首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Today researchers can choose from many bioinformatics protocols for all types of life sciences research, computational environments and coding languages. Although the majority of these are open source, few of them possess all virtues to maximize reuse and promote reproducible science. Wikipedia has proven a great tool to disseminate information and enhance collaboration between users with varying expertise and background to author qualitative content via crowdsourcing. However, it remains an open question whether the wiki paradigm can be applied to bioinformatics protocols.

Results

We piloted PyPedia, a wiki where each article is both implementation and documentation of a bioinformatics computational protocol in the python language. Hyperlinks within the wiki can be used to compose complex workflows and induce reuse. A RESTful API enables code execution outside the wiki. Initial content of PyPedia contains articles for population statistics, bioinformatics format conversions and genotype imputation. Use of the easy to learn wiki syntax effectively lowers the barriers to bring expert programmers and less computer savvy researchers on the same page.

Conclusions

PyPedia demonstrates how wiki can provide a collaborative development, sharing and even execution environment for biologists and bioinformaticians that complement existing resources, useful for local and multi-center research teams.

Availability

PyPedia is available online at: http://www.pypedia.com. The source code and installation instructions are available at: https://github.com/kantale/PyPedia_server. The PyPedia python library is available at: https://github.com/kantale/pypedia. PyPedia is open-source, available under the BSD 2-Clause License.
  相似文献   

2.

Introduction

Concerning NMR-based metabolomics, 1D spectra processing often requires an expert eye for disentangling the intertwined peaks.

Objectives

The objective of NMRProcFlow is to assist the expert in this task in the best way without requirement of programming skills.

Methods

NMRProcFlow was developed to be a graphical and interactive 1D NMR (1H & 13C) spectra processing tool.

Results

NMRProcFlow (http://nmrprocflow.org), dedicated to metabolic fingerprinting and targeted metabolomics, covers all spectra processing steps including baseline correction, chemical shift calibration and alignment.

Conclusion

Biologists and NMR spectroscopists can easily interact and develop synergies by visualizing the NMR spectra along with their corresponding experimental-factor levels, thus setting a bridge between experimental design and subsequent statistical analyses.
  相似文献   

3.

Background

Nasal gene expression profiling is a promising method to characterize COPD non-invasively. We aimed to identify a nasal gene expression profile to distinguish COPD patients from healthy controls. We investigated whether this COPD-associated gene expression profile in nasal epithelium is comparable with the profile observed in bronchial epithelium.

Methods

Genome wide gene expression analysis was performed on nasal epithelial brushes of 31 severe COPD patients and 22 controls, all current smokers, using Affymetrix Human Gene 1.0 ST Arrays. We repeated the gene expression analysis on bronchial epithelial brushes in 2 independent cohorts of mild-to-moderate COPD patients and controls.

Results

In nasal epithelium, 135 genes were significantly differentially expressed between severe COPD patients and controls, 21 being up- and 114 downregulated in COPD (false discovery rate?<?0.01). Gene Set Enrichment Analysis (GSEA) showed significant concordant enrichment of COPD-associated nasal and bronchial gene expression in both independent cohorts (FDRGSEA <?0.001).

Conclusion

We identified a nasal gene expression profile that differentiates severe COPD patients from controls. Of interest, part of the nasal gene expression changes in COPD mimics differentially expressed genes in the bronchus. These findings indicate that nasal gene expression profiling is potentially useful as a non-invasive biomarker in COPD.

Trial registration

ClinicalTrials.gov registration number NCT01351792 (registration date May 10, 2011), ClinicalTrials.gov registration number NCT00848406 (registration date February 19, 2009), ClinicalTrials.gov registration number NCT00807469 (registration date December 11, 2008).
  相似文献   

4.

Background

Experimental autoimmune neuritis (EAN) is a well-known animal model of human demyelinating polyneuropathies and is characterized by inflammation and demyelination in the peripheral nervous system. Fascin is an evolutionarily highly conserved cytoskeletal protein of 55 kDa containing two actin binding domains that cross-link filamentous actin to hexagonal bundles.

Methods

Here we have studied by immunohistochemistry the spatiotemporal accumulation of Fascin?+?cells in sciatic nerves of EAN rats.

Results

A robust accumulation of Fascin?+?cell was observed in the peripheral nervous system of EAN which was correlated with the severity of neurological signs in EAN.

Conclusion

Our results suggest a pathological role of Fascin in EAN.

Virtual slides

The virtual slides for this article can be found here: http://www.diagnosticphatology.diagnomx.eu/vs/6734593451114811
  相似文献   

5.
6.

Background

Tau is a microtubule-binding protein, which is subject to various post-translational modifications (PTMs) including phosphorylation, methylation, acetylation, glycosylation, nitration, sumoylation and truncation. Aberrant PTMs such as hyperphosphorylation result in tau aggregation and the formation of neurofibrillary tangles, which are a hallmark of Alzheimer’s disease (AD). In order to study the importance of PTMs on tau function, antibodies raised against specific modification sites are widely used. However, quality control of these antibodies is lacking and their specificity for particular modifications is often unclear.

Methods

In this study, we first designed an online tool called ‘TauPTM’, which enables the visualization of PTMs and their interactions on human tau. Using TauPTM, we next searched for commercially available antibodies against tau PTMs and characterized their specificity by peptide array, immunoblotting, electrochemiluminescence ELISA and immunofluorescence technologies.

Results

We demonstrate that commercially available antibodies can show a significant lack of specificity, and PTM-specific antibodies in particular often recognize non-modified versions of the protein. In addition, detection may be hindered by other PTMs in close vicinity, complicating the interpretation of results. Finally, we compiled a panel of specific antibodies and show that they are useful to detect PTM-modified endogenous tau in hiPSC-derived neurons and mouse brains.

Conclusion

This study has created a platform to reliably and robustly detect changes in localization and abundance of post-translationally modified tau in health and disease. A web-based version of TauPTM is fully available at http://www.tauptm.org.
  相似文献   

7.

Background

Previous studies show that overexpression of EMMPRIN involved in the malignant biological behavior of tumors. This investigation was to disclose the expression status of EMMPRIN in non-small cell lung cancer (NSCLC) and its clinical value for the diagnosis of NSCLC.

Methods

The expression of EMMPRIN was examined using immunohistochemistry and enzyme-linked immunosorbent assay. The clinical value of EMMPRIN was evaluated by drawing a receiver operating characteristic (ROC) curve.

Results

NSCLC tissues and serum exhibited higher expression levels of EMMPRIN than the normal control (p?<?0.05), and the expression of the EMMPRIN was significantly associated with lymphatic invasion and advanced stage of NSCLC (p?<?0.05). ROC curve suggested that the threshold level of serum EMMPRIN for distinguishing NSCLC from control group was 80.3 pg/mL, and displayed a sensitivity of 97.22% and a specificity of 95%. And higher EMMPRIN expression in serum and tissues appeared to be risk factors for NSCLC development (risk ratio =1.56 and 1.1).

Conclusion

Overexpression of EMMPRIN was associated with lymphatic metastasis and advanced stage of NSCLC and test of serum EMMPRIN contributes to the NSCLC diagnosis.
  相似文献   

8.

Background

The Healthy Lifestyle Program for women (HeLP-her) is a low-intensity, self-management program which has demonstrated efficacy in preventing excess weight gain in women. However, little is known about the implementation, reach, and sustainability of low-intensity prevention programs in rural settings, where risk for obesity in women is higher than urban settings. We aimed to evaluate a low-intensity healthy lifestyle program delivered to women in a rural setting to inform development of effective community prevention programs.

Methods

A mixed method hybrid implementation and evaluation study, guided by the RE-AIM framework (addressing the Reach, Effectiveness, Adoption, Implementation, and Maintenance), was undertaken. Data collection tools included anthropometric measures, program checklists, questionnaires, and semi-structured interviews with participants and local stakeholders. The RE-AIM self-audit tool was applied to assess evaluation rigor.

Results

Six hundred and forty-nine women from 41 relatively socio-economic disadvantaged communities in Australia participated: mean age 39.6 years (±SD 6.7) and body mass index of 28.8 kg/m2 (±SD 6.9). A between-group weight difference of ?0.92 kg (95% CI ?1.67 to ?0.16) showed program effectiveness. Reach was broad across 41 towns with 62% of participants reporting influencing some of the health behaviors of their families. Strong implementation fidelity was achieved with good retention rates at 1 year (76%) and high participant satisfaction (82% of participants willing to recommend this program). Over 300 multi-level community partnerships were established supporting high adoption. Stakeholders reported potential capacity to implement and sustain the prevention program in resource poor rural settings, due to the low-intensity design and minimal resources required.

Conclusions

Our comprehensive RE-AIM evaluation demonstrates that an evidence-based obesity prevention program can be successfully implemented in real-world settings. The program achieved broad reach, effectiveness, and satisfaction at the community and stakeholder level, revealing potential for program sustainability. The evaluation addressed implementation knowledge gaps to support future obesity prevention program scale-up.

Trial registration

Australian and New Zealand Clinical Trial Registry ACTRN 12612000115831 [http://www.anzctr.org.au/].
  相似文献   

9.
10.
11.

Background

As a result of its simplicity and high efficiency, the CRISPR-Cas system has been widely used as a genome editing tool. Recently, CRISPR base editors, which consist of deactivated Cas9 (dCas9) or Cas9 nickase (nCas9) linked with a cytidine or a guanine deaminase, have been developed. Base editing tools will be very useful for gene correction because they can produce highly specific DNA substitutions without the introduction of any donor DNA, but dedicated web-based tools to facilitate the use of such tools have not yet been developed.

Results

We present two web tools for base editors, named BE-Designer and BE-Analyzer. BE-Designer provides all possible base editor target sequences in a given input DNA sequence with useful information including potential off-target sites. BE-Analyzer, a tool for assessing base editing outcomes from next generation sequencing (NGS) data, provides information about mutations in a table and interactive graphs. Furthermore, because the tool runs client-side, large amounts of targeted deep sequencing data (<?1?GB) do not need to be uploaded to a server, substantially reducing running time and increasing data security. BE-Designer and BE-Analyzer can be freely accessed at http://www.rgenome.net/be-designer/ and http://www.rgenome.net/be-analyzer/, respectively.

Conclusion

We develop two useful web tools to design target sequence (BE-Designer) and to analyze NGS data from experimental results (BE-Analyzer) for CRISPR base editors.
  相似文献   

12.
13.

Introduction

Exercise-associated metabolism in type 1 diabetes (T1D) remains under-studied due to the complex interplay between exogenous insulin, counter-regulatory hormones and insulin-sensitivity.

Objective

To identify the metabolic differences induced by two exercise modalities in T1D using ultra high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC–HRMS) based metabolomics.

Methods

Twelve T1D adults performed intermittent high-intensity (IHE) and continuous-moderate-intensity (CONT) exercise. Serum samples were analysed by UHPLC–HRMS.

Results

Metabolic profiling of IHE and CONT highlighted exercise-induced changes in purine and acylcarnitine metabolism.

Conclusion

IHE may increase beta-oxidation through higher ATP-turnover. UHPLC–HRMS based metabolomics as a data-driven approach without an a priori hypothesis may help uncover distinctive metabolic effects during exercise in T1D.Clinical trial registration number is www.clinicaltrials.gov: NCT02068638.
  相似文献   

14.

Background

Application of virtual slides (VS), the digitalization of complete glass slides, is in its infancy to be implemented in routine diagnostic surgical pathology and to issues that are related to tissue-based diagnosis, such as education and scientific publication.

Approach

Electronic publication in Pathology offers new features of scientific communication in pathology that cannot be obtained by conventional paper based journals. Most of these features are based upon completely open or partly directed interaction between the reader and the system that distributes the article. One of these interactions can be applied to microscopic images allowing the reader to navigate and magnify the presented images. VS and interactive Virtual Microscopy (VM) are a tool to increase the scientific value of microscopic images.

Technology and Performance

The open access journal Diagnostic Pathology http://www.diagnosticpathology.org has existed for about five years. It is a peer reviewed journal that publishes all types of scientific contributions, including original scientific work, case reports and review articles. In addition to digitized still images the authors of appropriate articles are requested to submit the underlying glass slides to an institution (DiagnomX.eu, and Leica.com) for digitalization and documentation. The images are stored in a separate image data bank which is adequately linked to the article. The normal review process is not involved. Both processes (peer review and VS acquisition) are performed contemporaneously in order to minimize a potential publication delay. VS are not provided with a DOI index (digital object identifier). The first articles that include VS were published in March 2011.

Results and Perspectives

Several logistic constraints had to be overcome until the first articles including VS could be published. Step by step an automated acquisition and distribution system had to be implemented to the corresponding article. The acceptance of VS by the reader is high as well as by the authors. Of specific value are the increased confidence to and reputation of authors as well as the presented information to the reader. Additional associated functions such as access to author-owned related image collections, reader-controlled automated image measurements and image transformations are in preparation.

Virtual Slides

The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1232133347629819.
  相似文献   

15.
16.

Background

Human papillomavirus-associated oropharyngeal carcinoma (HPV-OPC) is clinicopathologically distinct entity from the HPV-unassociated one (nHPV-OPC). This study aimed to determine the relationship between histological subtypes of OPC and HPV status for Japanese cases and to identify histological structures of HPV-OPC.

Methods

66 OPC cases were categorized into conventional squamous cell carcinoma (SCC) and the variants. Conventional SCC was subcategorized into keratinizing (KSCC), non-keratinizing (NKSCC), and hybrid SCC (HSCC). HPV status of all cases was determined using p16-immunohistochemistry and HPV-DNA ISH.

Results

Two histological subtypes, NKSCC and HSCC, tended to be HPV-OPC and KSCC tended to be nHPV-OPC with statistical significance. Two histological structures, abrupt keratinization, defined in the text, and comedo-necrosis among non-maturing tumor island, were observed for 58.1% and 38.7% of HPV-OPC, and tended to exist for HPV-OPC with statistical significance.

Conclusions

This study showed the association of NKSCC/HSCC with HPV-OPC in Japanese cases, and two histological structures, abrupt keratinization and comedo-necrosis among non-maturing island, were considered characteristic histological features of HPV-OPC.

Virtual slides

The virtual slide(s) for this article can be found here:http://www.diagnosticpathology.diagnomx.eu/vs/1816432541113073.
  相似文献   

17.

Background:

Reliable information extraction applications have been a long sought goal of the biomedical text mining community, a goal that if reached would provide valuable tools to benchside biologists in their increasingly difficult task of assimilating the knowledge contained in the biomedical literature. We present an integrated approach to concept recognition in biomedical text. Concept recognition provides key information that has been largely missing from previous biomedical information extraction efforts, namely direct links to well defined knowledge resources that explicitly cement the concept's semantics. The BioCreative II tasks discussed in this special issue have provided a unique opportunity to demonstrate the effectiveness of concept recognition in the field of biomedical language processing.

Results:

Through the modular construction of a protein interaction relation extraction system, we present several use cases of concept recognition in biomedical text, and relate these use cases to potential uses by the benchside biologist.

Conclusion:

Current information extraction technologies are approaching performance standards at which concept recognition can begin to deliver high quality data to the benchside biologist. Our system is available as part of the BioCreative Meta-Server project and on the internet http://bionlp.sourceforge.net.
  相似文献   

18.

Background

Human genome sequencing has enabled the association of phenotypes with genetic loci, but our ability to effectively translate this data to the clinic has not kept pace. Over the past 60 years, pharmaceutical companies have successfully demonstrated the safety and efficacy of over 1,200 novel therapeutic drugs via costly clinical studies. While this process must continue, better use can be made of the existing valuable data. In silico tools such as candidate gene prediction systems allow rapid identification of disease genes by identifying the most probable candidate genes linked to genetic markers of the disease or phenotype under investigation. Integration of drug-target data with candidate gene prediction systems can identify novel phenotypes which may benefit from current therapeutics. Such a drug repositioning tool can save valuable time and money spent on preclinical studies and phase I clinical trials.

Methods

We previously used Gentrepid (http://www.gentrepid.org) as a platform to predict 1,497 candidate genes for the seven complex diseases considered in the Wellcome Trust Case-Control Consortium genome-wide association study; namely Type 2 Diabetes, Bipolar Disorder, Crohn's Disease, Hypertension, Type 1 Diabetes, Coronary Artery Disease and Rheumatoid Arthritis. Here, we adopted a simple approach to integrate drug data from three publicly available drug databases: the Therapeutic Target Database, the Pharmacogenomics Knowledgebase and DrugBank; with candidate gene predictions from Gentrepid at the systems level.

Results

Using the publicly available drug databases as sources of drug-target association data, we identified a total of 428 candidate genes as novel therapeutic targets for the seven phenotypes of interest, and 2,130 drugs feasible for repositioning against the predicted novel targets.

Conclusions

By integrating genetic, bioinformatic and drug data, we have demonstrated that currently available drugs may be repositioned as novel therapeutics for the seven diseases studied here, quickly taking advantage of prior work in pharmaceutics to translate ground-breaking results in genetics to clinical treatments.
  相似文献   

19.

Background

Complex intracellular signaling networks monitor diverse environmental inputs to evoke appropriate and coordinated effector responses. Defective signal transduction underlies many pathologies, including cancer, diabetes, autoimmunity and about 400 other human diseases. Therefore, there is high impetus to define the composition and architecture of cellular communications networks in humans. The major components of intracellular signaling networks are protein kinases and protein phosphatases, which catalyze the reversible phosphorylation of proteins. Here, we have focused on identification of kinase-substrate interactions through prediction of the phosphorylation site specificity from knowledge of the primary amino acid sequence of the catalytic domain of each kinase.

Results

The presented method predicts 488 different kinase catalytic domain substrate specificity matrices in 478 typical and 4 atypical human kinases that rely on both positive and negative determinants for scoring individual phosphosites for their suitability as kinase substrates. This represents a marked advancement over existing methods such as those used in NetPhorest (179 kinases in 76 groups) and NetworKIN (123 kinases), which consider only positive determinants for kinase substrate prediction. Comparison of our predicted matrices with experimentally-derived matrices from about 9,000 known kinase-phosphosite substrate pairs revealed a high degree of concordance with the established preferences of about 150 well studied protein kinases. Furthermore for many of the better known kinases, the predicted optimal phosphosite sequences were more accurate than the consensus phosphosite sequences inferred by simple alignment of the phosphosites of known kinase substrates.

Conclusions

Application of this improved kinase substrate prediction algorithm to the primary structures of over 23, 000 proteins encoded by the human genome has permitted the identification of about 650, 000 putative phosphosites, which are posted on the open source PhosphoNET website (http://www.phosphonet.ca).
  相似文献   

20.

Background

Metagenomics method directly sequences and analyses genome information from microbial communities. There are usually more than hundreds of genomes from different microbial species in the same community, and the main computational tasks for metagenomic data analyses include taxonomical and functional component examination of all genomes in the microbial community. Metagenomic data analysis is both data- and computation- intensive, which requires extensive computational power. Most of the current metagenomic data analysis softwares were designed to be used on a single computer or single computer clusters, which could not match with the fast increasing number of large metagenomic projects' computational requirements. Therefore, advanced computational methods and pipelines have to be developed to cope with such need for efficient analyses.

Result

In this paper, we proposed Parallel-META, a GPU- and multi-core-CPU-based open-source pipeline for metagenomic data analysis, which enabled the efficient and parallel analysis of multiple metagenomic datasets and the visualization of the results for multiple samples. In Parallel-META, the similarity-based database search was parallelized based on GPU computing and multi-core CPU computing optimization. Experiments have shown that Parallel-META has at least 15 times speed-up compared to traditional metagenomic data analysis method, with the same accuracy of the results http://www.computationalbioenergy.org/parallel-meta.html.

Conclusion

The parallel processing of current metagenomic data would be very promising: with current speed up of 15 times and above, binning would not be a very time-consuming process any more. Therefore, some deeper analysis of the metagenomic data, such as the comparison of different samples, would be feasible in the pipeline, and some of these functionalities have been included into the Parallel-META pipeline.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号