首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
In neurons, the polarized distribution of vesicles and other cellular materials is established through molecular motors that steer selective transport between axons and dendrites. It is currently unclear whether interactions between kinesin motors and microtubule‐binding proteins can steer polarized transport. By screening all 45 kinesin family members, we systematically addressed which kinesin motors can translocate cargo in living cells and drive polarized transport in hippocampal neurons. While the majority of kinesin motors transport cargo selectively into axons, we identified five members of the kinesin‐3 (KIF1) and kinesin‐4 (KIF21) subfamily that can also target dendrites. We found that microtubule‐binding protein doublecortin‐like kinase 1 (DCLK1) labels a subset of dendritic microtubules and is required for KIF1‐dependent dense‐core vesicles (DCVs) trafficking into dendrites and dendrite development. Our study demonstrates that microtubule‐binding proteins can provide local signals for specific kinesin motors to drive polarized cargo transport.  相似文献   

2.
Drosophila S2 cells plated on a coverslip in the presence of any actin-depolymerizing drug form long unbranched processes filled with uniformly polarized microtubules. Organelles move along these processes by microtubule motors. Easy maintenance, high sensitivity to RNAi-mediated protein knock-down and efficient procedure for creating stable cell lines make Drosophila S2 cells an ideal model system to study cargo transport by live imaging. The results obtained with S2 cells can be further applied to a more physiologically relevant system: axonal transport in primary neurons cultured from dissociated Drosophila embryos. Cultured neurons grow long neurites filled with bundled microtubules, very similar to S2 processes. Like in S2 cells, organelles in cultured neurons can be visualized by either organelle-specific fluorescent dyes or by using fluorescent organelle markers encoded by DNA injected into early embryos or expressed in transgenic flies. Therefore, organelle transport can be easily recorded in neurons cultured on glass coverslips using living imaging. Here we describe procedures for culturing and visualizing cargo transport in Drosophila S2 cells and primary neurons. We believe that these protocols make both systems accessible for labs studying cargo transport.  相似文献   

3.
Formation of an axon is the first morphological evidence of neuronal polarization, visible as a profound outgrowth of the axon compared with sibling neurites. One unsolved question on the mechanism of axon formation is the role of axon outgrowth in axon specification. This question was difficult to assess, because neurons freely extend their neurites in a conventional culture. Here, we leveraged surface nano/micro‐modification techniques to fabricate a template substrate for constraining neurite lengths of cultured neurons. Using the template, we asked (i) Do neurons polarize even if all neurites cannot grow sufficiently long? (ii) Would the neurite be fated to become an axon if only one was allowed to grow long? A pattern with symmetrical short paths (20 μm) was used to address the former question, and an asymmetrical pattern with one path extended to 100 μm for the latter. Axon formation was evaluated by tau‐1/MAP2 immunostaining and live‐cell imaging of constitutively‐active kinesin‐1. We found that (1) neurons cannot polarize when extension of all neurites is restricted and that (2) when only a single neurite is permitted to grow long, neurons polarize and the longest neurite becomes the axon. These results provide clear evidence that axon outgrowth is required for its specification.  相似文献   

4.
Vascular dementia (VaD) is characterized by a time-dependent memory deficit and essentially combined with evidence of neuroinflammation. Thus, polyphenol-rich natural plants, which possess anti-inflammatory properties, have received much scientific attention. This study investigated whether Perilla frutescens leaf extract (PFL) exerts therapeutic efficacy against VaD. Sprague Dawley rats were divided into five groups: SO, sham-operated and vehicle treatment; OP, operated and vehicle treatment; PFL-L, operated and low-dose (30 mg/kg) PFL treatment; PFL-M, operated and medium-dose (60 mg/kg) PFL treatment; and PFL-H, operated and high-dose (90 mg/kg) PFL treatment. Two-vessel occlusion and hypovolemia (2VO/H) were employed as a surgical model of VaD, and PFL was given orally perioperatively for 23 days. The rats underwent the Y-maze, Barnes maze, and passive avoidance tests and their brains were subjected to histologic studies. The OP group showed VaD-associated memory deficits, hippocampal neuronal death, and microglial activation; however, the PFL-treated groups showed significant attenuations in all of the above parameters. Using lipopolysaccharide (LPS)-stimulated BV-2 cells, a murine microglial cell line, we measured PFL-mediated changes on the production of nitric oxide (NO), TNF-α, and IL-6, and the activities of their upstream MAP kinases (MAPKs)/NFκB/inducible NO synthase (iNOS). The LPS-induced upregulations of NO, TNF-α, and IL-6 production and MAPKs/NFκB/iNOS activities were globally and significantly reversed by 12-h pretreatment of PFL. This suggests that PFL can counteract VaD-associated structural and functional deterioration through the attenuation of neuroinflammation.  相似文献   

5.
Sytnyk  V. N.  Korogod  S. M.  Dityatev  A. E. 《Neurophysiology》2001,33(3):140-147
In our study, we showed that distribution of NCAM along the surface of actively growing in vitro neurites of murine hippocampal neurons comprises at least two components. The first component is reflected in exponential decline of the NCAM immunoreactivity from the soma and growth cone to a central part of the neurite. This component can be described by a model assuming diffusive redistribution of NCAM from the sites of its preferential insertion (from the neuron's soma and growth cones). The second component manifests itself as clusters of NCAM immunoreactivity irregularly distributed along the neurites. Some of these NCAM clusters, which were immunolabeled in a living neuron, can intermittently move back and forth along the neurites with a velocity up to 0.5 m/sec. Our data demonstrate that, besides passive NCAM diffusion, an active mechanism of NCAM redistribution exists in the central neurite part.  相似文献   

6.
In this study we have determined the binding specificities of four different neuronal cell types to tenascin-C (TN-C) and larninin using a cell adhesion assay. TN-C was repulsive for small cerebellar neurons and PC12 phaeochromocytoma cells, since after short-term adhesion to the substrate-bound molecule with a maximum of cell binding at 45 min, the cells detached from the substrate and after 22 h only about 25% of the originally adherent cells were still bound. For N2A neuroblastoma cells and retinal cells TN-C was an adhesive substrate, since the number of adherent cells did not decrease after the initial attachment period. All four cell types adhered well to larninin at all time points studied. For short-term adhesion of small cerebellar neurons and PC12 cells two binding sites were identified on TN-C, one being localized within the epidermal growth factor-like repeats three to five and the second within fibronectin type III-like repeats three and four. One binding site for N2A and retinal cells was localized within fibronectin type III-like repeat seven. Binding of small cerebellar neurons to TN-C was dependent on Ca2+, but not on Mg2+and was inhibitable by polyclonal antibodies to β1 integrin. Short-term adhesion of small cerebellar neurons was also inhibitable with a mixture of recombinant fragments of TN-C encompassing the whole molecule, although the specific inhibitory activity of this mixture was ten-fold lower on a molar basis when compared to the native molecule. Our observations indicate that different neuronal cell types use distinct binding sites on TN-C for repellent or adhesive interactions and that β1 integrin is involved in the recognition event leading to repulsion of small cerebellar neurons.  相似文献   

7.
In this study we have determined the binding specificities of four different neuronal cell types to tenascin-C (TN-C) and larninin using a cell adhesion assay. TN-C was repulsive for small cerebellar neurons and PC12 phaeochromocytoma cells, since after short-term adhesion to the substrate-bound molecule with a maximum of cell binding at 45 min, the cells detached from the substrate and after 22 h only about 25% of the originally adherent cells were still bound. For N2A neuroblastoma cells and retinal cells TN-C was an adhesive substrate, since the number of adherent cells did not decrease after the initial attachment period. All four cell types adhered well to larninin at all time points studied. For short-term adhesion of small cerebellar neurons and PC12 cells two binding sites were identified on TN-C, one being localized within the epidermal growth factor-like repeats three to five and the second within fibronectin type III-like repeats three and four. One binding site for N2A and retinal cells was localized within fibronectin type III-like repeat seven. Binding of small cerebellar neurons to TN-C was dependent on Ca2+, but not on Mg2+and was inhibitable by polyclonal antibodies to β1 integrin. Short-term adhesion of small cerebellar neurons was also inhibitable with a mixture of recombinant fragments of TN-C encompassing the whole molecule, although the specific inhibitory activity of this mixture was ten-fold lower on a molar basis when compared to the native molecule. Our observations indicate that different neuronal cell types use distinct binding sites on TN-C for repellent or adhesive interactions and that β1 integrin is involved in the recognition event leading to repulsion of small cerebellar neurons.  相似文献   

8.
We identify and characterize two classes of immediate-early genes: (i) genes, induced by depolarization in neurons, that play a role in depolarization-induced neuronal plasticity and (ii) genes, induced in neuronal precursors by neurotrophins, that play a causal role in neurotrophin-directed neuronal differentiation. We use rat PC12 pheochromocytoma cells to identify (i) genes preferentially induced by [depolarization or forskolin] versus [Nerve Growth Factor (NGF) or Epidermal Growth Factor (EGF)] and (ii) genes preferentially induced by NGF versus EGF. We describe (i) a collection of genes preferentially induced by depolarization/forskolin in PC12 cells and by kainic acid in vivo, and (ii) a collection of genes preferentially induced by NGF. The synaptotagmin IV gene encodes a synaptic vesicle protein whose level is modulated by depolarization. NGF preferentially induces the urokinase-plasminogen activator receptor in PC12 cells. Antisense oligonucleotide and anti-UPAR antibody experiments demonstrate that NGF-induced UPAR expression is required for NGF-driven PC12 cell differentiation.  相似文献   

9.
Detection of fluorescence provides the foundation for many widely utilized and rapidly advancing microscopy techniques employed in modern biological and medical applications. Strengths of fluorescence include its sensitivity, specificity, and compatibility with live imaging. Unfortunately, conventional forms of fluorescence microscopy suffer from one major weakness, diffraction-limited resolution in the imaging plane, which hampers studies of structures with dimensions smaller than ~250 nm. Recently, this limitation has been overcome with the introduction of super-resolution fluorescence microscopy techniques, such as photoactivated localization microscopy (PALM). Unlike its conventional counterparts, PALM can produce images with a lateral resolution of tens of nanometers. It is thus now possible to use fluorescence, with its myriad strengths, to elucidate a spectrum of previously inaccessible attributes of cellular structure and organization.Unfortunately, PALM is not trivial to implement, and successful strategies often must be tailored to the type of system under study. In this article, we show how to implement single-color PALM studies of vesicular structures in fixed, cultured neurons. PALM is ideally suited to the study of vesicles, which have dimensions that typically range from ~50-250 nm. Key steps in our approach include labeling neurons with photoconvertible (green to red) chimeras of vesicle cargo, collecting sparsely sampled raw images with a super-resolution microscopy system, and processing the raw images to produce a high-resolution PALM image. We also demonstrate the efficacy of our approach by presenting exceptionally well-resolved images of dense-core vesicles (DCVs) in cultured hippocampal neurons, which refute the hypothesis that extrasynaptic trafficking of DCVs is mediated largely by DCV clusters.  相似文献   

10.
Axon membrane glycoproteins are essential for neuronal differentiation, although the mechanisms underlying their polarized sorting and organization are poorly understood. We describe here that galectin‐4 (Gal‐4), a lectin highly expressed in gastrointestinal tissues and involved in epithelial glycoprotein transport, is expressed by hippocampal and cortical neurons where it is sorted to discrete segments of the axonal membrane in a microtubule‐ and sulfatide‐dependent manner. Gal‐4 knockdown retards axon growth, an effect that can be rescued by recombinant Gal‐4 addition. This Gal‐4 reduction, as inhibition of sulfatide synthesis does, lowers the presence and clustered organization of axon growth‐promoting molecule NCAM L1 at the axon membrane. Furthermore, we find that Gal‐4 interacts with L1 by specifically binding to LacNAc branch ends of L1 N‐glycans. Impairing the maturation of these N‐glycans precludes Gal‐4/L1 association resulting in a failure of L1 membrane cluster organization. In all, Gal‐4 sorts to axon plasma membrane segments by binding to sulfatide‐containing microtubule‐associated carriers and being bivalent, it organizes the transport of L1, and likely other axonal glycoproteins, by attaching them to the carriers through their LacNAc termini. This mechanism would underlie L1 functional organization on the plasma membrane, required for proper axon growth.  相似文献   

11.
ClC-3 is a member of the CLC family of anion channels and transporters, for which multiple functional properties and subcellular localizations have been reported. Since alternative splicing often results in proteins with diverse properties, we investigated to what extent alternative splicing might influence subcellular targeting and function of ClC-3. We identified three alternatively spliced ClC-3 isoforms, ClC-3a, ClC-3b, and ClC-3c, in mouse brain, with ClC-3c being the predominant splice variant. Whereas ClC-3a and ClC-3b are present in late endosomes/lysosomes, ClC-3c is targeted to recycling endosomes via a novel N-terminal isoleucine-proline (IP) motif. Surface membrane insertion of a fraction of ClC-3c transporters permitted electrophysiological characterization of this splice variant through whole-cell patch clamping on transfected mammalian cells. In contrast, neutralization of the N-terminal dileucine-like motifs was required for functional analysis of ClC-3a and ClC-3b. Heterologous expression of ClC-3a or ClC-3b carrying mutations in N-terminal dileucine motifs as well as WTClC-3c in HEK293T cells resulted in outwardly rectifying Cl currents with significant capacitive current components. We conclude that alternative splicing of Clcn3 results in proteins with different subcellular localizations, but leaves the transport function of the proteins unaffected.  相似文献   

12.
13.
Summary Nerve cells of the human striatum were investigated with the use of a newly developed technique that reveals the pattern of pigmentation of individual nerve cells by means of transparent Golgi impregnations of their cell bodies and processes. Five types of neurons are distinguished:Type I is a medium-sized spine-laden neuron with an axon giving off a great number of collateral branches. The vast majority of the cells in the striatum belong to this type. Numerous intensely stained lipofuscin granules are contained in one pole of the cell body and may also extend into adjacent portions of a dendrite.Type II is a medium-sized to large neuron with long intertwining dendrites decorated with spines of uncommon shape. A distinguishing feature of this cell type is the presence of somal spines. This cell type is devoid of pigment or contains only a few tiny lipofuscin granules.Type III is a large multipolar neuron. The cell body generates a few rather extended dendrites that are very sparsely spined. The finely granulated pigment is evenly dispersed within a large portion of the cytoplasm.Type IV is a large aspiny neuron with rounded cell body and richly branching tortuous dendrites. The axon branches frequently in the vicinity of the parent soma. Large pigment granules are concentrated within a circumscribed part of the cell body close to the cell membrane.Type V is a small to medium-sized aspiny neuron. The dendrites break up into a swirling mass of thin branches. More than one axon may be given off from the soma. The axons branch close to the soma into terminal twigs. Cells of this type contain numerous large and well-stained lipofuscin granules.Each of the cell types has a characteristic pattern of pigmentation. The different varieties of nerve cells in the striatum can therefore be distinguished not only in Golgi impregnations but also in pigment-Nissl preparations.  相似文献   

14.
用未标记氧化修饰极低密度脂蛋白(ox-VLDL)、n-VLDL、乙酰LDL竞争125I-ox-VLDL与巨噬细胞的结合。在浓度为200μg蛋白/ml时,分别抑制标记ox-VLDL结合量的70~78%、60~70%和25~35%。用未标记ox-VLDL竟争125I-n-VLDL与巨噬细胞的结合,能抑制77%。结果说明ox-VLDL主要通过n-VLDL受体进入巨噬细胞。以ox-VLDL与ox-LDL进行交叉竞争时,ox-VLDL与ox-LDL自身可抑制标记ox-VLDL或ox-LDL的75~82%,而ox-VLDL或ox-LDL的交叉竞争仅38~40%。表明ox-VLDL与ox-LDL有部分共同的构象与巨噬细胞的脂蛋白受体结合,但ox-VLDL不是经ox-LDL受体被巨噬细胞摄取。  相似文献   

15.
分离出一周SD乳鼠海马组织,进行离体海马细胞培养;在培养基中加入神经营养素-6成熟肽片段,通过神经元特异性烯醇化酶免疫组化染色,计数存活海马神经元数量,与对照组比较,观察神经营养素-6对神经元存活的促进作用。结果显示,神经营养素-6实验组海马神经元存活数目显著高于对照组。表明人源性神经营养素-6可以促进体外培养神经元的存活。  相似文献   

16.
目的:观察银杏内酯B(ginkgolide B,GB)在不同给药模式下对谷氨酸所致海马神经元损伤的影响。方法:采用Co2超临界萃取的方法制备GB,建立新生Wistar大鼠原代培养的海马神经元谷氨酸毒性模型,采用台盼蓝染色、程序性细胞死亡检测技术及乳酸脱氢酶测定的方法,观察预处理与急救两种给药模型下不同剂量GB的神经保护作用,并与MK-801急性给药相比较。结果:GB在两种给药模式下均能不同程度地提高细胞存活率,降低凋亡率,减少LDH漏出量,且在一定范围内保护作用呈剂量依赖的方式。其中预处理的效果明显优于急救给药处理。但均弱于MK-801组。结论:GB对谷氨酸细胞毒性损伤有保护作用,预防性用药效果更佳。GB可能不仅仅通过拮抗血小板活化因子(PAF)受体等下游事件实现其神经保护作用。如果我们重视其预处理给药的显著效果。将其用于高危人群的预防干预可能有更大价值。  相似文献   

17.
Kinesins are nano-sized biological motors which walk by repeating a mechanochemical cycle. A single kinesin molecule is able to transport its cargo about 1 μm in the absence of external loads. However, kinesins perform much longer range transport in cells by working collectively. This long range of transport by a team of kinesins is surprising because the motion of the cargo in cells can be hindered by other particles. To reveal how the kinesins are able to accomplish their tasks of transport in harsh intracellular circumstances, stochastic studies on the kinesin motion are performed by considering the binding and unbinding of kinesins to microtubules and their dependence on the force acting on kinesin molecules. The unbinding probabilities corresponding to each mechanochemical state of kinesin are modeled. The statistical characterization of the instants and locations of binding are captured by computing the probability of unbound kinesin being at given locations. It is predicted that a group of kinesins has a more efficient transport than a single kinesin from the perspective of velocity and run length. Particularly, when large loads are applied, the leading kinesin remains bound to the microtubule for long time which increases the chances of the other kinesins to bind to the microtubule. To predict effects of this behavior of the leading kinesin under large loads on the collective transport, the motion of the cargo is studied when the cargo confronts obstacles. The result suggests that the behavior of kinesins under large loads prevents the early termination of the transport which can be caused by the interference with the static or moving obstacles.  相似文献   

18.
N-acetylglucosamine kinase (GlcNAc kinase or NAGK; EC 2.7.1.59) is a N-acetylhexosamine kinase that belong to the sugar kinase/heat shock protein 70/actin superfamily. In this study, we investigated both the expression and function of NAGK in neurons. Immunohistochemistry of rat brain sections showed that NAGK was expressed at high levels in neurons but at low levels in astrocytes. Immunocytochemistry of rat hippocampal dissociate cultures confirmed these findings and showed that NAGK was also expressed at low levels in oligodendrocytes. Furthermore, several NAGK clusters were observed in the nucleoplasm of both neuron and glia. The overexpression of EGFP- or RFP (DsRed2)-tagged NAGK in rat hippocampal neurons (DIV 5–9) increased the complexity of dendritic architecture by increasing the numbers of primary dendrites and dendritic branches. In contrast, knockdown of NAGK by shRNA resulted in dendrite degeneration, and this was prevented by the co-expression of RFP-tagged NAGK. These results suggest that the upregulation of dendritic complexity is a non-canonical function of NAGK.  相似文献   

19.
Legionella pneumophila is a Gram-negative bacterium that replicates within human alveolar macrophages by evasion of the host endocytic pathway through the formation of a replicative vacuole. Generation of this vacuole is dependent upon the secretion of over 275 effector proteins into the host cell via the Dot/Icm type IVB secretion system (T4SS). The type IV coupling protein (T4CP) subcomplex, consisting of DotL, DotM, DotN, IcmS and IcmW, was recently defined. DotL is proposed to be the T4CP of the L. pneumophila T4SS based on its homology to known T4CPs, which function as inner-membrane receptors for substrates. As a result, DotL is hypothesized to play an integral role(s) in the L. pneumophila T4SS for the engagement and translocation of substrates. To elucidate this role, a genetic approach was taken to screen for dotL mutants that were unable to survive inside host cells. One mutant, dotLY725Stop, did not interact with the type IV adaptor proteins IcmS/IcmW (IcmSW) leading to the identification of an IcmSW-binding domain on DotL. Interestingly, the dotLY725Stop mutant was competent for export of one class of secreted effectors, the IcmSW-independent substrates, but exhibited a specific defect in secretion of IcmSW-dependent substrates. This differential secretion illustrates that DotL requires a direct interaction with the type IV adaptor proteins for the secretion of a major class of substrates. Thus, by identifying a new target for IcmSW, we have discovered that the type IV adaptors perform an additional role in the export of substrates by the L. pneumophila Dot/Icm T4SS.  相似文献   

20.
目的:研究低镁介质致痫的培养海马神经元癫痫模型中神经元内游离钙离子([Ca^2+]i)的时空分布及其动力学改变,以探讨钙离子在癫痫发病过程中的作用。方法:联合应用共聚焦激光扫描显微镜和膜片钳,运用较高时间分辨率动态观察培养海马神经元癫痫模型[Ca^2+]i和电生理变化,以及化学门控钙离子通道阻滞剂的影响。结果:致痫后海马神经元胞浆和核内游离钙离子迅速上升到(612±65)nmol/L和(620±69)nmol/L水平,NMDA受体阻断剂MK-801(10μmol/L)和非NMDA受体阻断剂NBQX(10μmol/L)可使[Ca^2+]i的升高明显减少;升高的[Ca^2+]i恢复有明显的延迟现象,90min和150min癫痫样放电后[Ca^2+]i恢复的时间分别为(114.8±5.2)和(135.0±22.7)(P〈0.05)。结论:持续的癫痫样放电可导致海马神经元细胞内钙超载,这个效应可被MK-801阻断,化学门控钙离子通道也参与了细胞外Ca^2+内流的过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号