies have focused on effects of intraspecific competition during the breeding season, while little is known about whether density‐dependent resource depletion influences individual migratory behavior outside the breeding season. Using breeding colony size as a surrogate for intraspecific resource competition, we tested for effects of colony size on breeding home range, nestling health, and migratory patterns of a nearshore colonial seabird, the brown pelican (Pelecanus occidentalis), originating from seven breeding colonies of varying sizes in the subtropical northern Gulf of Mexico. We found evidence for density‐dependent effects on foraging behavior during the breeding season, as individual foraging areas increased linearly with the number of breeding pairs per colony. Contrary to our predictions, however, nestlings from more numerous colonies with larger foraging ranges did not experience either decreased condition or increased stress. During nonbreeding, individuals from larger colonies were more likely to migrate, and traveled longer distances, than individuals from smaller colonies, indicating that the influence of density‐dependent effects on distribution persists into the nonbreeding period. We also found significant effects of individual physical condition, particularly body size, on migratory behavior, which in combination with colony size suggesting that dominant individuals remain closer to breeding sites during winter. We conclude that density‐dependent competition may be an important driver of both the extent of foraging ranges and the degree of migration exhibited by brown pelicans. However, the effects of density‐dependent competition on breeding success and population regulation remain uncertain in this system.  相似文献   

10.
Evolutionary origins of highly eusocial organization involving morphological castes have been very rare, yet these origins have often led to enormous diversification and ecological success. This suggests that once an apparently severe selective barrier to highly eusocial behaviour is overcome, major new adaptive landscapes open up. One would therefore expect a discontinuity in patterns of evolutionary change across this barrier. However, we do not know if highly eusocial organization has evolved incrementally from less complex societies, or if it has involved some kind of evolutionary leap. Our study examines this issue using colony size data from 33 allodapine bee species, with a crown age of ca. 47 Mya. Our species cover all major allodapine clades, and include Exoneurella tridentata, the only known allodapine with morphologically discrete castes. Phylogenetic analyses indicate a strong effect of phylogeny on the evolution of maximum brood size, but the effect of phylogeny on maximum colony size (number of adults) depends on whether E. tridentata is excluded or included in analyses. We found no evidence of punctuational change in maximum colony or brood sizes over the phylogeny as a whole, but colony and brood sizes in E. tridentata fall well beyond variation among the other allodapines. Colony size in E. tridentata therefore represents an evolutionary outcome that does not fit within the kinds of incremental changes found in other allodapines. We propose that E. tridentata indicates the crossing of an important threshold, and this has entailed some very unusual ecological circumstances.  相似文献   

11.
Both extinct and extant crocodilians have repeatedly diversified in skull shape along a continuum, from narrow‐snouted to broad‐snouted phenotypes. These patterns occur with striking regularity, although it is currently unknown whether these trends also apply to microevolutionary divergence during population differentiation or the early stages of speciation. Assessing patterns of intraspecific variation within a single taxon can potentially provide insight into the processes of macroevolutionary differentiation. For example, high levels of intraspecific variation along a narrow‐broad axis would be consistent with the view that cranial shapes can show predictable patterns of differentiation on relatively short timescales, and potentially scale up to explain broader macroevolutionary patterns. In the present study, we use geometric morphometric methods to characterize intraspecific cranial shape variation among groups within a single, widely distributed clade, Caiman crocodilus. We show that C. crocodilus skulls vary along a narrow/broad‐snouted continuum, with different subspecies strongly clustered at distinct ends of the continuum. We quantitatively compare these microevolutionary trends with patterns of diversity at macroevolutionary scales (among all extant crocodilians). We find that morphological differences among the subspecies of C. crocodilus parallel the patterns of morphological differentiation across extant crocodilians, with the primary axes of morphological diversity being highly correlated across the two scales. We find intraspecific cranial shape variation within C. crocodilus to span variation characterized by more than half of living species. We show the main axis of intraspecific phenotypic variation to align with the principal direction of macroevolutionary diversification in crocodilian cranial shape, suggesting that mechanisms of microevolutionary divergence within species may also explain broader patterns of diversification at higher taxonomic levels.  相似文献   

12.
Despite a great number of empirical studies, the mechanisms of population differentiation and the factors that influence this process, particularly in seabirds, remain insufficiently understood. Here we analyzed population structure in the whiskered auklet Aethia pygmaea, a previously poorly studied alcid species with unusual differentiation in colony attendance rhythms (i.e. diurnal in the Sea of Okhotsk vs nocturnal in the Bering Sea), and examined the influence of it on intraspecific differentiation. For this study, we analyzed morphometric measurements, acoustic variables, mitochondrial control region fragment and five microsatellite loci from nine whiskered auklet colonies spanning the breeding range. Previous research has shown a clinal morphometric variation in this species. We build on this analysis by adding auklets from more colonies, for the first time analyzing vocalizations from different colonies and genetic structure of this species. Our data supports a clinal variation in morphometric and acoustic characters with the largest size and the lowest call frequency in western birds, and the smallest size and highest call frequency in the east. We also found two mitochondrial lineages – whiskered auklets from colonies in the Sea of Okhotsk and the Commander Is. (Bering Sea) and from the Aleutian Is. (Bering Sea), that were presumably formed during Sangamonian interglacial period (115 000–130 000 years ago). Genetic clusters found did not reflect differences in colony attendance rhythms, suggesting that they were shaped by other factors (e.g. differences in predator pressure) and are unlikely to have participated in the formation of population structure. Colony fidelity, mobility of birds, proximity of foraging grounds and location of colonies in relation to seasonal ice pack, seem to be more likely determinants of population differentiation.  相似文献   

13.
Studies of migration have revealed multiple trade‐offs with other life‐history traits that may underlie observed variation in migratory properties among ages and sexes. To assess whether, and to what extent, body size and/or sex‐specific differences in competition for resources (e.g. breeding territories or winter food) may shape variation in migration distance and timing of arrival in ecologically and phylogenetically related species, we combined over 30 000 sightings of individually marked, sexually mature males and females of Herring Gulls Larus argentatus and Lesser Black‐Backed Gulls Larus fuscus with biometric measurements and phenological observations at a mixed breeding colony. In L. argentatus, larger males migrated further from the breeding colony, whereas migration distance was independent of body size in adult females. In L. fuscus, no relationship between body size and migration distance was apparent in either sex. Mean arrival dates at the breeding colony did not vary with migration distances but differed between males and females of L. argentatus (but not L. fuscus). As allometry at least partly explains sexual segregation in migration behaviour in L. argentatus, but not in L. fuscus, we conclude that the effect of body size on sex‐related migratory strategies may vary between closely related, sympatric species despite similar size dimorphism.  相似文献   

14.
Individual foraging site fidelity, whereby individuals repeatedly visit the same foraging areas, is widespread in nature, and likely benefits individuals through higher foraging efficiency and potentially, higher breeding success. It may arise as a consequence of habitat or resource specialisation, or alternatively, where resources are abundant or predictable, the partitioning of space might guarantee individuals exclusive foraging opportunities. We tracked seven adult great black‐backed gulls Larus marinus at a North Sea colony from early incubation to the end of the breeding season in 2016, providing a total of 1170 foraging trips over a mean ± SD tracking period of 67 ± 16 days. There was clear spatial segregation between individuals, with almost no overlap of their core areas (50% utilisation distribution) during incubation and chick‐rearing. Core areas were relatively small and there was high repeatability (R ± SE) in foraging parameters, including initial departure direction (0.73 ± 0.11), foraging range (0.41 ± 0.14) and cumulative distance travelled (0.19 ± 0.1) throughout the breeding season. Despite the low spatial overlap, there was little evidence of differential habitat use by individuals. The near‐exclusive individual foraging areas of this species, usually considered to be a generalist, indicate that where there is high resource availability throughout the breeding season and a small local population, individuals appear to adopt a territorial strategy which likely reduces intraspecific competition.  相似文献   

15.
Body size is an integral functional trait that underlies pollination‐related ecological processes, yet it is often impractical to measure directly. Allometric scaling laws have been used to overcome this problem. However, most existing models rely upon small sample sizes, geographically restricted sampling and have limited applicability for non‐bee taxa. Allometric models that consider biogeography, phylogenetic relatedness, and intraspecific variation are urgently required to ensure greater accuracy. We measured body size as dry weight and intertegular distance (ITD) of 391 bee species (4,035 specimens) and 103 hoverfly species (399 specimens) across four biogeographic regions: Australia, Europe, North America, and South America. We updated existing models within a Bayesian mixed‐model framework to test the power of ITD to predict interspecific variation in pollinator dry weight in interaction with different co‐variates: phylogeny or taxonomy, sexual dimorphism, and biogeographic region. In addition, we used ordinary least squares regression to assess intraspecific dry weight ~ ITD relationships for ten bees and five hoverfly species. Including co‐variates led to more robust interspecific body size predictions for both bees and hoverflies relative to models with the ITD alone. In contrast, at the intraspecific level, our results demonstrate that the ITD is an inconsistent predictor of body size for bees and hoverflies. The use of allometric scaling laws to estimate body size is more suitable for interspecific comparative analyses than assessing intraspecific variation. Collectively, these models form the basis of the dynamic R package, “pollimetry,” which provides a comprehensive resource for allometric pollination research worldwide.  相似文献   

16.
Aim The patterns and causes of ecogeographical body size variation in ectotherms remain controversial. In amphibians, recent genetic studies are leading to the discovery of many cryptic species. We analysed the relationships between body size and climate for a salamander (Salamandrina) that was recently separated into two sibling species, to evaluate how ignoring interspecific and intraspecific genetic structure may affect the conclusions of ecogeographical studies. We also considered the potential effects of factors acting at a local scale. Location Thirty‐four populations covering the whole range of Salamandrina, which is endemic to peninsular Italy. Methods We pooled original data and data from the literature to obtain information on the snout–vent length (SVL) of 3850 Salamandrina females; we obtained high‐resolution climatic data from the sampled localities. We used an information‐theoretic approach to evaluate the roles of climate, genetic features (mitochondrial haplogroup identity) and characteristics of aquatic oviposition sites. We repeated our analyses three times: in the first analysis we ignored genetic data on intraspecific and interspecific variation; in the second one we considered the recently discovered differences between the two sibling species; in the third one we included information on intraspecific genetic structure within Salamandrina perspicillata (for Salamandrina terdigitata the sample size was too small to perform intraspecific analyses). Results If genetic information was ignored, our analysis suggested the existence of a relationship between SVL and climatic variables, with populations of large body size in areas with high precipitation and high thermal range. If species identity was included in the analysis, the role of climatic features was much weaker. When intraspecific genetic differences were also considered, no climatic feature had an effect. In all analyses, local factors were important and explained a large proportion of the variation; populations spawning in still water had a larger body size. Main conclusions An imperfect knowledge of species boundaries, or overlooking the intraspecific genetic variation can strongly affect the results of analyses of body size variation. Furthermore, local factors can be more important than the large‐scale parameters traditionally considered, particularly in species with a small range.  相似文献   

17.
1 High intraspecific competition is known to occur during Ips typographus outbreaks, and is thought to be the main factor regulating epidemic populations by affecting beetle population productivity. However, little is known about the consequences of intraspecific competition on population quality during outbreaks, although it could have consequences on beetle population dynamics. 2 Ips typographus morphological variations among localities, years and beetle population levels were investigated in 10 Norway spruce (Picea abies) stands having various beetle damage intensities. Beetle size and shape estimators based on wing length, and using isometric size and log‐shape ratios, were employed. Field‐caught beetles were compared with beetles emerging from controlled breeding at different densities, performed in the laboratory. Beetles from this colony were also used to check the influence of breeding densities on the size estimator. 3 Size variations occurred among localities and years and were consistent with the epidemic or latent status of the beetle populations. Controlled breeding confirmed the negative effect of beetle densities encountered in the field on offspring size. Two hypotheses are formulated to explain this increase of intraspecific competition during an outbreak, but our data support the effect of host quality change between latent and epidemic populations. 4 Shape variations also occurred among localities but were unrelated to beetle population levels. No groups consistent with a geographical structure were found, suggesting low genetic variation for I. typographus populations in France.  相似文献   

18.
Bell miners (Manorina melanophrys; Meliphagidae) are a highly social and very aggressive honeyeater. They are despotic and cooperate in the defence of their territories against other bird species, leading to the almost complete exclusion of other avifauna from miner‐occupied regions. This study aimed to resolve some of the fine‐scale effects of bell miner aggression on avian diversity both within and adjacent to colonies to determine the true impact of a colony on local avifaunal abundance. Three areas, distributed throughout the range of the bell miner, were surveyed across both non‐breeding and breeding seasons to assess the temporal and spatial impacts of bell miner aggression on other bird species. Bell miner colonies were found to occupy very clearly defined areas and had the expected negative impact on avian diversity within their colony. The effects of bell miner colony presence on abundance and richness of avian species were found to cease at the colony boundary, with both recovering to normal levels immediately outside the bell miner colony. Whether bell miners were breeding or not, and irrespective of the amount of vegetation coverage, bell miner colonies were found to have relatively marginal impacts on avian richness and abundance. No impact of colony presence/absence was found on the richness or abundance of the avian species that dwell in the undergrowth, with some evidence that these species were actually more common at the colony edge. Our results demonstrate that the influence of bell miner colony presence upon avian biodiversity is restricted to the confines of the colony and does not radiate outwards into the surrounding habitat. Colony presence influences, therefore, have implications when considering the impact of bell miner behaviour on the diversity of insectivorous birds and processes, most notably the propagation of Bell Miner Associated Dieback.  相似文献   

19.
We examined proximate determination of sexually selected forehead patch size in a Central‐European population of Ficedula albicollis, the collared flycatcher, using a 9‐year database, and compared our results with those obtained in other populations of the same and the sister species. Between‐individual variation of forehead patch size was large, its repeatability larger than, and heritability similar to the Swedish population. Unlike in the other populations, the trait proved unaffected by body condition, and only very slightly influenced by age. There was no relationship between forehead patch size and breeding lifespan, and a marginal negative association with survivorship in adult males. Our results suggest that additive genetic variance of the trait in this population is large, but genes act independently of body condition, and there is no viability indicator value of the trait. This is the first report of a qualitative intraspecific difference in proximate determination of a sexually selected trait.  相似文献   

20.
Two major intraspecific patterns of adult size variation are plastic temperature‐size (T‐S) responses and latitude‐size (L‐S) clines. Yet, the degree to which these co‐vary and share explanatory mechanisms has not been systematically evaluated. We present the largest quantitative comparison of these gradients to date, and find that their direction and magnitude co‐vary among 12 arthropod orders (r2 = 0.72). Body size in aquatic species generally reduces with both warming and decreasing latitude, whereas terrestrial species have much reduced and even opposite gradients. These patterns support the prediction that oxygen limitation is a major controlling factor in water, but not in air. Furthermore, voltinism explains much of the variation in T‐S and L‐S patterns in terrestrial but not aquatic species. While body size decreases with warming and with decreasing latitude in multivoltine terrestrial arthropods, size increases on average in univoltine species, consistent with predictions from size vs. season‐length trade‐offs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号