首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Migratory species can travel tens of thousands of kilometers each year, spending different parts of their annual cycle in geographically distinct locations. Understanding the drivers of population change is vital for conserving migratory species, yet the challenge of collecting data over entire geographic ranges has hindered attempts to identify the processes leading to observed population changes. Here, we use remotely sensed environmental data and bird count data to investigate the factors driving variability in abundance in two subspecies of a long‐distance migratory shorebird, the bar‐tailed godwit Limosa lapponica. We compiled a spatially and temporally explicit dataset of three environmental variables to identify the conditions experienced by each subspecies in each stage of their annual cycle (breeding, non‐breeding and staging). We used a Bayesian N‐mixture model to analyze 18 years of monthly count data from 21 sites across Australia and New Zealand in relation to the remote sensing data. We found that the abundance of one subspecies L. l. menzbieri in their non‐breeding range was related to climate conditions in breeding grounds, and detected sustained population declines between 1995 and 2012 in both subspecies (L. l. menzbieri, –6.7% and L. l. baueri, –2.1% year–1). To investigate the possible causes of the declines, we quantified changes in habitat extent at 22 migratory staging sites in the Yellow Sea, East Asia, over a 25‐year period and found –1.7% and –1.2% year–1 loss of habitat at staging sites used by L. l. menzbieri and L. l baueri, respectively. Our results highlight the need to identify environmental and anthropogenic drivers of population change across all stages of migration to allow the formulation of effective conservation strategies across entire migratory ranges.  相似文献   

2.
In the annual cycle of migratory birds, temporal and energetic constraints can lead to carry‐over effects, in which performance in one life history stage affects later stages. Bar‐tailed godwits Limosa lapponica baueri, which achieve remarkably high pre‐migratory fuel loads, undertake the longest non‐stop migratory flights yet recorded, and breed during brief high‐latitude summers, may be particularly vulnerable to persistent effects of disruptions to their rigidly‐timed annual routines. Using three years of non‐breeding data in New Zealand, we asked how arrival timing after a non‐stop flight from Alaska (>11 000 km) affected an individual godwit's performance in subsequent flight feather moult, contour feather moults, and migratory departure. Late arrival led to later wing moult, but godwits partially compensated for delayed moult initiation by increasing moult rate and decreasing the total duration of moult. Delays in arrival and wing moult up to 34–37 d had no apparent effect on an individual's migratory departure or extent of breeding plumage at departure, both of which were extraordinarily consistent between years. Thus, ‘errors’ in timing early in the non‐breeding season were essentially corrected in New Zealand prior to spring migration. Variation in migration timing also had no apparent effect on an individual's likelihood of returning the following season. The bar‐tailed godwits’ rigid maintenance of plumage and spring migration schedules, coupled with high annual survival, imply a surprising degree of flexibility to address unforeseen circumstances in the annual cycle.  相似文献   

3.
The migration of the great snipe Gallinago media was previously poorly known. Three tracks in 2010 suggested a remarkable migratory behaviour including long and fast overland non‐stop flights. Here we present the migration pattern of Swedish male great snipes, based on 19 individuals tracked by light‐level geolocators in four different years. About half of the birds made stopover(s) in northern Europe in early autumn. They left the breeding area 15 d earlier than those which flew directly to sub‐Sahara, suggesting two distinct autumn migration strategies. The autumn trans‐Sahara flights were on average 5500 km long, lasted 64 h, and were flown at ground speeds of 25 m s?1 (90 km h?1). The arrival in the Sahel zone of west Africa coincided with the wet season there, and the birds stayed for on average three weeks. The birds arrived at their wintering grounds around the lower stretches of the Congo River in late September and stayed for seven months. In spring the great snipes made trans‐Sahara flights of similar length and speed as in autumn, but the remaining migration through eastern Europe was notably slow. All birds returned to the breeding grounds within one week around mid‐May. The annual cycle was characterized by relaxed temporal synchronization between individuals during the autumn–winter period, with maximum variation at the arrival in the wintering area. Synchronization increased in spring, with minimum time variation at arrival in the breeding area. This suggests that arrival date in the breeding area is under strong stabilizing selection, while there is room for more flexibility in autumn and arrival to the wintering area. The details of the fast non‐stop flights remain to be elucidated, but the identification of the main stopover and wintering areas is important for future conservation work on this red‐listed bird species.  相似文献   

4.
We studied migration and wintering patterns of a wader with a pelagic lifestyle during the non‐breeding period, the red‐necked phalarope Phalaropus lobatus. Using light‐level geolocation, we obtained three full annual tracks and one autumn migration track of male red‐necked phalaropes caught during breeding in Scandinavia. These tracks confirmed expectations that individuals from the Scandinavian population winter in the Arabian Sea. Migration was accomplished in two to four migration leaps, staging for a few days in the Gulf of Finland (autumn) or the southern Baltic Sea (spring) and for up to a month in or near the Black and Caspian Sea (autumn and spring). In addition, travel speeds suggested that only the flights between the Baltic and Black/Caspian Sea are non‐stop, and thus the birds seem to make additional short stops during the other flights. Stopover time in the Black/Caspian Sea is only 8–10 d in spring but up to 36 d in autumn, which is longer than expected if only used for pre‐migratory fattening to cover the ca 2000 km to the Gulf of Oman. After entering the Arabian Sea via the Gulf of Oman, birds dispersed over the entire presumed winter range. Winter movements appear to correspond to the spatio‐temporal patterns in primary production linked to seasonally changing monsoon winds. These are not only the first tracks of Scandinavian red‐necked phalaropes, but also the first seabird tracks in the Arabian Sea, one of the most productive and dynamic marine areas on the planet.  相似文献   

5.
Eastern Curlews Numenius madagascariensis were satellite-tracked onto breeding grounds in north-eastern Russia from south-eastern Queensland over a distance of 12 000 km. They made initial non-stop, long distance flights across the Western Pacific Ocean towards the coastlines of China and Korea followed by shorter flights, over a period of more than a month. The return journey involved a major flight-leg as well, south from the Yellow Sea region. Many birds attempted to migrate but returned to the non-breeding grounds over periods of up to several months. Islands of the Western Pacific region, the southern coastline of New Guinea and north-eastern coastline of Australia are important, particularly for birds that stop migrating. Eastern Curlews that stopped migrating generally survived, which suggests that the species has adapted to deal with adverse conditions en route and/or a physical inability to complete the migration. Such a capacity is perhaps characteristic of a large wader with low annual mortality.  相似文献   

6.
Evidence‐based protection of migratory birds at flyway levels requires a solid understanding of their use of ‘stopping sites’ during migration. To characterize the site use of northward‐migration great knots Calidris tenuirostris in China, we compared length of stay and fuel deposition during northward migration at areas in the south and the north of the Yellow Sea, a region critical for migrating shorebirds. Radio‐tracking showed that at the southern site great knots stayed for only short periods (2.3 ± 1.9 d, n = 40), and bird captures showed that they did not increase their mean body mass while there. In the north birds stayed for 1 month (31.0 ± 13.6 d, n = 22) and almost doubled their mean body mass. Fuel consumption models suggest that great knots departing from the northern Yellow Sea should be able to fly nonstop to the breeding grounds, whereas those from the south would require a refueling stop further north. These results indicate that the study sites in the northern and southern Yellow Sea serve different roles: the southern site acts as a temporary stopover area that enables birds with low fuel stores to make it to main staging areas further north, while the northern site serves as the critical staging site where birds refuel for the next leg of their migration. The rapid turnover rate in the southern Yellow Sea indicates that many more birds use that area than are indicated by peak counts. Differential use of the southern and northern sites indicates that both play crucial roles in the ability of great knots to migrate successfully.  相似文献   

7.
The movements and behavior of many taxa of seabirds during the non‐breeding season remain poorly known. For example, although studies conducted in the Pacific and Indian oceans suggest that White‐tailed Tropicbirds (Phaethon lepturus) seldom fly more than a few thousand kilometers from nest colonies after breeding, little is known about the post‐breeding movements and behavior of a subspecies of White‐tailed Tropicbirds (P. l. catesbyi) that breeds on islands in the North Atlantic Ocean. Our objective, therefore, was to use light‐based geolocators to identify the ranges and pelagic activities of White‐tailed Tropicbirds from Bermuda during the non‐breeding periods in 2014–2015 (= 25) and 2015–2016 (= 16). Locations were estimated based on changes in light intensity across time, and pelagic activities were determined based on whether geolocators attached to leg bands were wet (i.e., birds resting on the water's surface) or dry (i.e., birds in flight). In 2014, birds spent late summer (July–September) near Bermuda and the British Virgin Islands; by mid‐September, most (= 17; 68%) birds took a direct easterly route to the Sargasso Sea. In 2015, most post‐breeders (= 15; 94%) flew east from Bermuda and to the Sargasso before the end of late summer. For both years combined, fall and winter (October–February) ranges extended as far west as North Carolina and as far east as the mid‐Atlantic Ridge. In both years, all birds were located between Bermuda and the British Virgin Islands during the spring (April–May). All birds then flew north to Bermuda in both years, with variations in timing, during April and May. We also found extensive overlap in the ranges of males and females during the non‐breeding season in both years. During the non‐breeding season, White‐tailed Tropicbirds spent 5% of night periods and 41% of day periods in flight in 2014; in 2015, birds spent 8% and 42% of night and day periods, respectively, in flight. Tropicbirds spent more time flying during the day because they hunt by day, detecting prey on the wing by sight. Overall, our results suggest that White‐tailed Tropicbirds that breed in Bermuda are diurnal, nomadic wanderers that range over an extensive area of the Atlantic Ocean during the non‐breeding season.  相似文献   

8.
9.
The flesh‐footed shearwater Puffinus carneipes is a medium‐sized shearwater and transequatorial migrant within the Pacific Ocean. We used archival data loggers to study the non‐breeding migration and diving behaviour of three flesh‐footed shearwaters following breeding in New Zealand. In early April, the birds migrated to the western North Pacific Ocean in 23±2 days, occupying core distributions within the Kuroshio/Oyashio transition system for 91±17 days. Subsequent movements were made into the Sea of Okhotsk prior to return migrations to New Zealand in mid September (19±1 days). Diving depths during migration (2.5±2.4 m), and in the western North Pacific (2.4±2.6 m) were shallower than during the onset of breeding (4.8±8.7 m). Non‐breeding flesh‐footed shearwaters occupy a region of high fisheries activity and the impact of these fisheries on adult survival in this declining species warrant further study.  相似文献   

10.
In general, Arctic-breeding waders leave non-breeding grounds in Australasia from March (New Zealand) to mid-April (Northwest Australia). Here we provide evidence from radio-tracking and visual observations that many red knots Calidris canutus do not leave Roebuck Bay, Northwest Australia, until early or mid-May. Late-departing red knots probably belong to the subspecies piersmai , which breeds on the New Siberian Islands, 10,400 km from Northwest Australia. Based on comparisons of temperatures on the breeding grounds of different knot subspecies, we predict that piersmai knots would not arrive on the breeding grounds until early June, leaving at most 3–4 weeks refuelling in Asia. Using a model of fuelling capacity in relation to prey quality and gizzard mass, we show that these knots must fuel very differently in Australia and Asia. In Australia, knots have seemingly suboptimal gizzard sizes and deposit fuel slowly. In the Yellow Sea, birds could only fuel up within the available time if they either enlarged their gizzards substantially or encountered prey qualities much higher than in Australia, for which we provide quantitative predictions.  相似文献   

11.
Migration during spring is usually faster than during autumn because of competition for breeding territories. In some cases, however, the costs and benefits associated with the environment can lead to slower spring migration, but examples are quite rare. We compared seasonal migration strategies of the endangered Baltic population of the dunlin Calidris alpina schinzii using light‐level geolocator data from 26 individuals breeding in Finland. Autumn migration was faster, with individuals showing a ‘jump’ and ‘skipping’ migration strategy characterised by fewer stationary periods, shorter total stopping time and faster flight. Spring migration was slower, with individuals using a ‘skipping’ strategy. The duration of migration was longer for early departing birds during spring but not during autumn suggesting that early spring migrants are prevented from arriving to the breeding areas or that fueling conditions are worse on the stopover sites for early arriving individuals. Dunlins showed high migratory connectivity. All individuals had one long staging at the Wadden Sea in the autumn after which half of the individuals flew 4500 km non‐stop to Banc d’Arguin, Mauritania. The other half stopped briefly on the Atlantic coast on their way to Mauritania. One bird wintered on the coast of Portugal. Nine individuals that carried geolocators for two years were site faithful to their final non‐breeding sites. Based on the strategies during the non‐breeding period we identified, Baltic dunlin may be especially vulnerable to rapid environmental changes at the staging and non‐breeding areas. Consequently, the preservation of the identified non‐breeding areas is important for their conservation.  相似文献   

12.
The post‐breeding movements of three northeast Atlantic populations (north Greenland, Svalbard and Franz Josef Land) of the ivory gull Pagophila eburnea, a threatened high‐Arctic sea‐ice specialist, were studied between July and December 2007 using 31 satellite transmitters. After leaving their breeding grounds, all birds first dispersed eastward in August–September, to an area extending from the Fram Strait to the northwestern Laptev Sea (off Severnaya Zemlya). Most returned along the same flyway in October–November, hence describing a loop migration before moving south, off east Greenland. Wintering grounds were reached in December, in southeast Greenland and along the Labrador Sea ice‐edge, where Canadian birds also overwinter. One to two birds from each population however continued eastwards towards a third wintering area in the Bering Strait region, hence demonstrating a bi‐directional migration pattern for the populations and elucidating the origin of the birds found in the north Pacific during winter time. Overall, all birds breeding in the northeast Atlantic region used the same flyways, had similar rates of travel, and showed a peak in migratory activity in November. Though the total length of the main flyway, to the Labrador Sea, is only and at most 7500 km on a straight line, the mean total distance travelled by Greenland birds between July and December was 50 000 km when estimated from hourly rates of travel. Our study presents the first comprehensive and complete picture for the post‐breeding movements of the different ivory gull populations breeding in the northeast Atlantic.  相似文献   

13.
Conservation of beach‐nesting medium‐distance migrants has focused on breeding areas because protection of nests is more tractable than protection of non‐breeding habitat. As breeding ground management has encountered diminishing returns, interest in understanding threats in non‐breeding areas has increased. However, robust estimates of non‐breeding demographic rates and abundance are generally lacking, hindering the study of limiting factors. Estimating such rates is made more difficult by complex population dynamics at non‐breeding sites. In South Carolina, endangered Piping Plovers Charadrius melodus start arriving in July and some depart prior to December (the autumn‐only population) while others remain through at least March (the wintering population). State uncertainty capture‐mark‐recapture models provide a means for estimating vital rates for such co‐occurring populations. We estimated the proportion of the population entering the study area per survey (entry probability) and proportion remaining per survey (persistence rate) for both populations during autumn, and abundance of the wintering population, at four sites in South Carolina in 2006/7 and 2007/8, taking advantage of birds previously colour‐ringed on the breeding grounds. We made fairly precise estimates of entry and persistence rates with small sample sizes. Cumulative entry probability was ~50% by the end of July and reached 95% for both populations by October. Estimated stopover duration for birds in the autumn‐only population was 35 days in year 1 and 42 days in year 2. We estimated a wintering super‐population size of 71 ± 16 se birds in the first year and 75 ± 16 in the second. If ringing programmes on the breeding grounds continue, standardized resighting surveys in the non‐breeding period and mark‐recapture models can provide robust estimates of entry and persistence rates and abundance. Habitat protection intended to benefit non‐breeding Piping Plovers at our coastal sites should be in effect by late summer, as many birds are resident from July to the end of winter.  相似文献   

14.
The conservation of migratory birds requires internationally coordinated efforts that, in turn, demand an understanding of population dynamics and connectivity throughout a species' range. Whimbrels (Numenius phaeopus) are a widespread long‐distance migratory shorebird with two disparate North American breeding populations. Monitoring efforts suggest that at least one of these populations is declining, but the level of migratory connectivity linking the two populations to specific non‐breeding sites or identifiable conservation threats remains unclear. We deployed light‐level geolocators in 2012 to track the migration of Whimbrels breeding near Churchill, Manitoba, Canada. In 2013, we recovered 11 of these geolocators, yielding complete migration tracks for nine individuals. During southbound migration, six of the nine Whimbrels stopped at two staging sites on the mid‐Atlantic seaboard of the United States for an average of 22 days, whereas three individuals made nonstop flights of ~8000 km from Churchill to South America. All individuals subsequently spent the entire non‐breeding season along the northern coasts of Brazil and Suriname. On their way north, all birds stopped at the same two staging sites used during southbound migration. Individuals staged at these sites for an average of 34 days, significantly longer than during southbound migration, and all departed within a 5‐day period to undertake nonstop flights ranging from 2600 to 3100 km to the breeding grounds. These extended spring stopovers suggest that female Whimbrels likely employ a mixed breeding strategy, drawing on both endogenous and exogenous reserves to produce their eggs. Our results also demonstrate that this breeding population exhibits a high degree of connectivity among breeding, staging, and wintering sites. As with other long‐distance migratory shorebirds, conservation efforts for this population of Whimbrels must therefore focus on a small, but widely spaced, suite of sites that support a large proportion of the population.  相似文献   

15.
Many Arctic‐breeding waterbirds are thought to bring nutrients for egg production from southern latitudes to allow early breeding. It has proved problematic to quantify the extent of such capital breeding and identify whether nutrients for egg production are brought in from nearby or from afar. Before reaching their breeding grounds on Svalbard, pink‐footed geese Anser brachyrhynchus fly ~ 1100 km across the Barents Sea from Norway. Using abdominal profile indexing (API) we scored body stores in individually marked geese just prior to migration from the northernmost staging area in Norway to Svalbard, followed by their breeding success on their non‐breeding grounds in autumn. In productive breeding years leading to a high (> 13.8%) proportion of juveniles in the autumn population, there was a positive relationship between female API and number of young produced, suggesting that the geese are at least partial capital breeders. Moreover, focusing on the geographic origin of proteins used in egg synthesis and measuring nitrogen stable isotope ratios in pink‐footed geese's eggs and food sources in Norway and Svalbard, we identified that capital breeding in this species is ~ 50% on average but may potentially amount to as much as 100%, notably in females laying early. About 60% of this protein capital is carried in well‐developed follicles across the Barents Sea, the remainder likely being stored in muscle tissues. Conditions on the wintering grounds and migratory stopover sites can have profound effects on an individual's fitness but the here presented link between the use of migratory stopover sites and breeding performance is particularly noteworthy. Apparently, some individuals accept the putative costs of carrying body stores over large distances to the breeding grounds. The data also highlights considerable variation in the reliance on capital for breeding, suggesting substantial individual scope to adjust breeding strategy to changing environmental conditions.  相似文献   

16.
The central‐eastern European populations of sand martin and house martin have declined in the last decades. The drivers for this decline cannot be identified as long as the whereabouts of these long distance migrants remain unknown outside the breeding season. Ringing recoveries of sand martins from central‐eastern Europe are widely scattered in the Mediterranean basin and in Africa, suggesting various migration routes and a broad non‐breeding range. The European populations of house martins are assumed to be longitudinally separated across their non‐breeding range and thus narrow population‐specific non‐breeding areas are expected. By using geolocators, we identified for the first time, the migration routes and non‐breeding areas of sand martins (n = 4) and house martins (n = 5) breeding in central‐eastern Europe. In autumn, the Carpathian Bend and northern parts of the Balkan Peninsula serve as important pre‐migration areas for both species. All individuals crossed the Mediterranean Sea from Greece to Libya. Sand martins spent the non‐breeding season in northern Cameroon and the Lake Chad Basin, within less than a 700 km radius, while house martins were widely scattered in three distinct regions in central, eastern, and southern Africa. Thus, for both species, the expected strength of migratory connectivity could not be confirmed. House martins, but not sand martins, migrated about twice as fast in spring compared to autumn. The spring migration started with a net average speed of > 400 km d–1 for sand martins, and > 800 km d–1 for house martins. However, both species used several stopover sites for 0.5–4 d and were stationary for nearly half of their spring migration. Arrival at breeding grounds was mainly related to departure from the last sub‐Saharan non‐breeding site rather than distance, route, or stopovers. We assume a strong carry‐over effect on timing in spring.  相似文献   

17.
The East Asian–Australian Flyway spans from north Asia to Australia and is the world's richest birds' flyway because it involves > 40% of global migratory bird species. However, information is lacking on individual migratory routes and non‐breeding grounds for small land birds using this flyway. Here, we present the first migration tracks of the songbird Stejneger's stonechat Saxicola stejnegeri from this part of the world using light‐level geolocators. This species depends on grasslands during the entire annual cycle and was captured and equipped with tracking devices in Hokkaido, northern Japan. All individuals traveled through southern Primorye or eastern Heilongjiang (Russia/China) before flying southward via central China toward their major non‐breeding grounds in southeast Asia (China, Laos, Cambodia, Thailand, and Vietnam). Individual stonechats spent 42–70 d en route during their autumn migration. Both the major non‐breeding grounds and the stopover sites are likely to pose challenges to the persistence of this species, because these habitats are currently degraded and will likely be lost in the near future due to intensified agriculture and the establishment of permanent croplands. Moreover, the areas used by Stejneger's stonechat during migration largely overlapped with illegal trapping areas in northeastern China.  相似文献   

18.
The use of light‐level geolocators for monitoring migration has been limited to non‐cavity roosting species because light transitions for cavity‐roosting species are obscured. Using Northern Flickers (Colaptes auratus), nocturnal cavity‐roosting woodpeckers, as a model, I describe a method for analyzing geolocator data that initially adjusts light transitions to account for differences between the time of minimum light threshold and when a bird enters or exits a cavity. Using known locations from the breeding grounds, I assessed the precision of this adjustment method for estimating location by examining the associated error, the repeatability of the length of time individuals roosted in cavities, and by conducting a sensitivity analysis to assess uncertainty. Mean location error decreased from 1417 ± 277 km (SD) to 129 ± 194 km when sunrise and sunset times were adjusted and locations from >25 d were averaged. Sensitivity analysis showed that if an adjusted sunrise or sunset time was “incorrect” by 10 min, the error was 121–137 km from the actual location. This adjustment method significantly improved location estimates at known sites, suggesting that adjusting light transitions based off a calibration is a good initial step for determining location. However, to account for behavioral changes in entrance and emergence times, applying state‐space Kalman filter models can further improve the accuracy of location estimates. The combination of adjusting transitions and applying a state‐space Kalman filter thus allows location estimates to be obtained from cavity‐roosting species using geolocator data.  相似文献   

19.
Long‐distance migratory flights with multiple stop‐overs, multiple wintering sites, and small‐scale connectivity in Afro‐Palearctic migrants are likely to increase their vulnerability to environmental change and lead to declining populations. Here we present the migration tracks and wintering locations of the first six Cyprus wheatears to be tracked with geolocators: a species with high survival and a stable population. We therefore predicted a non‐stop flight from Cyprus to sub‐Saharan wintering grounds, a single wintering area for each individual and a wide spread of wintering locations representing low migratory connectivity at the population level. The sub‐Saharan wintering grounds in south Sudan, Sudan and Ethiopia were likely reached by a single flight of an average straight‐line distance of 2538 km in ca 60 h, with an average minimum speed of 43.1 km h–1. The high speed of migration probably ruled out stop‐overs greater than a few hours. Cyprus wheatears migrated from Cyprus in mid‐late October and most probably remained at a single location throughout winter; three out of five birds with available data may have used a second site < 100 km away during February; all returned between 7–22 March when accurate geolocation data are not possible due to the equinox. Wintering locations were spread over at least 950 km. There were no tag effects on survival. Cyprus wheatears showed a migratory strategy in accordance with their observed high survival rate and demonstrated a routine flight range that allows much of the Mediterranean and the Sahara to be crossed in a rapid two and a half‐day flight.  相似文献   

20.
Yellow Warblers (Setophaga petechia) are abundant breeding birds in North America, but their migratory and non‐breeding biology remain poorly understood. Studies where genetic and isotopic techniques were used identified parallel migration systems and longitudinal segregation among eastern‐ and western‐breeding populations of Yellow Warblers in North America, but these techniques have low spatial resolution. During the 2015 breeding season, we tagged male Yellow Warblers breeding in Maine (= 10) and Wisconsin (= 10) with light‐level geolocators to elucidate fine‐scale migratory connectivity within the eastern haplotype of this species and determine fall migration timing, routes, and wintering locations. We recovered seven of 20 geolocators (35%), including four in Maine and three in Wisconsin. The mean duration of fall migration was 49 d with departure from breeding areas in late August and early September and arrival in wintering areas in mid‐October. Most individuals crossed the Gulf of Mexico to Central America before completing the final eastward leg of their migration to northern South America. Yellow Warblers breeding in Maine wintered in north‐central Colombia, west of those breeding in Wisconsin that wintered in Venezuela and the border region between Brazil, Colombia, and Venezuela. Our results provide an example of crosswise migration, where the more easterly breeding population wintered farther west than the more westerly breeding population (and vice versa), a seldom‐documented phenomenon in birds. Our results confirm earlier work demonstrating that the eastern haplotype of northern Yellow Warblers winters in northern South America, and provide novel information about migratory strategies, timing, and wintering locations of birds from two different populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号