首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In species‐rich ecosystems, such as subtropical and tropical forests, higher trophic level interactions are key mediators of ecosystem functioning. Plant species loss may alter these interactions, but the effects of plant diversity might be modified by intraguild interactions, particularly among predators. We analyzed the relationships between spiders and ants, two dominant predatory arthropod taxa, on tree saplings across a gradient from medium to high woody plant species richness in a subtropical forest in Southeast China. Neither ant nor spider total biomass was significantly related to plant species richness. By contrast, the biomass distribution of web‐building and hunting spiders changed and spider family richness increased in the presence of ants, resulting in more web builder‐dominated assemblages. However, these relationships depended on the plant communities, and were stronger in plots with higher plant species richness. Our results indicate that in addition to potential effects of ants on hunting spiders in particular, ants could indirectly influence intraguild interactions within spider assemblages. The observed shifts in the spider assemblages with increasing ant presence and plant species richness may have functional consequences, as web‐building and hunting spiders have distinct prey spectra. The relationships among ants, spiders, and plant species richness might contribute to explaining the non‐significant relationship between the overall effects of predators and plant diversity previously observed in the same forest plots. Our findings thus give insight into the complexity of biotic interactions in such species‐rich ecosystems.  相似文献   

2.
The effects of species loss on ecosystems depend on the community’s functional diversity (FD). However, how FD responds to environmental changes is poorly understood. This applies particularly to higher trophic levels, which regulate many ecosystem processes and are strongly affected by human-induced environmental changes. We analyzed how functional richness (FRic), evenness (FEve), and divergence (FDiv) of important generalist predators—epigeic spiders—are affected by changes in woody plant species richness, plant phylogenetic diversity, and stand age in highly diverse subtropical forests in China. FEve and FDiv of spiders increased with plant richness and stand age. FRic remained on a constant level despite decreasing spider species richness with increasing plant species richness. Plant phylogenetic diversity had no consistent effect on spider FD. The results contrast with the negative effect of diversity on spider species richness and suggest that functional redundancy among spiders decreased with increasing plant richness through non-random species loss. Moreover, increasing functional dissimilarity within spider assemblages with increasing plant richness indicates that the abundance distribution of predators in functional trait space affects ecological functions independent of predator species richness or the available trait space. While plant diversity is generally hypothesized to positively affect predators, our results only support this hypothesis for FD—and here particularly for trait distributions within the overall functional trait space—and not for patterns in species richness. Understanding the way predator assemblages affect ecosystem functions in such highly diverse, natural ecosystems thus requires explicit consideration of FD and its relationship with species richness.  相似文献   

3.
Global change is predicted to cause non-random species loss in plant communities, with consequences for ecosystem functioning. However, beyond the simple effects of plant species richness, little is known about how plant diversity and its loss influence higher trophic levels, which are crucial to the functioning of many species-rich ecosystems. We analyzed to what extent woody plant phylogenetic diversity and species richness contribute to explaining the biomass and abundance of herbivorous and predatory arthropods in a species-rich forest in subtropical China. The biomass and abundance of leaf-chewing herbivores, and the biomass dispersion of herbivores within plots, increased with woody plant phylogenetic diversity. Woody plant species richness had much weaker effects on arthropods, but interacted with plant phylogenetic diversity to negatively affect the ratio of predator to herbivore biomass. Overall, our results point to a strong bottom–up control of functionally important herbivores mediated particularly by plant phylogenetic diversity, but do not support the general expectation that top–down predator effects increase with plant diversity. The observed effects appear to be driven primarily by increasing resource diversity rather than diversity-dependent primary productivity, as the latter did not affect arthropods. The strong effects of plant phylogenetic diversity and the overall weaker effects of plant species richness show that the diversity-dependence of ecosystem processes and interactions across trophic levels can depend fundamentally on non-random species associations. This has important implications for the regulation of ecosystem functions via trophic interaction pathways and for the way species loss may impact these pathways in species-rich forests.  相似文献   

4.
Jeff Scott Wesner 《Oikos》2012,121(1):53-60
Food webs in different ecosystems are often connected through spatial resource subsidies. As a result, biodiversity effects in one ecosystem may cascade to adjacent ecosystems. I tested the hypothesis that aquatic predator diversity effects cascade to terrestrial food webs by altering a prey subsidy (biomass and trophic structure of emerging aquatic insects) entering terrestrial food webs, in turn altering the distribution of a terrestrial consumer (spider) that feeds on emerging aquatic insects. Fish presence, but not diversity, altered the trophic structure of emerging aquatic insects by strongly reducing the biomass of emerging predators (dragonflies) relative to non‐feeding taxa (chironomid midges). Fish diversity reduced emerging insect biomass through enhanced effects on the most common prey taxa: predatory dragonflies Pantala flavescens and non‐feeding chironomids. Terrestrial spiders (Tetragnathidae) primarily captured emerging chironomids, which were reduced in the high richness (3 spp.) treatment relative to the 1 and 2 species treatments. As a result, terrestrial spider abundance was lower above pools with high fish richness (3 species) than pools with 1 and 2 species. Synergistic predation effects were mostly limited to the high richness treatment, in which fish occupied each level of vertical microhabitat in the water‐column (benthic, middle, surface). This study demonstrates that predator diversity effects are not limited to the habitat of the predator, but can propagate to adjacent ecosystems, and demonstrates the utility of using simple predator functional traits (foraging domain) to more accurately predict the direction of predator diversity effects.  相似文献   

5.
Biodiversity Promotes Tree Growth during Succession in Subtropical Forest   总被引:1,自引:0,他引:1  
Losses of plant species diversity can affect ecosystem functioning, with decreased primary productivity being the most frequently reported effect in experimental plant assemblages, including tree plantations. Less is known about the role of biodiversity in natural ecosystems, including forests, despite their importance for global biogeochemical cycling and climate. In general, experimental manipulations of tree diversity will take decades to yield final results. To date, biodiversity effects in natural forests therefore have only been reported from sample surveys or meta-analyses with plots not initially selected for diversity. We studied biomass and growth of subtropical forests stands in southeastern China. Taking advantage of variation in species recruitment during secondary succession, we adopted a comparative study design selecting forest plots to span a gradient in species richness. We repeatedly censored the stem diameter of two tree size cohorts, comprising 93 species belonging to 57 genera and 33 families. Tree size and growth were analyzed in dependence of species richness, the functional diversity of growth-related traits, and phylogenetic diversity, using both general linear and structural equation modeling. Successional age covaried with diversity, but differently so in the two size cohorts. Plot-level stem basal area and growth were positively related with species richness, while growth was negatively related to successional age. The productivity increase in species-rich, functionally and phylogenetically diverse plots was driven by both larger mean sizes and larger numbers of trees. The biodiversity effects we report exceed those from experimental studies, sample surveys and meta-analyses, suggesting that subtropical tree diversity is an important driver of forest productivity and re-growth after disturbance that supports the provision of ecological services by these ecosystems.  相似文献   

6.
Spiders are a megadiverse group that can be useful indicators of the overall species richness and health of biotic communities. The spider diversity in subtropical forests of the Neotropical region are not yet well known, especially in Argentinean subtropical forests where systematic fieldwork has not been done until recently. The Great Chaco is very important as the unique dry subtropical forest of the earth, but it is suffering increasing degradation by the advance of agriculture. Spider communities have been shown to be more directly influenced by vegetation architecture than vegetation species composition. In this study, we aim to assess whether spider diversity and assemblages change in adjacent habitats with different types of vegetation. We compare the diversity and spider assemblages in two different contiguous protected habitats (hygrophilous woodland and savannah parkland) of the Mburucuyá National Park, (Humid Chaco ecoregion). Seasonal samples were obtained using three types of sampling methods: pitfall trapping, beating, and manual litter extraction. The spider assemblages were different in the studied areas, and the abundance, diversity, evenness, and species richness were higher in the hygrophilous woodland than the savannah parkland. These differences in spider diversity and assemblages indicate that both types of habitats are important if the biodiversity is to be conserved in the Chaco ecoregion, where different types of habitat are shown as a patchy distribution.  相似文献   

7.
Predatory arthropods can exert strong top-down control on ecosystem functions. However, despite extensive theory and experimental manipulations of predator diversity, our knowledge about relationships between plant and predator diversity--and thus information on the relevance of experimental findings--for species-rich, natural ecosystems is limited. We studied activity abundance and species richness of epigeic spiders in a highly diverse forest ecosystem in subtropical China across 27 forest stands which formed a gradient in tree diversity of 25-69 species per plot. The enemies hypothesis predicts higher predator abundance and diversity, and concomitantly more effective top-down control of food webs, with increasing plant diversity. However, in our study, activity abundance and observed species richness of spiders decreased with increasing tree species richness. There was only a weak, non-significant relationship with tree richness when spider richness was rarefied, i.e. corrected for different total abundances of spiders. Only foraging guild richness (i.e. the diversity of hunting modes) of spiders was positively related to tree species richness. Plant species richness in the herb layer had no significant effects on spiders. Our results thus provide little support for the enemies hypothesis--derived from studies in less diverse ecosystems--of a positive relationship between predator and plant diversity. Our findings for an important group of generalist predators question whether stronger top-down control of food webs can be expected in the more plant diverse stands of our forest ecosystem. Biotic interactions could play important roles in mediating the observed relationships between spider and plant diversity, but further testing is required for a more detailed mechanistic understanding. Our findings have implications for evaluating the way in which theoretical predictions and experimental findings of functional predator effects apply to species-rich forest ecosystems, in which trophic interactions are often considered to be of crucial importance for the maintenance of high plant diversity.  相似文献   

8.
Predator diversity and abundance are under strong human pressure in all types of ecosystems. Whereas predator potentially control standing biomass and species interactions in food webs, their effects on prey biomass and especially prey biodiversity have not yet been systematically quantified. Here, we test the effects of predation in a cross‐system meta‐analysis of prey diversity and biomass responses to local manipulation of predator presence. We found 291 predator removal experiments from 87 studies assessing both diversity and biomass responses. Across ecosystem types, predator presence significantly decreased both biomass and diversity of prey across ecosystems. Predation effects were highly similar between ecosystem types, whereas previous studies had shown that herbivory or decomposition effects differed fundamentally between terrestrial and aquatic systems based on different stoichiometry of plant material. Such stoichiometric differences between systems are unlikely for carnivorous predators, where effect sizes on species richness strongly correlated to effect sizes on biomass. However, the negative predation effect on prey biomass was ameliorated significantly with increasing prey richness and increasing species richness of the manipulated predator assemblage. Moreover, with increasing richness of the predator assemblage present, the overall negative effects of predation on prey richness switched to positive effects. Our meta‐analysis revealed strong general relationships between predator diversity, prey diversity and the interaction strength between trophic levels in terms of biomass. This study indicates that anthropogenic changes in predator abundance and diversity will potentially have strong effects on trophic interactions across ecosystems. Synthesis The past centuries we have experienced a dramatic loss of top–predator abundance and diversity in most types of ecosystems. To understand the direct consequences of predator loss on a global scale, we quantitatively summarized experiments testing predation effects on prey communities in a cross‐system meta‐analysis. Across ecosystem types, predator presence significantly decreased both biomass and diversity of prey, and predation effects were highly similar. However, with increasing predator richness, the overall negative effects of predation on prey richness switched to positive ones. Anthropogenic changes in predator communities will potentially have strong effects on prey diversity, biomass, and trophic interactions across ecosystems.  相似文献   

9.
1. Using a palaeolimnological approach in shallow lakes, we quantified the species richness responses of diatoms and Cladocera to phosphorus enrichment. We also examined differences in species richness responses between littoral and pelagic assemblages of our focal communities. To address both spatial and temporal relationships, our study includes an analysis of both surface sediments from 40 lakes and of a lake sediment record spanning c. 120 years. The objective of our study was to determine whether similar species richness patterns occurred across trophic levels, as well as along spatial and temporal gradients. 2. We found that both diatom and Cladocera species richness estimates significantly declined with increasing phosphorus across space and through time. When the assemblages were subdivided according to known habitat preferences, littoral biodiversity maintained a negative trend, whereas pelagic species richness tended to show no relationship with phosphorus. 3. Negative productivity–diversity patterns have been observed across almost all palaeolimnological studies that span large productivity gradients. This congruence in patterns is most likely due to the similarity in data collection methods and in focal communities studied. The contrasting responses between littoral and pelagic assemblages may be explained by the differences in physical habitat and the pool of taxa in each of these environments. Consistent with the literature, we found statistical support for the idea that littoral diversity declines could be explained by an interaction between macrophytes and nutrients along strong trophic gradients. The general lack of a diversity response in our pelagic assemblages could be attributable to the limited pool of subfossil taxa. The response of the pelagic diatom could also be related to their broad range of nutrient tolerances. 4. The observed negative response of species richness to phosphorus enrichment, particularly in the littoral assemblages, has implications for ecosystems functioning because communities with reduced biodiversity often are less resilient to anthropogenic change.  相似文献   

10.
Aim Despite the increasing pace of urbanization, little is known about how this process affects biodiversity globally. We investigate macroecological patterns of bird assemblages in urbanized areas relative to semi‐natural ecosystems. Location World‐wide. Methods We use a database of quantitative bird surveys to compare key assemblage structure parameters for plots in urbanized and semi‐natural ecosystems controlling for spatial autocorrelation and survey methodology. We use the term ‘urbanized’ instead of ‘urban’ ecosystems as many of the plots were not located in the centre of towns but in remnant habitat patches within conurbations. Results Some macroecological relationships were conserved in urbanized landscapes. Species–area, species–abundance and species–biomass relationships did not differ significantly between urbanized and non‐urbanized environments. However, there were differences in the relationships between productivity and assemblage structure. In forests, species richness increased with productivity; in both forests and open habitats, the evenness of species abundances declined as productivity increased. Among urbanized plots, instead, both species richness and the evenness of species abundances were independent of variation in productivity. Main conclusions Remnant habitats within urbanized areas are subject to many ecological alterations, yet key macroecological patterns differ remarkably little in urbanized versus non‐urbanized plots. Our results support the need for increased conservation activities in urbanized landscapes, particularly given the additional benefits of local experiences of biodiversity for the human population. With increasing urbanization world‐wide, broad‐scale efforts are needed to understand and manage the effects of this driver of change on biodiversity.  相似文献   

11.
The effects of producer diversity on predators have received little attention in arboreal plant communities, particularly in the tropics. This is particularly true in the case of tree diversity effects on web‐building spiders, one of the most important groups of invertebrate predators in terrestrial plant communities. We evaluated the effects of tree species diversity on the community of weaver spiders associated with big‐leaf mahogany (Swietenia macrophylla) in 19, 21 × 21‐m plots (64 plants/plot) of a tropical forest plantation which were either mahogany monocultures (12 plots) or polycultures (seven plots) that included mahogany and three other tree species. We conducted two surveys of weaver spiders on mahogany trees to evaluate the effects of tree diversity on spider abundance, species richness, diversity, and species composition associated with mahogany. Our results indicated that tree species mixtures exhibited significantly greater spider abundance, species richness, and diversity, as well as differences in spider species composition relative to monocultures. These results could be due to species polycultures providing a broader range of microhabitat conditions favoring spider species with different habitat requirements, a greater availability of web‐building sites, or due to increased diversity or abundance of prey. Accordingly, these results emphasize the importance of mixed forest plantations for boosting predator abundance and diversity and potentially enhancing herbivore pest suppression. Future work is necessary to determine the specific mechanisms underlying these patterns as well as the top‐down effects of increased spider abundance and species richness on herbivore abundance and damage.  相似文献   

12.
Declining plant diversity alters ecological networks, such as plant–herbivore interactions. However, our knowledge of the potential mechanisms underlying effects of plant species loss on plant–herbivore network structure is still limited. We used DNA barcoding to identify herbivore–host plant associations along declining levels of tree diversity in a large‐scale, subtropical biodiversity experiment. We tested for effects of tree species richness, host functional and phylogenetic diversity, and host functional (leaf trait) and phylogenetic composition on species, phylogenetic and network composition of herbivore communities. We found that phylogenetic host composition and related palatability/defence traits but not tree species richness significantly affected herbivore communities and interaction network complexity at both the species and community levels. Our study indicates that evolutionary dependencies and functional traits of host plants determine the composition of higher trophic levels and corresponding interaction networks in species‐rich ecosystems. Our findings highlight that characteristics of the species lost have effects on ecosystem structure and functioning across trophic levels that cannot be predicted from mere reductions in species richness.  相似文献   

13.
Abstract

The fundamental ecological significance of deadwood decomposition in forests has been highlighted in several reviews, some conclusions regarding silviculture being drawn. Old‐growth forests are natural centres of biodiversity. Saproxylic fungi and beetles, which are vital components of these ecosystems, occupy a variety of spatial and trophic niches. Fungal and beetle diversity on coarse woody debris (CWD) was analysed in 36 forest sites in the Cilento and Vallo di Diano National Park, Italy. The data were analysed by DCA and Spearman’s rank correlation. The results provide empirical evidence of the existence of a pattern of joint colonization of the woody substrate by fungi and beetles, which includes an assemblage of reciprocal trophic roles within fungal/beetle communities. These organisms act together to form a dynamic taxonomical and functional ecosystem component within the complex set of processes involved in wood decay. The variables most predictive of correlations between management‐related structural attributes and fungal/beetle species richness and their trophic roles for old‐growth forest are: number of logs, number of decay classes and CWD total volume. Deadwood spatio‐temporal continuity should be the main objective of forest planning to stop the loss of saproxylic fungal and insect biodiversity.  相似文献   

14.
Incentivizing carbon storage can be a win‐win pathway to conserving biodiversity and mitigating climate change. In savannas, however, the situation is more complex. Promoting carbon storage through woody encroachment may reduce plant diversity of savanna endemics, even as the diversity of encroaching forest species increases. This trade‐off has important implications for the management of biodiversity and carbon in savanna habitats, but has rarely been evaluated empirically. We quantified the nature of carbon‐diversity relationships in the Brazilian Cerrado by analyzing how woody plant species richness changed with carbon storage in 206 sites across the 2.2 million km2 region at two spatial scales. We show that total woody plant species diversity increases with carbon storage, as expected, but that the richness of endemic savanna woody plant species declines with carbon storage both at the local scale, as woody biomass accumulates within plots, and at the landscape scale, as forest replaces savanna. The sharpest trade‐offs between carbon storage and savanna diversity occurred at the early stages of carbon accumulation at the local scale but the final stages of forest encroachment at the landscape scale. Furthermore, the loss of savanna species quickens in the final stages of forest encroachment, and beyond a point, savanna species losses outpace forest species gains with increasing carbon accumulation. Our results suggest that although woody encroachment in savanna ecosystems may provide substantial carbon benefits, it comes at the rapidly accruing cost of woody plant species adapted to the open savanna environment. Moreover, the dependence of carbon‐diversity trade‐offs on the amount of savanna area remaining requires land managers to carefully consider local conditions. Widespread woody encroachment in both Australian and African savannas and grasslands may present similar threats to biodiversity.  相似文献   

15.
Aim To understand cross‐taxon spatial congruence patterns of bird and woody plant species richness. In particular, to test the relative roles of functional relationships between birds and woody plants, and the direct and indirect environmental effects on broad‐scale species richness of both groups. Location Kenya. Methods Based on comprehensive range maps of all birds and woody plants (native species > 2.5 m in height) in Kenya, we mapped species richness of both groups. We distinguished species richness of four different avian frugivore guilds (obligate, partial, opportunistic and non‐frugivores) and fleshy‐fruited and non‐fleshy‐fruited woody plants. We used structural equation modelling and spatial regressions to test for effects of functional relationships (resource–consumer interactions and vegetation structural complexity) and environment (climate and habitat heterogeneity) on the richness patterns. Results Path analyses suggested that bird and woody plant species richness are linked via functional relationships, probably driven by vegetation structural complexity rather than trophic interactions. Bird species richness was determined in our models by both environmental variables and the functional relationships with woody plants. Direct environmental effects on woody plant richness differed from those on bird richness, and different avian consumer guilds showed distinct responses to climatic factors when woody plant species richness was included in path models. Main conclusions Our results imply that bird and woody plant diversity are linked at this scale via vegetation structural complexity, and that environmental factors differ in their direct effects on plants and avian trophic guilds. We conclude that climatic factors influence broad‐scale tropical bird species richness in large part indirectly, via effects on plants, rather than only directly as often assumed. This could have important implications for future predictions of animal species richness in response to climate change.  相似文献   

16.
The factors responsible for maintaining diverse groundcover plant communities of high conservation value in frequently burned wet pine savannas are poorly understood. While most management involves manipulating extrinsic factors important in maintaining species diversity (e.g., fire regimes), most ecological theory (e.g., niche theory and neutral theory) examines how traits exhibited by the species promote species coexistence. Furthermore, although many ecologists focus on processes that maintain local species diversity, conservation biologists have argued that other indices (e.g., phylogenetic diversity) are better for evaluating assemblages in terms of their conservation value. I used a null model that employed beta‐diversity calculations based on Raup–Crick distances to test for deterministic herbaceous species losses associated with a 65‐year chronosequence of woody species encroachment within each of three localities. I quantified conservation value of assemblages by measuring taxonomic distinctness, endemism, and floristic quality of plots with and without woody encroachment. Reductions in herb species richness per plot attributable to woody encroachment were largely stochastic, as indicated by a lack of change in the mean or variance in beta‐diversity caused by woody encroachment in the savannas studied here. Taxonomic distinctness, endemism, and floristic quality (when summed across all species) were all greater in areas that had not experienced woody encroachment. However, when corrected for local species richness, only average endemism and floristic quality of assemblages inclusive of herbs and woody plants were greater in areas that had not experienced woody encroachment, due to the more restricted ranges and habitat requirements of herbs. Results suggest that frequent fires maintain diverse assemblages of fire‐dependent herb species endemic to the region. The stochastic loss of plant species, irrespective of their taxonomic distinctness, to woody encroachment suggests that the relevance of niche partitioning or phylogenetic diversity to the management of biodiversity in wet pine savannas is minimal.  相似文献   

17.
Beta多样性度量不同时空尺度物种组成的变化,是生物多样性的重要组成部分;理解其地理格局和形成机制已成为当前生物多样性研究的热点问题。基于Alwyn H. Gentry在美洲收集的131个森林样方数据,采用倍性和加性分配方法度量群落beta多样性,检验beta多样性随纬度的变化趋势,并分析其形成机制。研究表明:(1) 美洲森林群落beta多样性随纬度增加显著下降,热带和亚热带地区beta多样性高于温带地区;此格局可由物种分布范围的纬度梯度性和不同粒度(grain)下物种丰富度与纬度回归斜率的差异推论得出;(2) 加性分配方法表明beta多样性对各个温度带森林群落gamma多样性的相对贡献率平均为78.2%,并且随纬度升高而降低;(3) 美洲南半球森林群落beta多样性高于其北半球,这可能反映了区域间物种进化和环境变迁历史的差异。此外,还探讨了不同beta多样性计算方法的适用情景,首次证实了森林生态系统群落水平beta多样性的纬度梯度性,这对研究生物多样性的形成机制和生物多样性保护都具有重要的意义。  相似文献   

18.
Determining the importance of physical and biological drivers in shaping biodiversity in diverse ecosystems remains a global challenge. Advancements have been made towards this end in large marine ecosystems with several studies suggesting environmental forcing as the primary driver. However, both empirical and theoretical studies point to additional drivers of changes in diversity involving trophic interactions and, in particular, predation. Moreover, a more integrated but less common approach to the assessment of biodiversity changes involves analyses of spatial β diversity, whereas most studies to date assess only changes in species richness (α diversity). Recent research has established that when cod, a dominant generalist predator, was overfished and collapsed in a northwest Atlantic food web, spatial β diversity increased; that is, the spatial structure of the fish assemblage became increasingly heterogeneous. If cod were to recover, would this situation be reversible, given the inherent complexity and non‐linear dynamics that typify such systems? A dramatic increase of cod in an ecologically similar large marine ecosystem may provide an answer. Here we show that spatial β diversity of fish assemblages in the Barents Sea decreased with increasing cod abundance, while decadal scale changes in temperature did not play a significant role. These findings indicate a reversibility of the fish assemblage structure in response to changing levels of an apex predator and highlight the frequently overlooked importance of trophic interactions in determining large‐scale biodiversity patterns. As increased cod abundance was largely driven by changes in fisheries management, our study also shows that management policies and practices, particularly those involving apex predators, can have a strong effect in shaping spatial diversity patterns, and one should not restrict the focus to effects of climate change alone.  相似文献   

19.
1. Epigeic ants are functionally important arthropods in tropical and subtropical forests, particularly by acting as predators. High predation pressure has been hypothesised to be a mechanism facilitating high diversity across trophic levels. 2. In this study, standardised pitfall traps were used in a highly diverse subtropical forest to test if and how ant species richness is related to tree species richness and a comprehensive set of other environmental variables such as successional age, soil properties or elevation. 3. A total of 13 441 ant individuals belonging to 3839 species occurrences and 71 species were collected, of which 26 species were exclusive predators and 45 species were omnivores. 4. Occurrence and species richness of total and omnivore ants were positively related to soil pH. Predator ant occurrence was unrelated to all environmental variables tested. 5. The species richness of predator ants increased with tree species richness but decreased with leaf functional diversity and shrub cover. Elevation negatively influenced only total ant species richness. 6. The evenness of predators increased with tree species richness, while the evenness of all ants decreased with shrub cover. Omnivore ant evenness decreased with tree evenness, but increased with successional age. 7. The results highlight the value of diverse forests in maintaining species richness and community evenness of a functionally important predator group. Moreover, the results stress the importance of analysing trophic groups separately when investigating biodiversity effects.  相似文献   

20.
Plant–soil interactions are increasingly recognized to play a major role in terrestrial ecosystems functioning. However, few studies to date have focused on slow dynamic ecosystems such as forests. As they are vertically stratified by multiple vegetation strata, canopy tree removal by thinning operations could alter forest plant community through tree canopy opening. Very little is known about cascading effects on soil biodiversity. We conducted a large‐scale, multi‐site assessment of collembolan assemblage response to long‐term canopy tree removal in sessile oak Quercus petraea temperate forests. A total of 33 experimental plots were studied covering a large gradient of canopy tree basal area, stand age and local abiotic contexts. Collembolan abundance strongly declined with canopy tree removal in early forest successional stage and this was mediated by negative effect of understory plant community composition changes, i.e. shift from moss and forb to tree seedling, fern, shrub and grass species. Negative effect of this composition shift on collembolan species richness was largely offset by positive effect of the increase in understory plant species richness. This gives support to both the plant mass‐ratio and functional diversity hypotheses. Collembolan functional groups had contrasting response patterns, which were mediated by different ecological factors. Epedaphic (r‐strategist) abundance and species richness increased with canopy tree removal in relation with the increase in understory plant species richness. In contrast, euedaphic (K‐strategist) abundance and species richness declined with canopy tree removal in early forest successional stage in relation with changes in understory plant community composition and species richness, as well as microclimatic conditions. Overall, our study provides experimental evidence that forest plant community can be a strong driver of collembolan assemblages. It also emphasizes the role of trees as foundation species of forest ecosystems that can shape soil biodiversity through their regulation of understory plant community and ecosystem abiotic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号